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Greedy Splitting: A Unified Approach
for Approximating Some Partition Problems
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Graduate School of Informatics, Kyoto University Toyohashi University of Technology
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Abstract. We present a simple and unified framework for developing and analyzing approximation algo-
rithms for some multiway partition problems (with or without terminals), including the k-way cut (or
k-cut), multiterminal cut (or multiway cut), hypergraph partition and target split.

1 Introduction

Let V and f:2¥ — R be a finite set and a set function respectively. Function f is submodular if
f(A) + f(B) > f(ANB) + f(AU B) for all subsets A and B of V. It is symmetric if f(S) = f(V - 5)
for all S C V. A family P = {V1,..., Vik} of pairwise disjoint nonempty subsets of V' whose union is V'
is called a k-partition of V. The cost of P (with respect to f) is defined as f(P) = Et_l f(Vi). Given
a submodular system (V, f) where f is nonnegative, the k-partition problem in submodular systems (k-
PPSS) is to find a k-partition of V' with the minimum cost (2 < k < |V| — 1). The k-partition problem
in symmetric submodular systems (k-PP3S) is the k-PPSS with symmetric f. We assume that f is given
by an oracle that computes f(S) in at most ¢ time for any S C V.

The k-partition problem in hypergraphs (k-PPH) is a special case of the k-PP3S in which V and f are
respectively the vertex set and the cut function of a hypergraph with nonnegative hyperedge costs (i.e.,
for any S C V, f(S) is the sum of costs of hyperedges that have at least one but not all endpoints in S.
It is nonnegative, symmetric and can be easily seen to be submodular).

Our study starts from the k-partition problem in graphs (k-PPG). Given an undirected graph with
nonnegative edge costs, the k-PPG asks to find a minimum cost edge subset whose removal leaves the
graph with at least k connected components. The problem is also called the k-way cut or k-cut problem.
Goldschmidt and Hochbaum [4] have shown that the k-PPG is NP-hard for arbitrary k even for unit
edge costs, while it is solvable for any fixed k in O(n’“z) time, where n is the number of vertices. Faster
algorithms can be found in [8, 12, 13]. Saran and Vazirani {18] and Kapoor [6] showed that the k-PPG
problem (for arbitrary k) can be approximated within factor 2 — — in polynomial time. Recently, the
authors [19] have given an approximation algorithm with improved performance guarantee about 2 — E

Clearly the inclusion among the above problem classes is k-PPG C k-PPH C k-PP3S C k-PPSS.
Hence all of these are also NP-hard for arbitrary k. Queyranne [16] has shown that for any fixed k

the k-PP3S is solvable in O(|V|¥°6) time. A faster algorithm for the 3-PP3S can be found in [12]. On
the other hand, Queyranne [16] extends a greedy algorithm in [6, 18] to show that the k-PP3S can be
approximated within factor 2 — E in polynomial time. We note that his proof and the proofs of [6, 18]
all use lower bounds derived from the so-called cut tree (or Gomory-Hu tree) for f (or for undirected
graph), and are rather complicated and work only for symmetric submodular systems. As will be seen
in the following, our approach in this paper works for any submodular system and gives a much simpler
proof to show the same results.

We first show that the 2-PPSS is solvable in O(|V|30) time, while we leave it open whether the k-PPSS
can be solved in polynomial time for fixed k > 3. We then extend the greedy algorithm in [6, 16, 18] to
the k-PPSS. It finds a k-partition of V by greedily “splitting” V' via minimum 2-partition computatlons
We will give a simple proof to show that the performance guarantee is no worse than (1 + a)(1 — k),

where « is any number that satisfies Zi:l f(Vv-v) < a2i=1 f(V;) for all k-partitions {V1i,...,Vi} of
V. We show that in general we can let o = k — 1, which implies the performance guarantee k — 1. This
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is the first approximation algorithm for the k-PPSS. Furthermore, it is clear that we can let a = 1 if f
is symmetric, which implies the results of [6, 16, 18]. Several more applications will also be given.

We next consider to approximate the k-PPSS via minimum 2, 3-partition computations. We w111 show
some properties on the performance and use them to approximate the k-PPH by factor about 2— 3. This
extends our result [19] for the k&-PPG and improves the previous best bound 2 — — (implied by the result
for the k-PP3S due to Queyranne [16]).

