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Abstract We present asimple and unified framework for developing and analyzing approximation algo
rithms for some multiway partition problems (with or without terminals), including the $k$ -utay cut (or
$k$ -cut), multiterminal cut (or multiway cut , hypergraph partition and target split

1Introduction
Let $V$ and $f:2^{V}arrow \mathrm{R}$ be afinite set and aset function respectively. Function $f$ is submodular if
$\mathrm{f}(\mathrm{A})+\mathrm{f}(\mathrm{A})\geq f(A\cap B)+f(A\cup B)$ for all subsets $A$ and $B$ of $V$ . It is symmetric if $f(S)=f(V-S)$
for all $S\subseteq V$ . Afamily $\mathcal{P}=\{V_{1}, \ldots, V_{k}\}$ of pairwi$.\mathrm{s}\mathrm{e}$ disjoint nonempty subsets of $V$ whose union is $V$

is called a $k$ -partition of $V$ . The cost of $\mathcal{P}$ (with respect to $f$) is defined as $f(\mathcal{P})$ $= \sum_{i=1}^{k}f(V_{i})$ . Given
asubmodular system $(V, f)$ where $f$ is nonnegative, the $k$ -partition problem in submodular systems (k-
PPSS) is to find a $k$-partition of $V$ with the minimum cost $(2\leq k\leq|V|-1)$ . The $k$ -partition problem
in symmetric submodular systems (&-PP3S) is the $k$-PPSS with symmetric $f$ . We assume that $f$ is given
by an oracle that computes $f(S)$ in at most $\theta$ time for any $S\subseteq V$ .

The $k$ -partition problem in hypergraphs ( $k$-PPH)is aspecial case of the &-PP3S in which $V$ and $f$ are
respectively the vertex set and the cut function of ahypergraph with nonnegative hyperedge costs (i.e.,
for any $S\subseteq V$ , $f(S)$ is the sum of costs of hyperedges that have at least one but not all endpoints in $S$ .
It is nonnegative, symmetric and can be easily seen to be submodular).

Our study starts from the $k$ -partition problem in graphs ( $k$-PPG). Given an undirected graph with
nonnegative edge costs, the $k$-PPG asks to find aminimum cost edge subset whose removal leaves the
graph with at least $k$ connected components. The problem is also called the $k$ -way cut or $k$ -cut problem.
Goldschmidt and Hochbaum [4] have shown that the $k$-PPG is $\mathrm{N}\mathrm{P}$-hard for arbitrary $k$ even for unit
edge costs, while it is solvable for any fixed $k$ in $O(n^{k^{2}})$ time, where $n$ is the number of vertices. Faster
algorithms can be found in [8, 12, 13]. Saran and Vazirani [18] and Kapoor [6] showed that the fc-PPG
problem (for arbitrary $k$) can be approximated within factor $2- \frac{2}{k}$ in polynomial time. Recently, the
authors [19] have given an approximation algorithm with improved performance guarantee about $2- \frac{3}{k}$ .

Clearly the inclusion among the above problem classes is fc-PPG $\subset$ fc-PPH $\subset$ &-PP3S $\subset k$-PPSS.
Hence all of these are also $\mathrm{N}\mathrm{P}$-hard for arbitrary $k$ . Queyranne [16] has shown that for any fixed $k$

the &-PP3S is solvable in $O(|V|^{k^{2}}\theta)$ time, Afister algorithm for the 3-PP3S can be found in [12]. On
the other hand, Queyranne [16] extends agreedy algorithm in $[6, 18]$ to show that the &-PP3S can be
approximated within factor $2- \frac{2}{k}$ in polynomial time. We note that his proof and the proofs of $[6, 18]$

all use lower bounds derived from the s0-called cut tree (or Gomory-Hu tree) for $f$ (or for undirected
graph), and are rather complicated and work only for symmetric submodular systems. As will be seen
in the following, our approach in this paper works for any submodular system and gives amuch simpler
proof to show the same results.

We first show that the 2-PPSS is solvable in $O(|V|^{3}\theta)$ time, while we leave it open whether the fc-PPSS
can be solved in polynomial time for fixed $k\geq 3$ . We then extend the greedy algorithm in [6, 16, 18] to
the $k$-PPSS. It finds a $k$-partition of $V$ by greedily “splitting” $V$ via minimum 2-partition computations.
We will give asimple proof to show that the performance guarantee is no worse than $(1+ \alpha)(1-\frac{1}{k})$ ,
where $\alpha$ is any number that satisfies $\sum_{i=1}^{k}f(V-V_{i})\leq\alpha\sum_{i=1}^{k}f(V_{i})$ for all $k$-partitions $\{V_{1}, \ldots, V_{k}\}$ of
$V$ . We show that in general we can let $\alpha=k-1$ , which implies the performance guarantee $k-1$ . This
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is the first approximation algorithm for the $k$-PPSS. Furthermore, it is clear that we can let $at=1$ if $f$

is symmetric, which implies the results of [6, 16, 18]. Several more applications will also be given.
We next consider to approximate the $k$-PPSS via minimum 2, 3–partition computations. We will show

some properties on the performance and use them to approximate the $k$-PPH by factor about $2-_{k}3$ . This
extends our result [19] for the $k$-PPG and improves the previous best bound $2- \frac{2}{k}$ (implied by the result
for the &-PP3S due to Queyranne [16] $)$ .

