

A Ranged Laminar Family in Graphs and Its Application

\author{
Hiroshi Nagamochi Yuusuke Abe Toshimasa Ishii
 Department of Information and Computer Sciences， Toyohashi University of Technology， Toyohashi，Aichi，441－8580，Japan．
 \｛naga，yusuke，ishii\}@algo.ics.tut.ac.jp

}

Abstract

Let $G=(V, E)$ be a simple undirected graph with a set V of vertices and a set E of edges weighted by nonnegative reals．For a given real $k>0$ ，it is known that there exists a laminar family $\mathcal{X}_{\boldsymbol{k}}$ of subsets of vertices such that each subset corresponds to a cut with size less than \boldsymbol{k} and destroying all cuts in \mathcal{X} by adding a new vertex s and some weighted edges between s and V destroys all other cuts with size less than k ．We prove that such laminar families \mathcal{X}_{k} for all positive reals $k>0$ can be obtained as a compact representation which we call a ranged laminar family． The time complexity for computing the ranged laminar family is $O\left(|V||E|+|V|^{2} \log |V|\right)$ ．As an application of this，we show that given ranged laminar family the source location problem for all demands $k>0$ can be solved simultaneously in $O\left(|V|^{2}\right)$ time．

1 Introduction

The connectivity in graphs is one of the basic concepts，and has wide applications in practice．such as the design and analysis of reliable networks．For example，the problem of augmenting a given graph to be a higher connected graph by adding a smallest number of new edges is applied to design of re－ liable networks．The problem is called the connectivity augmentation problem，and has been studied extensively（see［3，5］for a recent survey）．Given a graph G and an integer $k>0$ called a target， the problem of making $G k$－edge connected by adding a smallest set of new edges is called the edge－ connectivity augmentation problem．Watanabe and Nakamura［12］first proved that the problem is polynomially solvable，and Frank［2］gave a general framework to handle the edge－connectivity aug－ mentation problem by using the edge－splitting technique．Based on the Frank＇s algorithm and a nice property in the minimum cut algorithm［9］，Nagamochi et al．［7］proved that the real weighted version of the edge－connectivity augmentation problem（where edges of G are weighted by nonnegative reals and the objective is to minimize the sum of weights of edge to be added to make $G k$－edge－connected） can be solved for all real targets $k>0$ in the sense that optimal solutions for all k are represented by a compact representation．

On the other hand，Nagamochi and Ibaraki［6］modified the minimum cut algorithm so as to reduce the time complexity of the Frank＇s algorithm．As a byproduct，they［8］obtained the following result： For a given real $k>0$ ，there exists a laminar family \mathcal{X}_{k} of subsets of vertices such that each subset corresponds to a cut with size less than k and destroying all cuts in \mathcal{X} by adding a new vertex s and some weighted edges between s and V destroys all other cuts with size less than k ．Recently，by using this result，it was shown［1］that the source location problem with uniform demand $k>0$ can be solved in linear time（see section 4 for the definition of the problem）．

In this paper，we prove that such laminar families \mathcal{X}_{k} for all positive reals $k>0$ can be obtained as a compact representation which we call a ranged laminar family．The time complexity for computing the
ranged laminar family is $O\left(|V||E|+|V|^{2} \log |V|\right)$. As an application of this, we show that from a given ranged laminar family, the source location problem for all demands $k>0$ can be solved simultaneously in $O\left(|V|^{2}\right)$ time.

2 Preliminaries

Let $G=(V, E)$ be an edge-weighted undirected graph with a set V of vertices, a set E of edges. We denote $|V|$ by n and $|E|$ by m, and we may write the vertex set and the edge set of a graph G as $V(G)$ and $E[G]$, respectively. We denote edge weights by a function $c_{G}: E \rightarrow R^{+}$, where R^{+}denotes the set of nonnegative reals, and we may write the weight $c_{G}(e)$ of edge $e=(u, v)$ as $c_{G}(u, v)$ A singleton set x may be simply written as x. For two disjoint subsets $X, Y \in V$, we denote by $E_{G}(X, Y)$ the set of edges, one of whose end vertices is in X and the other is in Y, and we define $d_{G}(X, Y)=\sum_{e \in E_{G}(X, Y)} c_{G}(e)$. A cut is defined as a subset X of V with $\emptyset \neq X \neq V$, and the size of cut X is defined by $d_{G}(X, V-X)$, which may be written as $d_{G}(X)$. A cut separates $x, y \in V(G)$ is called an (x, y)-cut. An (x, y)-cut with minimum size called a minimum (x, y)-cut, and its size is defined by $\lambda_{G}(x, y)$. A total ordering $v_{1}, v_{2}, \ldots, v_{n}$ of all vertices in $V(G)$ maximum adjacency ordering (MAO, for short) if it satisfies