Finally we extend our results to the target split problem in submodular systems (TSPSS), which for
an additional given target set T C V (|T| > k) asks to find a minimum k-partition {V1, V5, ..., Vi} such
that each V; contains at least one target in T. A special case in which |[T'| = k, V and f are respectively
the vertex set and the cut function of graphs is called the multiterminal (or previously multzway) cut
problem, which is NP-hard even for k = 3 [3], and can be approximated within factor 1.5 — [l] 1.3438
[7]. Clearly the TSPSS is a generalization of the k-PPSS and the multiterminal cut problem We note
that Maeda, Nagamochi and Ibaraki [11] have considered the target split problem in graphs and shown
that it can be approximated within factor 2 — ,":— in polynomial time. Our result will also give a simpler
proof to show their result.

2 k-PPSS and Greedy Splitting Algorithm

We first observe that the 2-PPSS is solvable in polynomial time.

Theorem 1 (Queyranne [15]) Given a symmetric submodular function g:2V — R, a nonempty proper
subset S* of V (|V| > 2) such that g(S*) is minimum can be found in O(|V|20,) time where 6, is the
time bound of the oracle for g. O

Theorem 2 Given a submodular function f:2¥ — R and a W C V (W] > 2), a nonempty proper
subset S* of W such that f(S*) + f(W — S*) is minimum can be found in O(|W|39) time where 0 is the
time bound of the oracle for f.

Proof. Let g:2W — R be defined by g(S) = f(S)+ f(W —S) for all S C W. Notice that g is symmetric,
submodular and for any S C W we can compute g(S) in at most 20 time. Theorem 1 shows that such
an S* can be found in O(|W|39) time. O

We next present a greedy splitting algorithm (GSA) for the k-PPSS in Table 1.

Table 1: Greedy splitting algorithm (GSA) for the k-PPSS.
P~ {V};
fori=1,..,k—-1do
(San) — argmm{f(S)+f(W S)—-fW) |[0#£SCW,WePR}
Pl+1 — (Pz {“’z}) U {S‘la W; — Sz}:
end /* for */
Output Px.

DU W N

GSA contains k — 1 rounds and the i-th round computes an (i + 1)-partition P;; of V', where P; = {v}
and P;, is obtained by greedily “splitting” some member in P; into two nonempty parts at the minimum
cost. Formally, in the i-th round we compute a pair (S;, W;) that minimizes f(S) + f(W — S) — f(W)
(called the splitting cost) over all S and W such that @ # S C W and W € P;. We get P;,; from P; by
replacing W; with S; and W; — S;. Thus, for £ =1,2,.. ., k, it holds -
-1
f(Pe) = f(V)+ D (F(S:) + f(W; — Si) — f(W3)). (1)
i=1
Clearly the output Pj of GSA is a k-partition of V. For any (fixed) W C V, Theorem 2 shows that
we can find in O(|W|3) time.a nonempty proper subset S* of W such that f(S*) + f(W — S*) (hence
f(8*) + f(W — 8*) — f(W)) is minimum. Thus we can execute step 3 in )y cp. O(IW|30) = O(|V|%6)
time. Hence the running time of GSA is O(k|V|36).
To analyze the performance guarantee, we first go through a technical lemma.
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Lemma 1 For an £ € {1,...,k}, let P, be the £-partition of V found by GSA in the (£ — 1)-th round.
Then for any ordered E-partztwn {V1,Va,..., Vie} of V, it holds that

-1

f(Pe) < 3 (f(V)+f(V =T0) = (€ - Df(V). ()

Proof. We proceed by induction on £. It is trivial for £ = 1. Suppose that it holds for £ — 1. Consider
an ordered {-partition P = {V;,Va,...,V;} of V. Since P,_; is an (£ — 1)-partition of V, there exist a
W € P,_1 and two distinct V;,V,, € P with j < h such that WNV; # 0 # W N V,. We here consider
the ordered (£ — 1)-partition P’ = {V4,...,Vj_1, Vj+1,.. Ve—1, Vj UV} where the order is the same as
P except for that V; is merged with the last member V; (notice j < £). By the induction hypothesis on
£ —1, (2) holds for P,—; and P, i.e.,

f(Pe1) < Y. FOA+FV-Vi) = ((=3)f(V). )