Finally we extend our results to the target split problem in submodular systems (TSPSS), which for
an additional given target set $T\subseteq V(|T|\geq k)$ asks to find aminimum $k$-partition $\{V_{1}, V_{2}, \ldots, V_{k}\}$ such
that each $V_{\dot{1}}$ contains at least one target in $T$ . Aspecial case in which $|T|=k$ , $V$ and $f$ are respectively
the vertex set and the cut function of graphs is called the rnultiteminal (or previously multiway) cut
problem, which is $\mathrm{N}\mathrm{P}$-hard even for $k=3[3]$ , and can be approximated within factor $1.5- \frac{1}{k}[1]$ , 1.3438
[7]. Clearly the TSPSS is ageneralization of the $k$-PPSS and the multiterminal cut problem. We note
that Maeda, Nagamochi and Ibaraki [11] have considered the target split problem in graphs and shown
that it can be approximated within factor $2-k2$ in polynomial time. Our result will also give asimpler
proof to show their result.

2 $\mathrm{f}\mathrm{c}$-PPSS and Greedy Splitting Algorithm
We first observe that the 2-PPSS is solvable in polynomial time.

Theorem 1(Queyranne [15]) Given a symmetric submodular function $g:2^{V}arrow \mathrm{R}$ , a nonempty proper
subset $S^{*}$ of $V(|V|\geq 2)$ such that $g(S^{*})$ is minimum can be found in $O(|V|^{3}\theta_{g})$ time where $\theta_{g}$ is the
time bound of the oracle for $g$ . $\square$

Theorem 2Given a submodular function $f:2^{V}arrow \mathrm{R}$ and a $W\subseteq V(|W|\geq 2)$ , a nonempty proper
subset $S^{*}$ of $W$ such that $f(S^{*})+f(W-S^{*})$ is minimum can be found in $O(|W|^{3}\theta)$ time where $\theta$ is the
time bound of the oracle for $f$ .

Proof. Let $g:2^{W}arrow \mathrm{R}$ be defined by $g(S)=f(S)+f(W-S)$ for all $S\subseteq W$ . Notice that $g$ is symmetric,
submodular and for any $S\subseteq W$ we can compute $g(S)$ in at most $2\theta$ time. Theorem 1shows that such
an $S^{*}$ can be found in $O(|W|^{3}\theta)$ time. $\square$

We next present agreedy splitting algorithm (GSA) for the $k$-PPSS in Table 1.

Table 1: Greedy splitting algorithm (GSA) for the fc-PPSS.

645321| $\mathrm{e}\mathrm{n}\mathrm{d}.\cdot/^{*}\mathrm{f}\mathrm{o}\mathrm{r}^{*i}\mathrm{O}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}\mathcal{P}_{k}\mathrm{f}\mathrm{o}_{\mathcal{P}_{+1}arrow(\mathcal{P}-\{W_{\dot{1}}\})\cup\{S.,W_{\dot{l}}-S_{i}\}}\mathrm{r}i=1,..\cdot.,k-1\mathrm{d}\mathrm{o}\mathcal{P}_{1}arrow\{V\}(S_{1},W_{\dot{l}})arrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\{f(S)+.f(W-S)-f(W)|\emptyset\neq S\subset W,W\in \mathcal{P}.\cdot\}$

;

GSA contains $k-1$ rounds and the $i$-th round computes an $(i+1)$-partition $\mathcal{P}_{\dot{l}+1}$ of $V$ , where $\mathcal{P}_{1}=\{V\}$

and $\mathcal{P}_{:+1}$ is obtained by greedily “splitting” some member in $p_{:}$ into two nonempty parts at the minimum
cost. Formally, in the $i$-th round we compute apair (Si, $W_{\dot{1}}$ ) that minimizes $f(S)+f(W-S)-\mathrm{f}(\mathrm{W})$

(called the splitting cost) over all $S$ and $W$ such that $\emptyset\neq S\subset W$ and $W\in \mathcal{P}_{\dot{l}}$ . We get $p_{+1}.\cdot$ from $\mathcal{P}_{\dot{l}}$ by
replacing $W_{\dot{1}}$ with $S\dot{.}$ and $W_{\dot{1}}$ $-S_{\dot{1}}$ . Thus, for $\ell=1,2$ , $\ldots$ , $k$ , it holds