$$
d_{G}\left(\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}, v_{i+1}\right)=\max _{u \in\left\{v_{i+1}, \ldots, v_{n}\right\}} d_{G}\left(\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}, u\right) \quad(1 \leq i \leq n-1) .
$$

Lemma $2.1[6,9,11]$ For an MAO $v_{1}, v_{2}, \ldots, v_{n}, \lambda_{G}\left(v_{n-1}, v_{n}\right)=d_{G}\left(\left\{v_{n}\right\}, V(G)-\left\{v_{n}\right\}\right)$ holds for the last two vertices v_{n-1} and v_{n}. An MAO in a graph G with n vertices and m edges can be found in $O(m+n \log n)$ time.

Notice that we can choose an arbitrary vertex as the first vertex v_{1} in an MAO and that if $d_{G}(u) \geq k$ for all $u \in V-v_{1}$ then there exists a pair of vertices s and t with $\lambda_{G}(s, t) \geq k$.

A family $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ of sets of vertices is called a laminar family if it satisfies $X_{i} \cap X_{j}=$ $\emptyset, X_{i} \subset X_{j}$ or $X_{j} \subset X_{i}$ for each $X_{i}, X_{j} \in \mathcal{X}$. A member X in a laminar family \mathcal{X} is called maximal (resp., minimal) in \mathcal{X} if there is no member $Y \in \mathcal{X}$ with $Y \supset X$ (resp., $Y \subset X$). For a function $t: V \rightarrow R^{+}$, we may write $\sum_{v \in X} t(v)$ as $t(X)$.

Definition 2.1 For a graph $G=(V, E)$ and a target $k \geq 0$, a k-laminar family of G is defined to be a laminar family of subsets of V such that
(1) $d_{G}(X)<k \quad$ for all $X \in \mathcal{X}$,
(2) For any $|V|$-dimensional vector t such that $d_{G}(X)+t(X) \geq k, X \in \mathcal{X}$, it holds

$$
d_{G}(Y)+t(Y) \geq k, \quad Y \in 2^{V}-\{\emptyset, V\} .
$$

For example, Fig. 1 shows a 7 -laminar family \mathcal{X}_{7} in the graph, In section 3.1, we review how to compute a k-laminar family for a given G and $k \geq 0$.

For two reals $a, b \in R^{+}$with $a<b$, the interval $[a, b]$ is called a range and its size $\pi([a, b])$ is defined as $b-a$. For a range $r=[a, b], a$ and b are denoted by $L(r)$ and $U(r)$, respectively. Let $R=\left\{\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{q}, b_{q}\right]\right\}$ be a set of ranges. The size of R denoted by $\pi(R)$, is defined as the sum $\sum\left(b_{i}-a_{i}\right)$ of all range sizes in R. For a given $h \in R^{+}$, the upper h-truncation (resp., under

Figure 1: A k-laminar family for $k=7$.
h-truncation) of a set R of ranges is defined by $\left.R\right|^{h}=\left\{\left[a_{i}, \min \left\{h, b_{i}\right\}\right] \mid a_{i}<h, i=1,2, \ldots, q\right\}$ (resp., $\left.\left.R\right|_{h}=\left\{\left[\max \left\{a_{i}, h\right\}, b_{i}\right] \mid b_{i}>h, i=1,2, \ldots, q\right\}\right)$. A ranged laminar family is a family \mathcal{X} of cuts X with a range $r(X)$. For a real $k \geq 0$ and a ranged laminar family \mathcal{X}, we denote by \mathcal{X} / k the laminar family $\{X \in \mathcal{X} \mid L(r(X))<k<U(r(X))\}$.

Definition 2.2 A ranged laminar family \mathcal{X} is called valid if \mathcal{X} / k is a k-laminar family for each target $k \geq 0$.