1<i<e-1, i#j

Thus by (3) it suffices to show that

f(Pe) = f(Pe-1) < f(Vi)+ f(V - Va)—f(V) 4

Notice that W NV} is a nonempty proper subset of W. Thus (W N V,, W)is a candxdate for step 3
of GSA. Hence by the optimality of (Sg—1, We—1), J

f(Se-1) + fWee1 = Se-1) = f(We—1) < f(WnVy)+ f(W-V;) - f(W) (5)
The submodularity of f implies that the right hand of (5) is at most |

fVi) + W =Vy) = fWUV;) < f(V;)+ f(V = V) = f(V),

proving (4). ; O

Theorem 3 Given a nonnegative submodular system (V, f), GSA finds a k-partition of V' of cost at most
(1+ a)(1 — }) times the optimum, where a is any number that satisfies Ef=1 fF(Vv-Vv) < azi;l, fV3)
for all k-partitions {V1,...,Vi} of V.

Proof. Let P* = {Vy*, V;,~. .+ V*} be an optimal k-partition of V with the order such that f(V;*)+ f(V —
Vi) = maxicick{f(V}*) + f(V — V;*)}. Then

k-1 k k
S G+ V-V (- 3) Z(f(V{‘) FHV =) < 401 - ) A7),
i=1 =1 i=1

On the other hand, by Lemma 1 GSA finds a k-partltmn of cost at most 21_1 (F(VH+ f(V =V
(note f(V') > 0). Hence the proof goes because Zml f(V;*) is the optimum. O

For symmetric f, we can let o = 1 and obtain the following corollaries.

Corollary 1 (Queyranne [16]) The k-PP3S can be approzimated within factor 2—% in polynomial time.
]

Corollary 2 (Saran and Vazirani [18], Kapoor [6]) The k-PPG problem can be approrimated within
factor 2 — — in polynomial time. d

In general we cannot let a = 1. Nevertheless, we show that a = k — 1 is enough.

Lemma 2 Z 1 f(V-V;) < (k-1) Zf=1 f(Vi) — k(k—2) f(D) holds for any k-partition {V4,...,Vi} of a
submodular system (V, f). ; ‘
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Proof. For any two disjoint A,BC V, f(AUB) < f(A) + f(B) — f(0) holds by the submodularity of f.
Thus f(V-Vi) = f(U;x Vi) < i f(V3) — (k—2)f(0) for i =1, ..., k. Hence the lemma goes. a

Notice that f(@) > 0 in the k-PPSS, which implies that & = k — 1 is enough. Thus the performance
guarantee of GSA for the k-PPSS is no worse than k — 1. We remark that the bound is also tight (a tight
example will be given in the full paper). We summarize the arguments so far in the next theorem.

Theorem 4 The k-PPSS can be approzimated within factor k—1 in O(k|V|36) time for any nonnegative
submodular system (V, f), where 6 is the time bound of the oracle for f. A O

Our proof is not only very simple but also allows us to plug some approximate algorithms into GSA.
Suppose that a p-approximation algorithm for 2-PPSS is used. It is easy to see that the cost of the
obtained k-partition is bounded by p(1 + a)(1 — %) times the optimum.

Theorem 5 The variant of GSA that uses a p-approrimation algorithm for 2-PPSS to compute 2-
partitions is @ p(1 + @)(1 — ;) approzimation algorithm for the k-PPSS, where a is any number that

satisfies 5 f(V - Vi) <a XX, f(Vi) for all k-partitions {V1,...,Vi} of V. 0

As a result, we obtain the next corollary by using the linear time (2 + €)-approximation algorithm [10]
for minimum cut problem in graphs with unit edge costs, where € € (0, 1) is an arbitrary number.

Corollary 3 The k-PPG in graphs with unit edge costs can be approrimated within factor (4+¢€)(1 — -,1;)
in O(k(n + m)) time, where € € (0,1) is a fizxed number, and n and m are the numbers of vertices and
edges respectively. ]

Before closing this section, we show important applications of our results to two variants of the k-PPH
that arise from VLSI design (2, 9]. Let H = (V, E) be a hypergraph with vertex set V and hyperedge set
E. Let c: E — R* be a nonnegative hyperedge cost function. For a k-partition P of V, two types of cost
to be minimized, cost,(P) and costz(P), are introduced: costy(P) counts the cost c(e) of each hyperedge
e p— 1 times if its endpoints of e belong to p distinct members in P, while costa(P) counts c(e) once if
its endpoints e belong to at least two distinct members in P.