$f( \mathcal{P}_{\ell})=f(V)+\sum_{\dot{\iota}=1}^{\ell-1}(f(S_{\dot{l}})+f(W_{\dot{1}} -S_{\dot{l}})-f(W_{\dot{l}}))$ . (1)

Clearly the output $\mathcal{P}_{k}$ of GSA is a $k$-partition of $V$ . For any (fixed) $W\subseteq V$ , Theorem 2shows that
we can find in $O(|W|^{3}\theta)$ tim\^ea--aonempty proper subset $S^{*}$ of $W$ such that $f(S^{*})+f(W-S^{*})$ (hence
$f(S^{*})+f(W-S^{*})-f(W))$ is minimum. Thus we can execute step 3in $\sum_{W\in \mathcal{P}:}O(|W|^{3}\theta)=O(|V|^{3}\theta)$

time. Hence the running time of GSA is $O(k|V|^{3}\theta)$ .
To analyze the performance guarantee, we first go through atechnical lemma
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Lemma 1For an $\ovalbox{\tt\small REJECT}$ E $\{1k\}_{t}\rangle^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}\rangle$ let $\ovalbox{\tt\small REJECT}/$), be the $f$ -pariition of V found by GSA in the $(\ovalbox{\tt\small REJECT} \mathrm{f} -\mathit{1})$ -th round.
Then for any ordered $f$ -partition { $V\mathrm{J}_{\mathrm{t}}V2_{\mathrm{t}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$

$\ovalbox{\tt\small REJECT}\rangle$ Ve} of V it holds that

$f(\mathcal{P}_{\ell})$ $\leq$ $\sum_{i=1}^{\ell-1}\mathrm{f}(\mathrm{V}\mathrm{i})+f(V-V_{i}))-(\ell-2)f(V)$ . (2)

Proof We proceed by induction on $\ell$ . It is trivial for $\ell=1$ . Suppose that it holds for $\ell-1$ . Consider
an ordered $\ell$-partition $\mathcal{P}$ $=\{V_{1}, V_{2}, \ldots, V_{\ell}\}$ of $V$ . Since $\mathcal{P}_{\ell-1}$ is an $(\ell-1)$-partition of $V$ , there exist a
$W\in \mathcal{P}_{\ell-1}$ and two distinct $V_{j}$ , $V_{h}\in \mathcal{P}$ with $j<h$ such that $W\cap V_{j}\neq\emptyset\neq W\cap V_{h}$ . We here consider
the ordered $(\ell-1)$-partition $\mathcal{P}’=$ {Vi, $\ldots$ , $\mathrm{V}\mathrm{j}-\mathrm{i},$ $\mathrm{V}\mathrm{j}-\mathrm{i}$ , $\ldots$ , $\mathrm{V}\mathrm{j}-\mathrm{i},$ $V_{j}\cup V_{\ell}$ } where the order is the same as
$\mathcal{P}$ except for that $V_{j}$ is merged with the last member $V_{\ell}$ (notice $j<\ell$). By the induction hypothesis on
$\ell-1$ , (2) holds for $\mathcal{P}_{\ell-1}$ and $\mathcal{P}’$ , i.e.,

$f(\mathcal{P}_{\ell-1})$ $\leq$

$\sum_{1\leq i\leq\ell-1,i\neq j}(f(V_{i})+f(V-\mathrm{I}4)-(\ell-3)f(V).$
(3)

Thus by (3) it suffices to show that

$\mathrm{f}(\mathrm{V}\mathrm{e})-f(\mathcal{P}_{\ell-1})\leq f(Ve)+f(V-V_{j})-f(V)$ . (4)

Notice that $W\cap V_{j}$ is anonempty proper subset of $W$ . Thus $(W\cap V_{j}, W)$ is acandidate for step 3
of GSA. Hence by the optimally of $(\mathrm{S}\mathrm{e}-\mathrm{i}, (\mathrm{k}-1)$ ,

$f(S_{\ell-1})+f(W_{\ell-1}-(\mathrm{k}-1)-f(W_{\ell-1})$ $\leq$ $f(W\cap V_{j})+f(W-V_{j})-f(W)$ . (5)

The submodularity of $f$ implies that the right hand of (5) is at most

$f(Ve)+f(W-V_{j})-f(W\cup V_{j})$ $\leq$ $f(Ve)+f(V-V_{j})-\mathrm{f}(\mathrm{V})$ ,

proving (4). El

Theorem 3Given a nonnegative submodular system $(V, f)$ , $GSA$ finds a $k$-partition $ofV$ of cost at most
$(1+\mathrm{a})(1-1\pi)$ times the optimum, where $\alpha$ is any number that satisfies $\sum_{i=1}^{k}f(V-V_{i})\leq ae$ $\sum_{i=1}^{k}\mathrm{f}(\mathrm{V}\mathrm{e})$

for all $k$ -partitions {Vi, $\ldots$ , $V_{k}$ } of $V$ .