Fig. 2 shows a ranged laminar family \mathcal{X} of the graph G in Fig. 1 . Notice that $\mathcal{X} / 7$ is equal to \mathcal{X}_{7} in Fig. 1.

In this paper, we design an $O\left(n m+n^{2} \log n\right)$ time algorithm for computing a valid ranged laminar family.

3 Computing a Ranged Laminar Family

In this section, we give an algorithm for computing a ranged laminar family after describing the algorithm [8] for computing a k-laminar family for a given real $k \geq 0$.

3.1 Computing a k-laminar family

We describe the algorithm in [8] for computing a k-laminar family $\mathcal{X}_{\boldsymbol{k}}$. Given a graph $G=(V, E)$, we first add to G a new vertex s to obtain a graph with the designated vertex s. We then add a new edge between s and each vertex $u \in V(G)$ with $d_{G}(u)<k$, where weight of the edge (s, u) is given by $k-d_{G}(u)$ so that $d_{H}(u)=k$ holds in the resulting graph H. Then, we initialize a laminar family \mathcal{X}_{k} of subsets of $V(G)$ by $\left\{\{u\} \mid d_{G}(u)<k\right\}$.

Figure 2: A given graph G and a ranged laminar family \mathcal{X} for G.

Then we repeat the following procedure for contracting two vertices into a single vertex until the graph has three vertices (including s). We maintain the condition that

$$
\begin{equation*}
d_{H}(u) \geq k \text { holds for all } V(H)-s \tag{1}
\end{equation*}
$$

in the current graph H (this holds for the initial graph H). By (1) and Lemma 2.1, there exits a pair of vertices $v, w \in V(H)-s$ such that $\lambda_{H}(v, w) \geq k$ (such v, w are given by the last two vertices in an MAO starting from s as the first vertex). Since no cut with size less than k separates these v and w, we contract u and v into a single vertex x^{*}. After this, we check whether (1) still holds or not, i.e., whether $d_{H}\left(x^{*}\right) \geq k$ holds or not. If $d_{H}\left(x^{*}\right) \geq k$, then we repeat the same procedure. Otherwise, we repeat the same procedure after updating H and \mathcal{X}_{k} as follows. We increase weight of edge $\left(s, x^{*}\right)$ by $k-d_{H}\left(x^{*}\right)$, and we add to \mathcal{X}_{k} the set X^{*} of all vertices in $V(G)$ that have been contracted into x^{*}. Thus,
for each cut $X \in \mathcal{X}_{\boldsymbol{k}}, d_{H}(X)=k$ holds in the graph H immediately after X is added to $\mathcal{X}_{\boldsymbol{k}}$
Clearly, the final $\mathcal{X}_{\boldsymbol{k}}$ is a laminar family of subsets of $V(G)$. The algorithm is described as follows.

Algorithm k-LAMINAR-FAMILY

Input : An edge-weighted graph $G=\left(V, E, c_{G}\right)$ and a real $k \in R^{+}$.
Output : A k-laminar family \mathcal{X}_{k}.
1 Let $U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be the set of vertices $u_{i} \in V$ such that $d_{G}\left(u_{i}\right)<k$.
$2 V^{\prime}=V \cup\{s\} ; E^{\prime}=E \cup\left\{\left(s, u_{1}\right),\left(s, u_{2}\right), \ldots,\left(s, u_{p}\right)\right\} ;$
3 for each $u_{i} \in U$ do
$4 \quad c_{H}\left(s, u_{i}\right):=k-d_{G}\left(u_{i}\right)$
5 end;
6 Let $H=\left(V^{\prime}, E^{\prime}, c_{H}\right)$ be the obtained graph.
$7 \mathcal{X}_{k}:=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{p}\right\}\right\} ;$
8 while $V(H)>4$ do
9 Find two vertices $v, w \in V(H)-s$ such that $\lambda_{H}(v, w) \geq k$; so far, and set $\mathcal{X}_{k}:=\mathcal{X}_{k} \cup\left\{X^{*}\right\} ;$
end
15 end;
16 Output \mathcal{X}_{k}.
Theorem 3.1 [8] For a graph G and a target $k \geq 0$, Algorithm k-LAMINAR-FAMILY correctly computes a k-laminar family in $O\left(n m+n^{2} \log n\right)$ time.