For the k-PPH with cost functions cost; and costy, the previous best approximation guarantees are
2 — 2 and dmax(1 — 1) respectively [14], where dmax is the maximum degree of hyperedges. We here
show that better guarantees can be obtained by a simpler proof than [14]. For this, we define three set
functions fex, fin and f:2¥ — R* as follows. Let fex be the cut function of H. For any S C V, let fin(S)
be the sum of costs of hyperedges whose endpoints are all in S, and f(S) = fex(S) + fin(S). Observe that
the k-PPH with cost function cost; asks to find a k-partition P = {V4,V5,..., Vi} of V that minimizes
ZLI fV)-fv)= E:;l( fV;) - ﬁkﬂ), while the k-PPH with cost function costs asks to minimize
fin(V) — Ef=1 fin(Vi) = Zf___l(!‘—“én — fin(Vi)). It is easy to see that both functions g; = f — EE‘Q and
ge = M‘kﬂ — fin are submodular, but may not be nonnegative or symmetric. Nevertheless, since both
Theorem 2 and Lemma 1 do not require the function to be nonnegative or symmetric, we can still use

GSA to find a k-partition and use Lemma 1 to estimate the performance. By easy calculations, we can
enjoy the next performance guarantees.

Corollary 4 The k-PPH with cost function cost; (resp., costz) can be approrimated within factor 2 — —

(resp., min(k,dt,)(1 - ;)) in polynomial time, where dt,, is the mazimum degree of hyperedges unth
positive cost. O

3 Greedy Splitting via Minimum 2, 3-Partitions

We have seen the GSA that increases the number of partitions one by one via minimum 2-partition
computations. In this section we consider to increase the number of partitions two by two greedily. Let
k =2m +1 > 3 be an odd number. (The case that k is an even number will be treated later.) We
consider the next approximation algorithm for the k-PPSS. GSA2 (Table 2) contains m rounds and the
i-th round constructs an (2i + 1)-partition P;41 of V, where P; = {V'}, and the (2i + 1)-partition P;;
is obtained by greedily “splitting” some member(s) in P; at the minimum cost. There are two ways of
such splitting. One is to split two members into four, which is considered by step 3. Another is to split
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Table 2: Greedy splitting algorithm 2 (GSA2) for the k-PPSS with odd k = 2m + 1.

1| P« {V}
2| for i=1,...,mdo
3 (SH,W},S2,W?) — argmin{Y";_, (f(5) + f(W! — &) — f(W7)) |
048 cWI, j=1,2, for distinct W1, W2 e P;};
4 (T}, T}, W}) « argmin{ f(T") + f(T?) + f(W - T' ~ T?) - f(W) |
{T',T?,W — T! — T?} is a 3-partition of some W € P;};
5 if 30 (F(SD)+F(Wi—50)— F(Wi)) < f(T}) + F(T2) + f(WP~T} ~T?) ~ f(W}) then
6 Pi+1 — (Pi —{WilaWiz})U{Sz‘l’Wil - Sil’siz’wiz_ 3‘12},
7 else
8 Piy1 — (P — {W3H U {T}, T2, W} - T} - T7};
9 end /* if */
10 | end /* for */
11 | Output Prt1.

one member into three, which is considered by step 4. We choose the one with the minimum cost to get
Pi+1 from P; (step 5 - 8).

Clearly the output P,,; is a k-partition of V. Let us consider the running time. In step 3 the
objective is minimized by the least two minimum 2-partitions of members in P;. Thus by Theorem 2
step 3 can be done in Yy, p, O(IW(30) = O(|V|30) time. However, by now we do not know how to
find a minimum 3-partition in submodular systems, which means that the time complexity of step 4 is
still unknown in general. Therefore we suppose that the input (V] f) satisfies the next condition, which
ensures that GSA2 runs in polynomial time.

Condition 1 For any W C V, a 3-partition {T1, T2, W —T! —T?} of W that minimizes f(T*)+ f(T2)+
f(W —T! — T?) can be found in polynomial time.

To analyze the performance of GSA2, we show a lemma analogous with Lemma 1.