Proof Let $7”=$ {Vi, $V_{2}^{*}$ , $\ldots$ , $V_{k}^{*}$ } be an optimal $k$-partition of $V$ with the order such that $f(V_{k}^{*})+f(V-$

Vk) $= \max_{1\leq i\leq k}\{f(V_{i}^{*})+f(V-V_{i}^{*})\}$. Then

$\sum_{i=1}^{k-1}(f(V_{i}^{*})+f(V-V_{i}^{*}))\underline{<}(1-\frac{1}{k})\sum_{i=1}^{k}(f(V_{i}^{*})+f(V-V_{i}^{*}))\leq(1+\alpha)(1-\frac{1}{k})\sum_{i=1}^{k}f(V_{i}^{*})$.

On the other hand, by Lemma 1GSA finds a $k$-partition of cost at most $\sum_{i=1}^{k-1}(f(V_{i}^{*})+f(V-V_{i}^{*}))$

(note $f(V)\geq 0$). Hence the proof goes because $\sum_{i=1}^{k}f(V_{i}^{*})$ is the optimum. El

For symmetric $f$ , we can let $\alpha=1$ and obtain the following corollaries.

Corollary 1(Queyranne [16]) The k-PP3S can be approximated within factor $2- \frac{2}{k}$ in polynomial time.
$\square$

Corollary 2(Saran and Vazirani [18], Kapoor [6]) The k-PPG problem can be approimated within
factor $2- \frac{2}{k}$ in polynomial time. El

In general we cannot let $\alpha=1$ . Nevertheless, we show that $\alpha=k-1$ is enough.

Lemma 2 $\sum_{i=1}^{k}$ f($Vi) \leq(\mathrm{k}-1)\sum_{i=1}^{k}f(V_{i})-k(k-2)f(\emptyset)$ holds for any $k$ -partition {Vi, \ldots ,
$V_{k}$ } of $a$

submodular system (V, f).
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Proof. For any two disjoint $A$ , $B\subseteq V$ , $f(A\cup B)\leq f(A)+f(B)-f(\emptyset)$ holds by the submodularity of
$f\square$

.
Thus $\mathrm{f}(\mathrm{V}-\mathrm{V}\mathrm{i})=f(\bigcup_{j\neq:}V_{j})\leq\sum_{j\neq:}f(V_{j})-(k-2)f(\emptyset)$ for $i=1$ , $\ldots$ , $k$ . Hence the lemma goes.

Notice that $f(\emptyset)\geq 0$ in the $k$-PPSS, which implies that $ot=k-1$ is enough. Thus the performance
guarantee of GSA for the $k$-PPSS is no worse than $k-1$ . We remark that the bound is also tight (a tight
example will be given in the full paper). We summarize the arguments so far in the next theorem.

Theorem 4The $k$-PPSS can be approximated within factor $k-1$ in $O(k|V|^{3}\theta)$ time for any nonnegative
submodular system $(V, f)$ , where $\theta$ is the time bound of the oracle for $f$ . $\square$

Our proof is not only very simple but also allows us to Plug some approximate algorithms into GSA.
Suppose that a-approximation algorithm for 2-PPSS is used. It is easy to see that the cost of the
obtained $k$-partition is bounded by $\rho(1+\alpha)(1-\frac{1}{k})$ times the optimum.

Theorem 5The va$\dot{m}nt$ of $GSA$ that uses a $\rho$-apprvimation algorithm for 2-PPSS to compute 2-
partitions is a $\rho(1+\alpha)(1-\frac{1}{k})$ approximation algorithm for the $k$-PPSS, where $\alpha$ is any number that
satisfies $\sum_{=1}^{k}.\cdot f(V-V_{\dot{1}})\leq\alpha\sum_{=1}^{k}\dot{.}f(V_{\dot{1}})$ for all $k$-partitions $\{V_{1}, \ldots, V_{k}\}$ of V. $\square$

As aresult, we obtain the next corollary by using the linear time $(2+\epsilon)$-approximation algorithm [10]
for minimum cut problem in graphs with unit edge costs, where $\epsilon\in(0,$ 1) is an arbitrary number.

Corollary 3The k-PPG in graphs with unit edge costs can be apprvirnated within factor $(4+ \epsilon)(1-\frac{1}{k})$

in $O(k(n+m))$ time, where $\epsilon\in(0,1)$ is a fixed number, and $n$ and $m$ are the numbers of vertices and
edges respectively. 0

Before closing this section, we show important applications of our results to two variants of the fc-PPH
that arise ffom VLSI design $[2, 9]$ . Let $H=(V, E)$ be ahypergraph with vertex set $V$ and hyperedge set
$E$. Let $c:Earrow \mathrm{R}^{+}$ be anonnegative hyperedge cost function. For a $k$-partition $\mathcal{P}$ of $V$ , two types of cost
to be minimized, $cost_{1}(\mathcal{P})$ and $cost_{2}(\mathcal{P})$ , are introduced: $cost_{1}(\mathcal{P})$ counts the cost $c(e)$ of each hyperedge
$ep-1$ times if its endpoints of $e$ belong to $p$ distinct members in $\mathcal{P}$ , while $cost2(\mathcal{P})$ counts $c(e)$ once if
its endpoints $e$ belong to at least two distinct members in $\mathcal{P}$ .