3.2 Algorithm for computing a ranged laminar family

The basic idea for finding a ranged laminar family is to use the same approach for computing the edge connectivity augmentation function [7]. We try to perform Algorithm k-LAMINAR-FAMILY for all targets $k \geq 0$. In order to execute this in a finite space, we maintain the computation process for all k using a compact representation. For this, we represent graphs H during execution of k-LAMINARFAMILY for all $k \geq 0$ by a ranged graph, which is defined as follows. Let $H=\left(V \cup\{s\}, E \cup E_{H}(s)\right.$ have a designated vertex s, a set E of edges not incident to s and a set $E_{G}(s)$ of edges incident to s, where each edge $e \in E$ has a nonnegative weight $c_{H}(e)$, but each vertex $v \in V$ has a set $R(v)$ of ranges (instead of a nonnegative weight). Such a graph H is called a ranged graph, which represents infinitely many weighted graphs in the following sense.

Definition 3.1 Given an arbitrary target $k \geq 0$, we let H and k correspond to an edge-weighted graph $\left.H\right|^{k}=\left(V \cup\{s\}, E \cup E_{H}(s)\right)$ such that

$$
c_{\left.H\right|^{k}}(e)=c_{H}(e) \text { for } e \in E \text { and } c_{\left.H\right|^{k}}(e)=\pi\left(\left(\left.R(v)\right|^{k}\right)\right) \text { for } e=(s, v) \in E_{H}(s)
$$

(see Section 2 for the definition of $\pi(\cdot)$ and $\left.R\right|^{k}$).
With the notion of ranged graphs, let us perform Algorithm k-LAMINAR-FAMILY for all targets $k \geq 0$. Given an edge-weighted graph $G=(V, E)$, we first add a new vertex s to V, and add one edge between s and each $v \in V$, where $E_{H}(s)$ denotes the set of all edges between s and V. Now we set a range set $R(v)$ of each $v \in V$ to be $R(v)=\left\{\left[d_{G}(v), \infty\right]\right\}$. It is easy to see that for each $k \geq\left. 0 H\right|^{k}$ is the graph constructed in line 6 of k-LAMINAR-FAMILY. In what follows, we use K as a sufficiently large value in the sense that for any two $k, k^{\prime} \geq\left. K H\right|^{k}$ and $\left.H\right|^{k^{\prime}}$ have the essentially same structure (we will see that $K=2 \max _{v \in V} d_{G}(v)$ suffices $)$. Then let each each $v \in V$ has range

$$
R(v)=\left\{\left[d_{G}(v), K\right]\right\}
$$

At this point, the initial laminar family \mathcal{X}_{k} in line 7 of k-LAMINAR-FAMILY may be different for each k. However, all these families \mathcal{X}_{k} can be compactly represented by a ranged laminar family. That is, we initialize a ranged laminar family \mathcal{X} by $\{\{u\} \mid u \in V(G)\}$ and set the range $r(X)$ of each $X \in \mathcal{X}$ by [$\left.d_{G}(u), K\right]$. We easily see that \mathcal{X} / k is equal to \mathcal{X}_{k} in line 7 of k-LAMINAR-FAMILY.

Now we proceed to the procedure of contracting vertices in k-LAMINAR-FAMILY. Here we have to resolve an important problem such that if a pair of two vertices $v, w \in V(H)-s$ to be contracted are different for distinct targets k and k^{\prime}, we cannot maintain the computation process by a single ranged graph H. Fortunately, it is ensured that there is a common pair of vertices v and w such that $\lambda_{\left.H\right|^{k}}(v, w) \geq k$ for all $k \geq 0$.

Lemma 3.1 [7] Let $H=\left(V \cup\{s\}, E \cup E_{H}(s)\right)$ be a ranged graph with $|V(H)| \geq 3$. Assume that for each vertex $u \in V(H)-s$,
the range set $R(u)$ contains a range r with $L(r) \leq d_{H}(u, V(H)-\{s, u\})$ and $U(r)=K$.
Then, for the last two vertices v, w in an MAO starting from s in the weighted graph $\left.H\right|^{K}$, such that $\lambda_{\left.H\right|^{k}}(v, w) \geq k$ holds for all $0 \leq k \leq K$.

Lemma 3.1 shows that u, v can be used in common as pair of vertices to be contracted for all k and such a pair can be found in $O(m+n \log n)$ time.