Lemma 3 For an £ € {0,1,...,m}, let Pey1 be the (2¢ + 1)-partition of V found by GSA2 in the £-th
round. Then for any ordered (2¢ + 1)-partition {V1,Va,..., Vagy1} of V, it holds that

¢
f(Pey1) < Z (f(Vaiz1) + f(Vai) + f(V = Vaiy — Vai)) = (£ = 1) f(V). ~ (6)

i=1

Proof. We proceed by induction on £. It is trivial when ¢ = 0. Suppose that it holds for £ — 1. Consider
an ordered (2€ + 1)-partition P = {V},Va, ..., Vagr1} of V. Since P; is a (2¢ — 1)-partition of V, we see
that at least one of the next two cases occurs for P and P;.

1. There isa W' € P, and three distinct V,,V;, V; € P (r < s < t) such that WinV, # 0, WinV, #0,
and WlnV; #0.

2. There are two distinct W1, W2 € P, and four distinct V,, V4, Vo, Vg €P (a<b,p<gq,a<p)such
that W C VUV, W2C VUV, WinV, #0#W!inV,and W2NV, #0# W2nV,.

In case 1, we further consider the following two sub-cases.

la. There is an h € {1,...,£} such that r = 2h — 1 and s = 2h.

1b. Otherwise r € {2h — 1,2h} and s € {2h’ — 1,2h’} for some 1 < h < h' < £.
Similarly, we consider ’the next two sub-cases in case 2.

2a. There is an h € {1,.. ., £} such that a =2h — 1 and p = 2h.

2b. Otherwise a € {2h —1,2h} and p € {2h' — 1,2h'} forsome 1 <h < h' < L.
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We will show that in each sub-case of 1a, 1b, 2a, 2b, there is a “nice splitting” which is a candidate for
step 3 or 4 of GSA2. (Recall that the cost of any “nice splitting” is an upper bound on f(Pe41) — f(Pe).)
We show that we can construct an ordered (2¢ — 1)-partition P = {V,...,V,,_,} of V from P such that

Y (F(Vgi_q) + F(Vay) + f(V — Vi — V5,)) — (£ — 2)f(V) plus the cost of the “nice splitting” is at
most the right hand of (6). This will prove the lemma by the induction hypothesis on P’.

In what follows, we only consider sub-case 2a due to space limitation (the other cases can be shown
analogously). Let P’ be the ordered (2¢ — 1)-partition {V1,..., Van_2, Vant1,. . ., Vae, Vap—1 U Var, UVaey1}
of V, which has the same order as P except for that Vo;_; and Va5 are merged with the last member
Vae41 (notice 2h — 1 < 2h < 2¢ + 1). By the induction hypothesis on £ — 1, (6) holds for P, and P/, i.e.,

f(Pe) < Z (f(Vai—1) +F(Vas) + f(V =Voi_1 —Va4)) —(€-2) f(V).

1<i<Y, i#h

Thus, it suffices to show

F(Pes1) — f(Pe) < f(Van—1) + f(Var) + f(V — Van_1 — Van) — f(V). (7)

For this, we choose (W! N Vop_1, W1, W2N Vop, W2) as the “nice splitting”, i.e., split W! and W2 into
WinVap_1, W1—Vau_; and W2NVap, W2—Vy;, respectively. Clearly it is a candidate for (S}, W}, S7, W3?)
in step 3 of GSA2 (see Table 2). Therefore,

f(Pes1) = f(Pe) < f(W NVano1) + f(W! =Van1) = F(W?) + f(W>NVan) + F(W? = Van) — F(W?). (8)
By the submodularity, the right hand of (8) is at most '
FW O Var_y) — F(W) + F(W2 0 Vi) + F(W2 U Van) — F(W?) = (V)
+HfW! = Vap1) + F(V — Van)]
< [fW'nVanoa) + F(WHU Vo) — F(W))
+HF(W? N Van) + fFW? UVan) = f(W?)] + f(V — Van—1 — Var) — £(V)
< f(Van-1) + f(Van) + f(V = Van_1 — Van) — £(V),
proving (7). , O

For an even k = 2m > 2, we start with a minimum 2-partition of V' before increasing the number
of partitions two by two greedily. It is described in Table 3, where the same code as in Table 2 are

Table 3: Greedy splitting algorithm 2 (GSA2) for the k-PPSS with even k = 2m.