For the $k$-PPH with cost functions $\omega st_{1}$ and $cost_{2}$ , the previous best approximation guarantees are
$2- \frac{2}{n}$ and $d_{\max}(1- \frac{1}{n})$ respectively [14], where $d_{\max}$ is the maximum degree of hyperedges. We here
show that better guarantees can be obtained by asimpler proof than [14]. For this, we define three set
functions $f_{\mathrm{e}\mathrm{x}}$ , $f_{\mathrm{i}\mathrm{n}}$ and $f:2^{V}arrow \mathrm{R}^{+}\mathrm{a}\mathrm{e}$ follows. Let $f_{\mathrm{e}\mathrm{x}}$ be the cut function of $H$. For any $S\subseteq V$ , let fin(S)
be the sum of costs of hyperedges whose endpoints are all in $S$, and $f(S)=f_{\mathrm{e}\mathrm{x}}(S)$ fin (S). Observe that
the $k$-PPH with cost function $cost_{1}$ asks to find a $k$-partition $\mathcal{P}=\{V_{1}, V_{2}, \ldots, V_{k}\}$ of $V$ that minimizes
$\sum_{\dot{|}=1}^{k}\mathrm{f}(\mathrm{Y}\mathrm{i})-f(V)=\sum_{\dot{l}=1}^{k}(f(V_{\dot{l}})-f\mathrm{L}_{k}^{V}\lrcorner)$ , while the $k$-PPH with cost function $cost_{2}$ asks to minimize
$\mathrm{f}\mathrm{i}\mathrm{n}(\mathrm{S})-\sum_{\dot{|}=1}^{k}f_{\mathrm{i}\mathrm{n}}(V_{\dot{l}})=\sum_{\dot{|}=1}^{k}(|\mathrm{n}*^{V}-f_{\mathrm{i}\mathrm{n}}(V_{\dot{1}}))$. It is easy to see that both functions $g_{1}=f-\#^{V}$ and
$g_{2}=. \frac{f_{\mathrm{n}}(V)}{k}-f_{\mathrm{i}\mathrm{n}}$ are submodular, but may not be nonnegative or symmetric. Nevertheless, since both
Theorem 2and Lemma 1do not require the function to be nonnegative or symmetric, we can still use
GSA to find a $k$-partition and use Lemma 1to estimate the performance. By easy calculations, we can
enjoy the next performance guarantees.

Corollary 4The k-PPH with cost function $\omega st_{1}$ (resp., $cost_{2}$ ) can be approximated within factor $2- \frac{2}{k}$

(resp., $\mathrm{m}\mathrm{i}$.$(k,d_{\max}^{+})(1- \frac{1}{k})$ ) in $\mu lynom\dot{l}al$ time, where $d_{\max}^{+}$ is the maximum degree of hyperedges with
positive cost. $\square$

3Greedy Splitting via Minimum 2, 3-Partiti0ns
We have seen the GSA that increases the number of partitions one by one via minimum 2-partiti0n
computations. In this section we consider to increase the number of partitions two by two greedily. Let
$k=2m+1\geq 3$ be an odd number. (The case that $k$ is an even number will be treated later.) We
consider the next approximation algorithm for the $k$-PPSS. GSA2 (Table 2) contains $m$ rounds and the
$i$-th round constructs an $(2i+1)$-partition $\mathcal{P}_{\dot{|}+1}$ of $V$ , where $\mathcal{P}_{1}=\{V\}$ , and the $(2i+1)$-partition $\mathcal{P}_{i+1}$

is obtained by greedily “splitting” some member(s) in $\mathcal{P}_{:}$ at the minimum cost. There are two ways of
such splitting. One is to split two members into four, which is considered by step 3. Another is to split
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Table 2: Greedy splitting algorithm 2(GSA2) for the $k$-PPSS with odd $k=2m+1$ .
1 $\mathcal{P}_{1}arrow\{V\}$ ;
2for $i=1$ , $\ldots$ , $m$ do
3 $(S_{i}^{1}, W_{i}^{1}, S_{i}^{2}, W_{i}^{2}) arrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\{\sum_{j=1}^{2}(f(S^{j})+f(W^{j}-S^{j})-f(W^{g}))|$

(1) $\neq S^{j}\subset W^{j}$ , $j=1,2$ , for distinct $W^{1}$ , $W^{2}\in \mathcal{P}_{i}$ };
4 $(T_{i}^{1}, T_{i}^{2}, W_{i}^{3})arrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\{f(T^{1})+f(T^{2})+f(W-T^{1}-T^{2})-f(W)|$