We finally consider how to update the range sets $R(v), v \in V(H)$ and the ranged laminar family \mathcal{X} after contracting two vertices v and w. Suppose that

$$
\begin{equation*}
\text { for each } u \in V(H)-s \text {, all ranges } r \in R(v) \text { satisfy } U(r)=K \tag{4}
\end{equation*}
$$

(this is true for the initial ranged graph H). For the vertex x^{*} just contracted from v and w, we set $R\left(x^{*}\right)$ to be the union of $R(v)$ and $R(w)$. In the resulting ranged graph H, if $d_{\left.H\right|^{k}}\left(x^{*}\right) \geq k$ for all $k \in[0, K]$, then we can proceed to the next iteration of the procedure. Assume $d_{\left.H\right|^{k}}\left(x^{*}\right)<k$ for some $k \in[0, K]$. That is, by (4), $R\left(x^{*}\right)$ contains no range r with $L(r) \leq d_{H}\left(x^{*}, V(H)-\left\{s, x^{*}\right\}\right)$ (in other words, x^{*} does not satisfies (3)). In this case, we modify some ranges in $R\left(x^{*}\right)$. Let $k^{*}=d_{H}\left(x^{*}, V(H)-\left\{s, x^{*}\right\}\right)$. For this, we compute k^{\prime} such that $\pi\left(\left.R\left(x^{*}\right)\right|^{k^{\prime}}\right)=k^{\prime}-k^{*}$.

Note that for a target k with $k \leq k^{*}$ or $k \geq k^{\prime}$, the current ranged laminar family \mathcal{X} satisfies the condition (2) with $\mathcal{X}_{k}=\mathcal{X} / k$. To meet (2) for targets $k \in\left[k^{*}, k^{\prime}\right]$, we divide each range

$$
\begin{equation*}
r \in R\left(x^{*}\right) \text { with } L(r)<k^{\prime}<U(k) \tag{5}
\end{equation*}
$$

into two ranges $r^{\prime}=\left[L(r), k^{\prime}\right]$ and $r^{\prime \prime}=\left[k^{\prime}, U(r)\right](U(r)=K)$, and then replace the set of all ranges $r^{\prime}=\left[L(r), k^{\prime}\right]$ by a single range $\left[k^{*}, k^{\prime}\right]$, where we merge the $\left[k^{*}, k^{\prime}\right]$ and some range $\left[k^{\prime}, K\right]$ into $\left[k^{*}, K\right]$ to satisfy (4). (Note that this operation can be written as $R\left(x^{*}\right):=\left.\left(R\left(x^{*}\right)-\{r\}\right)\right|_{k^{\prime}} \cup\left\{\left[k^{*}, K\right]\right\}$ for a range $r \in R\left(x^{*}\right)$.)
we need to add to \mathcal{X} the set X^{*} of vertices in $V(G)$ contacted into x^{*}, setting its range $r\left(X^{*}\right)=$ $\left[d_{H}\left(x^{*}, V(H)-\left\{s, x^{*}\right\}\right), k^{\prime}\right]$. Then for the resulting \mathcal{X} and all $k \in[0, K]$, the condition (2) holds for $\mathcal{X}_{k}=\mathcal{X} / k$. This implies that for each target $k \in[0, K],\left.H\right|^{k}$ and \mathcal{X} / k can be viewed as those H and \mathcal{X}_{k} computed during the execution of k-LAMINAR-FAMILY. Therefore, the final ranged laminar family \mathcal{X} obtained by the algorithm is valid. Note that it suffices to choose K so that the k^{\prime} in line 13 is always less than $U(r)$ in (5). Therefore, by setting $K:=1+2 \max _{v \in V} d_{G}(v)$, any k^{\prime} is less than $U(r)=K$. the choice of K The algorithm description is given as follows.