1 P1 — a minimum 2-partition of V;
2 fori=1,....m—1do
3-10 (The same as step 3 — 10 in Table 2);

11 Output Py,.

abbreviated. Clearly the output Py, is a k-partition of V. In order to be a polynomial time algorithm,
it is again assumed that Condition 1 is satisfied. We give a lemma on the performance, where the proof
can be done in a similar way as Lemma 3 and is omitted.

Lemma 4 For an { € {1,2,...,m}, let P, be the 2¢-partition of V found by GSA2 in the £-th round.
Then for any ordered 2¢-partition {V1,Va, ..., Var} of V, it holds that
-1
FP) < fO)+ £V V) + Y (F(Vas) + F(Vair1) + F(V = Vai — Vias1)) — (€ = DF(V).  (9)

i=1

O

We note that, not surprisingly, GSA2 does no worse than GSA in any cases. This can be seen by
comparing the right hand of (2) and (6) or (9). Notice that f(V—A-B)+f(V) < f(V-A)+ f(V —-B)
for any disjoint subsets A and B of V. In fact, using Lemma 3 and Lemma 4, we have the next result.
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Theorem 6 The performance guarantee of GSA2 is £51 for the k-PPSS and 2 — 2 for the k-PP3S.
There are examples that indicate these bounds are tight. g

We know that GSA2 can do better for the k-PPG [19]. A question is, what can it guarantee to problem
classes lying between the k-PPG and the k-PP3S e.g., the k-PPH. In the following, we show that GSA2
achieves a guarantee better than 2 — 2 for the k-PPH, extending the result for the k-PPG by [19].

Theorem 7 The k- PPH can be approximated in polynomial time within factor 2 — — for any odd k > 3
and factor 2 — 75 + m for any even k > 2.

Proof. Let V and f be respectively the vertex set and the cut function of a hypergraph H. It is easy to see
that Condition 1 is satisfied by considering the reduced hypergraph of H for any vertex subset W C V,
where for each hyperedge e, the endpoints of e that are not in W are removed and e is present if it has at
least two endpoints in W. Thus GSA2 (Table 2, 3) is a polynomial time approximation algorithm for the
k-PPH. We next show the claimed performance guarantee. Let P* = {V{*,Vy',..., V*} be a minimum
k-partition of V. Let m denote a numbering of {1,.. ., k}, and let 7 (i) be the number of i.

First consider an odd number k£ = 2m + 1 > 3. By applying Lemma 3 to P*, we see that GSA2 finds
a k-partition of V' with cost at most fr = 3I0;(f(Vigiy)) + f (V,,(m)) + V= Vi1 = Vaey) for
any numbering 7. We want to show that there is a numbering 7* such that fr. is no more than 2 — —
times the optimum f(P*) = 21—1 V). Thls can be done by considering all numberings and showmg
that the average value of fr is at most (2 — £) f(P*).

" Let us rewrite fr as 2f(P*) — A, where Ar = 2f(Vyy) + S (f(v mei-n) T f(Vaesy) — F(V -
Vr@i—1) — Va(2y))- Thus we only need to show that the average value of A is at least 3 3 f(P*). For each
hyperedge e, we consider the average number that e is counted in A,. For sxmp11c1ty, let us contract
each V;* € P* to a single node v; (this may decrease the degree of €). Let H|p« denote the contracted
hypergraph. To avoid confusing we use the word “node” in H|p+ to denote the contracted vertex subsets.
We assume without loss of generality that Hp- is simple and complete. Otherwise we can meet this by
merging the hyperedges with the same endpoints and adding zero cost hyperedges. Suppose that after
contraction e has degree d > 2 (otherwise e is not counted in Ay).