$\{T^{1}, T^{2}, W-T^{1}-T^{2}\}$ is a3-partition of some $W\in \mathcal{P}_{i}$ };
5if $\sum_{j=1}^{2}(f(S_{i}^{j})+f(W_{i}^{j}-S_{i}^{j})-f(W_{i}^{j}))<f(T_{i}^{1})+f(T_{i}^{2})+f(W_{i}^{3}-T_{i}^{1}-T_{i}^{2})-f(W_{i}^{3})$ then
6 $\mathcal{P}_{i+1}arrow(\mathcal{P}_{i}-\{^{\mathrm{I}}W_{i}^{1}, W_{\dot{\iota}}^{2}\})\cup\{S_{i}^{1}, W_{i}^{1}-S_{i}^{1}, S_{i}^{2}, W_{i}^{2}-S_{i}^{2}\}$ ;
7else
8 $\mathcal{P}_{i+1}arrow(\mathcal{P}_{i}-\{W_{i}^{3}\})\cup\{T.!, T_{i}^{2}, W_{i}^{3}-T_{i}^{1}-T_{i}^{2}\}$;
9 $\mathrm{e}\mathrm{n}\mathrm{d}/*\mathrm{i}\mathrm{f}$ $*/$

10 $\mathrm{e}\mathrm{n}\mathrm{d}/*\mathrm{f}\mathrm{o}\mathrm{r}$ $*/$

11 Output $\mathcal{P}_{m+1}$ .

one member into three, which is considered by step 4. We choose the one with the minimum cost to get
$\mathcal{P}_{\dot{\iota}+1}$ from $\mathcal{P}.\cdot$ (step 5-8).

Clearly the output $\mathcal{P}_{m+1}$ is a $k$-partition of $V$ . Let us consider the running time. In step 3the
objective is minimized by the least two minimum 2-partitions of members in $\mathcal{P}_{i}$ . Thus by Theorem 2
step 3can be done in $\sum_{W\in \mathcal{P}}$. $O(|W|^{3}\theta)=O(|V|^{3}\theta)$ time. However, by now we do not know how to
find aminimum 3-partition in submodular systems, which means that the time complexity of step 4is
still unknown in general. Therefore we suppose that the input $(V, f)$ satisfies the next condition, which
ensures that GSA2 runs in polynomial time.

Condition 1For any W $\subseteq V$ , a 3-partition $\{T^{1}, T^{2}, W-T^{1}-T^{2}\}ofW$ that minimizes $f(T^{1})+f(T^{2})+$

$f(W-T^{1}-T^{2})$ can be found in polynomial time.

To analyze the performance of GSA2, we show alemma analogous with Lemma 1.

Lemma 3For an $\ell\in$ {0,1, \ldots , m}, let $\mathcal{P}_{\ell+1}$ be the $(2\ell+1)$ -partition of V found by GSA2 in the l-th
round. Then for any ordered $(2\ell+1)$ -partition {Tl, $V_{2}$ , \ldots ,

$V_{2\ell+1}$ } of V, it holds that

$f( \mathcal{P}_{\ell+1})\leq\sum_{\dot{\iota}=1}^{\ell}(f(V_{2i-1})+f(V_{2i})+f(V-V_{2i-1}-V_{2i}))-(\ell-1)f(V)$ . (6)

Proof We proceed by induction on $\ell$ . It is trivial when $\ell=0$ . Suppose that it holds for $\ell-1$ . Consider
an ordered $(2\ell+1)$-partition7” $=$ {Tl, $V_{2}$ , $\ldots$ , $V_{2\ell+1}$ } of $V$ . Since $\mathcal{P}i$ is a $(2l -1)$-partition of $V$ , we see
that at least one of the next two cases occurs for $\mathcal{P}$ and $\mathcal{P}\ell$ .

1. There is a $W^{1}\in \mathcal{P}_{\ell}$ and three distinct $V_{r}$ , $V_{s}$ , $V_{t}\in \mathcal{P}$ $(r<s<t)$ such that $W^{1}\cap V_{r}\neq\emptyset$ , $W^{1}\cap V_{s}\neq\emptyset$ ,
and $W^{1}\cap V_{t}\neq\emptyset$ .

2. There are two distinct $W^{1}$ , $W^{2}\in \mathcal{P}_{\ell}$ and four distinct $V_{a}$ , $V_{b}$ , $V_{\mathrm{p}}$ , $V_{q}\in \mathcal{P}(a<b, p<q, a<p)$ such
that $W^{1}\subseteq V_{a}\cup V_{b}$ , $W^{2}\subseteq V_{p}\cup V_{q}$ , $W^{1}\cap V_{a}\neq\emptyset\neq W^{1}\cap V_{b}$ and $W^{2}\cap V_{p}\neq\emptyset\neq W^{2}\cap V_{q}$ .