Algorithm RANGED-LAMINAR-FAMILY

Input : An edge-weighted undirected graph $G=\left(V, E, c_{G}\right)$

```
Output : A ranged laminar family \(\mathcal{X}\)
    1 begin
    \(V^{\prime}:=V \cup\{s\} ; E(s)=\{(s, v) \mid v \in V\} ;\)
\(\mathcal{X}:=\emptyset ; K:=1+2 \max _{v \in V} d_{G}(v) ;\)
    3 for each vertex \(u \in V\) do
        \(R(u):=\left\{\left[d_{G}(u), K\right]\right\} ; X:=\{u\} ; r(X):=\left[d_{G}(u), K\right] ; \mathcal{X}:=\mathcal{X} \cup\{X\} ;\)
    end;
    Let \(H=\left(V^{\prime}, E^{\prime}=E \cup E(s)\right)\)
    be the resulting ranged graph;
    while \(|V(H)| \geq 4\) do
    7 Find vertices \(v, w \in V(H)-s\) such that \(\lambda_{H \mid}(u, v) \geq k\) holds for all \(0 \leq k \leq K\);
    \(8 \quad\) Contract \(v\) and \(w\) into a single vertex \(x^{*}\);
        \(R\left(x^{*}\right):=R(v) \cup R(w) ;\)
        Let \(H\) be the resulting ranged graph;
        \(k^{*}:=d_{H}\left(x^{*}, V(H)-\left\{s, x^{*}\right\}\right) ;\)
        Let \(X^{*} \subset V(G)\) be the set of vertices contracted into \(x^{*}\);
            \(/^{*}\) We assume \(R\left(x^{*}\right)=\left\{\left[a_{1}, K\right],\left[a_{2}, K\right], \ldots,\left[a_{\mid X}{ }^{*}, K\right]\right\}\),
            where \(a_{1} \leq a_{2} \leq \cdots \leq a_{|X *|}{ }^{*} /\)
            if \(k^{*}<a_{1}\) then
            Find \(k^{\prime} \in R^{+}\)such that \(\pi\left(\left.R\left(x^{*}\right)\right|^{k}\right)=k^{\prime}-k^{*}\);
            \(R\left(x^{*}\right):=\left.\left(R\left(x^{*}\right)-\left\{\left[a_{1}, K\right]\right\}\right)\right|_{k^{\prime}} \cup\left\{\left[k^{*}, K\right]\right\} ;\)
            \(\mathcal{X}:=\mathcal{X} \cup\left\{X^{*}\right\} ; r\left(X^{*}\right):=\left[k^{*}, k^{\prime}\right] ;\)
            end;
            Denote the ranged graph resulting as \(H\);
        end;
        Output \(\mathcal{X}\);
            20 end.
```

Clearly, $|\mathcal{X}| \leq 2 n-2$. Since we need to compute the MAO at most $n-1$ times and other computations are minor, the running time of RANGED-LAMINAR-FAMILY is $O\left(n m+n^{2} \log n\right)$.

Theorem 3.2 For a given graph G, Algorithm RANGED-LAMINAR-FAMILY correctly computes a valid ranged laminar family \mathcal{X} in $O\left(n m+n^{2} \log n\right)$ time.

4 The source location problem for all demands

Let $G=(V, E)$ be a simple undirected graph with a cost function cost:V $\rightarrow R^{+}$, a weight function $c_{G}: E \rightarrow R^{+}$A general form of the source location problem [10] asks to find a minimum cost subset $S \subseteq V$ for a demand function $d: V \rightarrow R^{+}$such that for each $v \in V-S$ there are $d(v)$ edge-disjoint (or vertex-disjoint) paths between v and S. This has an application to the problem of finding an optimal location of mirror servers on computer networks [1, 4].

In what follows, we consider the source location problem which asks to find a minimum cost subset $S \subseteq V$ for a uniform demand $k>0$ such that there are k edge-disjoint paths between each vertex
$v \in V-S$ and S. It is known [1] that this source location problem can be solved in linear time if a \boldsymbol{k}-laminar familiy $\mathcal{X}_{\boldsymbol{k}}$ has been obtained. In this paper, we shows that the source location problem for all demands k can be solved simultaneously by using a valid ranged laminar family.

4.1 Algorithm for the source location problem for a fixed demand

We solve the source location problem for a fixed demand k by using a k-laminar family \mathcal{X}_{k}. Since $d_{G}(X)<k$ holds for each cut $X \in \mathcal{X}_{k}$ by Definition 2.1(1), we must choose at least one source from each minimal subset $X \in \mathcal{X}_{k}$ (otherwise, removal of $E_{G}(X)$ would separate some vertex $v \in X$ and S). Conversely, if we select a vertex from each minimal subset $X \in \mathcal{X}_{k}$ then any other cut Y with $d_{G}(Y)<k$ includes at least one source Definition 2.1(2). If a cost function cost :V $\rightarrow R^{+}$is given, then it suffices to choose a vertex with the minimum cost from each minimal subset $X \in \mathcal{X}_{k}$.