Recall that f(S) is the sum of costs of hyperedges that has at least one but not all endpoints in S for
S C V. Thus due to the 2f(V, (k)) term in A, e is counted twice if one endpoint of e is numbered k.
Since H|p« has k nodes and e has d endpomts we see that the average number (expected value) that e is
counted due to the 2 f (V) term is 5. On the other hand, due to the other term 3732, (f(Vigi_q)) +
f(Viey) — F(V = Vo) — Vees)) m Ar, e is counted twice if d = 2 and the two endpoints of e are
numbered 7(2i — 1) and m(2:) for some ¢ € {1,2,...,m}, otherwise e is counted p times if d > 3 and
the endpoints of e contains p pairs of nodes that are numbered 7(2ip, — 1) and 7(2i,) for some distinct
ip € {1,2,...,m}. Notice that for each fixed pair of indices 2i—1 and 24, the average number (probability)

that both nodes v2;_1 and vy; become endpoints of e is (’;“g k = ﬂz;%. Thus the average number that

e is counted due to the Y ;" (f(V* (i 1))+f(V,r"(2,)) f(v- V;r(2z—1) ;(21))) termis 2-m- -2,;%—_—11-)1 = 72;

ifd=2,orm- %Z—B = J—l if d > 3. Since e is counted d times in the optimum f(P*), we see that

the contribution of e to the average value of Ay is (£ +2) =32 (d=2) or §(% + M) >3 (d>3)
times the contribution to f(P*). Thus we see that the average value of A, is at least tlmes F(P*),
which finishes the proof of the theorem for an odd k.

Similarly, we can prove the theorem for an even k. We note that the bounds are tight, see [19]. O

4 ' Target Split Problem in Submodular Systems

Given a target set T C V (|T| > k) as an additional input, the target split problem in submodular systems
(TSPSS) is to find a minimum k-partition {V1, V2,..., Vi } such that each V; contains at least one target.
By considering only “valid” k-partitions (i.e., a target split of T'), we extend our algorithms to TSPSS.

Let us first consider algorithm GSA. In step 3 of GSA, we need to compute a valid 2-partition for
some W in the current solution P; at the minimum cost. This can be done if we can compute a minimum
valid 2-partition for each W € P;. We do this in the next way.
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We do nothing with W € P; such that [T NW| < 1. For each W € P; with TN W| > 2, we
choose a target s € TNW, compute a minimum 2-partition of W that separates s and t for each target
t e TNW — {s}, and choose the one with the minimum cost. We see that a minimum 2-partition of W
that separates specified vertices s and t can be found in polynomial time.

Lemma 5 Given a submodular system (V, f) and a W C V, for any s,t € W (s #t), a subset S* of W
such that s € S*, t ¢ S* and g(S*) + g(W — S*) is minimum can be found in polynomial time.

Proof. Consider a submodular system (W — {s,t}, g) where g(S) = f(SU{s}) + f(W — S — {s}) for all
S C W — {s,t}. Clearly we need only to find a subset S’ of W — {s,t} that g(S’) is minimum by letting
S§* = 8 U {s}. Since g is submodular, it can be minimized in polynomial time [5, 17]. O

Hence we have seen that GSA can be extended to the TSPSS and runs in polynomial time. Further-
more, the performance can still be shown in a straightforward manner as Lemma 1 and Theorem 3. We
summarize this as the next theorem.

Theorem 8 Given a nonnegative submodular system (V, f) with a target set T C V, the TSPSS can
be approrimated within factor (1 + a)(1 — }) in polynomial time, where a is any number that satisfies
Zf=x FV-V)< azf=1 f(V3) for all k-partitions {V4,...,Vi} of V that is a target split of T, where we
can let o = k — 1 in general, and let a = 1 for symmetric f. O

Let us consider GSA2. Since the multiterminal cut problem is NP-hard even for k = 3, we cannot
expect a polynomial time algorithm to compute a minimum 3-partition that is a target split in general
(unless P=NP). Nevertheless, we note that Lemma 3, 4 can be extended in a straightforward manner.

5 Conclusion and Remark

In this paper, we have presented a simple and unified approach for developing and analyzing approxima-
tion algorithms for some multiway partition related minimization problems. The main idea is a greedy
splitting approach to unified problems k-PPSS (k-partition problem in submodular systems) and TSPSS
(target split problem in submodular systems). Several important and interesting results are shown in
this paper. We note that it is still open whether the k-PPSS can be solved in polynomial time for any
k > 3 (the 2-PPSS is shown to be solvable in polynomial time). Finally, we remark that it seems not so
easy as in this paper to show the performance guarantee of greedy algorithms that increase the number of
partitions three (or more) by three (or more). This is because analogous properties that we have shown
in Lemma 1, 3 and 4 no longer hold even for k-PPG [19].
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