In case 1, we further consider the following two sub cases

la. There is an $h\in\{1, \ldots, \ell\}$ such that $r=2h-1$ and $s=2h$ .
$1\mathrm{b}$ . Otherwise $r\in\{2h-1,2h\}$ and $s\in\{2h’-1,2h’\}$ for some $1\leq h<h’\leq\ell$ .

Similarly, we consider the next two sub cases in case 2.

$2\mathrm{a}$ . There is an $h\in\{1, \ldots, \ell\}$ such that $a=2h-1$ and $p=2h$ .
$2\mathrm{b}$ . Otherwise $a\in\{2h-1,2h\}$ and $p\in\{2h’-1,2h’\}$ for some $1\leq h<h’\leq\ell$ .
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We will show that in each sub case of la, $1\mathrm{b}$ , $2\mathrm{a}$ , $2\mathrm{b}$ , there is a“nice splitting” which is acandidate for
step 3or 4of GSA2. (Recall that the cost of any “nice splitting” is an upper bound on $f(\mathcal{P}_{\ell+1})-\mathrm{f}\{\mathrm{V}\mathrm{t}$ ) $.)$

We show that we can construct an ordered $(2\ell-1)$-partition $r$ $=\{V_{1}’, \ldots, V_{2\ell-1}’\}$ of $V$ from $\mathcal{P}$ such that
$\sum_{i=1}^{\ell-1}(f(V_{2\dot{l}-1}’)+f(V_{2i}’)+f(V-V_{2\cdot-1}’.-V_{2}’\dot{.}))-(\ell-2)f(V)$ plus the cost of the “nice splitting” is at
most the right hand of (6). This will prove the lemma by the induction hypothesis on $\mathcal{P}’$ .

In what follows, we only consider sub case $2\mathrm{a}$ due to space limitation (the other cases can be shown
analogously). Let $\mathcal{P}’$ be the ordered $(2\ell-1)$-partition {Vi, $\ldots$ , $\mathrm{V}2/1-2,$ $V_{2h+1}$ , $\ldots$ , $\mathrm{V}2\mathrm{h})V_{2h-1}\cup V_{2h}\cup V_{2\ell+1}$}
of $V$ , which has the same order as $\mathcal{P}$ except for that $V_{2h-1}$ and $V_{2h}$ are merged with the last member
$V_{2\ell+1}$ (notice $2h-1<2h<2\ell+1$ ). By the induction hypothesis on $\ell-1$ , (6) holds for $\mathcal{P}_{\ell}$ and $\mathcal{P}’$ , i.e.,

$f( \mathcal{P}_{\ell})\leq\sum_{1\leq:\leq\ell,:\neq h}(f(V_{2\dot{\cdot}-1})+f(V_{2:})+f(V-V_{2:-1}-V_{2\dot{l}}))-(\ell-2)f(V)$
.

Thus, it suffices to show

$f(\mathcal{P}_{\ell+1})-f(\mathcal{P}_{\ell})\leq f(V_{2h-1})+f(V_{2h})+f(V-V_{2h-1}-V_{2h})-f(V)$. (7)

For this, we choose $(W^{1}\cap V_{2h-1}, W^{1}, W^{2}\cap \mathrm{V}2\mathrm{h}, W^{2})$ as the “nice splitting” , i.e., split $W^{1}$ and $W^{2}$ into
$W^{1}\cap V_{2h-1}$ , $W^{1}-V_{2h-1}$ and $W^{2}\cap V_{2h}$ , $W^{2}-V_{2h}$ respectively. Clearly it is acandidate for $(S_{\ell}^{1}, W_{\ell}^{1}, S_{\ell}^{2}, W_{\ell}^{2})$

in step 3of GSA2 (see Table 2). Therefore,

$f(\mathcal{P}_{\ell+1})-f(\mathcal{P}_{\ell})\leq f(W^{1}\cap V_{2h-1})+f(W^{1}-V_{2h-1})-f(W^{1})+f(W^{2}\cap V_{2h})+f(W^{2}-V_{2h})-f(W^{2})$. (8)

By the submodularity, the right hand of (8) is at most

$f(W^{1}\cap V_{2h-1})-f(W^{1})+f(W^{2}\cap \mathrm{V}2\mathrm{h})+f(W^{2}\cup \mathrm{V}2\mathrm{h})-f(W^{2})-\mathrm{f}(\mathrm{V})$

$+[f(W^{1}-V_{2h-1})+f(V-V_{2h})]$

$\leq$ $[f(W^{1}\cap V_{2h-1})+f(W^{1}\cup V_{2h-1})-f(W^{1})]$

$+[f(W^{2}\cap V_{2h})+f(W^{2}\cup V_{2h})-f(W^{2})]+f(V-V_{2h-1}-V_{2h})-\mathrm{f}(\mathrm{V})$

$\leq$ $\mathrm{f}(\mathrm{V}2\mathrm{h}-\mathrm{i})+f(V_{2h})+f(V-\mathrm{V}2\mathrm{h}-\mathrm{i}-V_{2h})-\mathrm{f}(\mathrm{V})$ ,

proving (7). $\square$

For an even $k=2m\geq 2$ , we start with aminimum 2-partition of $V$ before increasing the number
of partitions two by two greedily. It is described in Table 3, where the same code as in Table 2are

Table 3: Greedy splitting algorithm 2(GSA2) for the $k$-PPSS with even k $=2m$.