Figure 3: An obtained location of sources for $k=7$.

Theorem 4.1 The source location problem for a demand k can be solved in $O(n)$ time by using k laminar family.

For the graph G in Fig. 2 and demand $k=7$, the S of minimum number of sources is shown in Fig. 3.

4.2 Algorithm for the source location problem for all demands

Suppose that for a given graph G, a valid ranged laminar family \mathcal{X} is obtained. To solve the source location problem for all demands, we first sort boundary values $L(r(X)), U(r(X))$ for all cuts $X \in \mathcal{X}$, and let $Z=\left\{z_{1}, z_{2}, \ldots, z_{q} \mid z_{1}<z_{2}<\cdots<z_{q}\right\}$ be the resulting sequence ($q \leq 2 n-2$). Though structure of a k-laminar family may be changed at each boundary values $z_{j}(1 \leq j \leq q)$, it does not change in the interval $\left(z_{j}, z_{j+1}\right)(1 \leq j<q)$. Therefore, by computing a solution for each interval, we can obtain optimal source sets for all demands k.

Let $\mathcal{X}_{\left[z_{j}, z_{j+1}\right]}$ be the k-laminar family for $k \in\left(z_{j}, z_{j+1}\right]$. Then we choose a vertex with the minimum cost from each minimal subset $X \in \mathcal{X}_{\left[z_{j}, z_{j+1}\right]}$. The set $S_{\left[z_{j}, z_{j+1}\right]}$ of chosen vertices is an optimal source set for demand $k \in\left(z_{j}, z_{j+1}\right]$.

Theorem 4.2 For a given graph G and a valid ranged laminar family \mathcal{X} of G, the source location problem for all demands can be solved in $O\left(n^{2}\right)$ time.

5 Conclusion

In this paper, we gave an $O\left(n m+n^{2} \log n\right)$ time algorithm for computing a ranged laminar family for a given graph. As an application of this, we showed that the source location problem for all demands k can be solved in $O\left(n^{2}\right)$ time from a given ranged laminar family.

References

[1] K. Arata, S. Iwata, K. Makino, and S. Fujishige: Locating sources to meet flow demands in undirected networks, Lecture Notes in Computer Science, 1851, pp.300-313, 2000.
[2] A. Frank: Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Mathematics, vol.5, pp.25-53, 1992.
[3] A. Frank: Connectivity augmentation problems in network design, Mathematical Programming: State of the Art (eds: J. R. Birge and K. G. Murty), The University of Michigan, Ann Arbor, MI, pp.34-63, 1994.
[4] H. Ito, H. Uehara and M. Yokoyama: A faster and flexible algorithm for a location problem on undirected flow networks, IEICE Trans. Fundamentals, vol.E83-A, no.4, pp.704-712, 2000.
[5] H. Nagamochi: Recent development of graph connectivity augmentation algorithms, Inst. Electron. Inform. Comm. Eng. Trans. Fundamentals, vol.E83-D, pp.372-383, 2000.
[6] H. Nagamochi and T. Ibaraki: Computing edge-connectivity of multigraphs and capacitated graphs, SIAM J. Discrete Mathematics, vol.5, pp.54-66, 1992.
[7] H. Nagamochi and T. Ibaraki: Augmenting edge-connectivity over the entire range in $\tilde{O}(n m)$ time, Journal of Algorithms, vol.30, pp.253-301, 1999.
[8] H. Nagamochi and T. Ibaraki: Polyhedral structure of submodular and posi-modulara systems, Discrete Applied Mathmatics, vol.107, pp.165-189, 2000.
[9] H. Nagamochi, T. Ishii and T. Ibaraki: A simple and constructive proof of a minimum cut algorithm, Inst. Electron. Inform. Comm. Eng. Trans. Fundamentals, vol.E82-A, pp.2231-2236, 1999.
[10] H. Nagamochi, T. Ishii and H. Ito: Minimum cost source location problem with vertex-connectivity requirements in digraphs, Information Processing Letters (to appear).
[11] M. Stoer and F. Wagner: A simple min cut algorithm, JACM, vol.44, pp.585-591, 1997.
[12] T. Watanabe and A. Nakamura: Edge-connectivity augmentation problems, J. Comp. System Sci., vol.35, pp.96-144, 1987.