$3-101121| \mathcal{P}_{1}arrow \mathrm{a}\min.\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{m}2- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{f}V\mathrm{f}\mathrm{o}\mathrm{r}i=1,\ldots,$
$m \frac{}{\mathrm{e}}1\mathrm{d}\mathrm{o}\mathrm{O}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}\mathcal{P}_{m}(\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}3-\mathrm{l}0\mathrm{i}\mathrm{n}\mathrm{T}’.\mathrm{a}\mathrm{b}1\mathrm{e}2)$

;

abbreviated. Clearly the output $\mathcal{P}_{m}$ is a $k$-partition of $V$ . In order to be apolynomial time algorithm,
it is again assumed that Condition 1is satisfied. We give alemma on the performance, where the proof
can be done in asimilar way as Lemma 3and is omitted.

Lemma 4For an $\ell\in$ {1,2, \ldots , m}, let $\mathcal{P}_{\ell}$ be the $2\ell$-partition of V found by GSA2 in the $\ell$-th round.
Then for any ordered $2\ell$-partition {Vi, $V_{2}$ , \ldots ,

$V_{2\ell}$ } of V, it holds that

$\mathrm{f}(\mathrm{V}\mathrm{e})$ $\leq$ $\mathrm{f}(\mathrm{V}\mathrm{e})+f(V-V_{1})+\sum_{\dot{l}=1}^{\ell-1}(f(V_{2}|.)+f(V_{2\cdot+1}.)+f(V-V_{2:}-V_{2\cdot+1}.))-(\ell-2)\mathrm{f}(\mathrm{V})$. (9)

$\square$

We note that, not surprisingly, GSA2 does no worse than GSA in any cases. This can be seen by
comparing the right hand of (2) and (6) or (9). Notice that $f(V-A-B)$ $\mathrm{f}(\mathrm{V})\leq f(V-A)+f(V-B)$

for any disjoint subsets $A$ and $B$ of $V$ . In fact, using Lemma 3and Lemma 4, we have the next result
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Theorem 6The performance guarantee of GSA2 is for the $k$-PPSS and \yen for the k-PP3S.
There are examples that indicate these bounds are tight. $\mathrm{D}$

We know that GSA2 can do better for the $k$-PPG [19]. Aquestion is, what can it guarantee to problem
classes lying between the $k$-PPG and the &-PP3S e.g., the $k$-PPH. In the following, we show that GSA2
achieves aguarantee better than $2- \frac{2}{k}$ for the $k$-PPH, extending the result for the $k$-PPG by [19].

Theorem 7The k-PPH can be approximated in polynomial time within factor $2- \frac{3}{k}$ for any odd $k\geq 3$

and factor $2-3 \pi+\frac{1}{\pi\tau_{-7}}$ for any even $k\geq 2$ .

Proof. Let $V$ and $f$ be respectively the vertex set and the cut function of ahypergraph $H$ . It is easy to see
that Condition 1is satisfied by considering the reduced hypergraph of $H$ for any vertex subset $W\subseteq V$ ,
where for each hyperedge $e$ , the endpoints of $e$ that are not in $W$ are removed and $e$ is present if it has at
least two endpoints in $W$ . Thus GSA2 (Table 2, 3) is apolynomial time approximation algorithm for the
$k$-PPH. We next show the claimed performance guarantee. Let $p*=\{V_{1}^{*}, V_{2}^{*}, \ldots, V_{k}^{*}\}$ be aminimum
$k$-partition of $V$ . Let $\pi$ denote anumbering of $\{$ 1, $\ldots$ , $k\}$ , and let $\mathrm{i}\mathrm{r}(\mathrm{i})$ be the number of $i$ .

First consider an odd number $k=2m+1\geq 3$ . By applying Lemma 3to $\mathrm{p}*$ , we see that GSA2 finds
a $k$-partition of $V$ with cost at most $f_{\pi}= \sum_{i=1}^{m}(f(V_{\pi(2i-1)}^{*})+f(V_{\pi(2i)}^{*})+f(V-V_{\pi(2:-1)}^{*}-V_{\pi(2i)}^{*}))$ for
any numbering $\pi$ . We want to show that there is anumbering $\pi^{*}$ such that $f_{\pi^{\mathrm{r}}}$ is no more than $2- \frac{3}{k}$

times the optimum $f( \mathcal{P}^{*})=\sum_{i=1}^{k}f(V_{i}^{*})$ . This can be done by considering all numberings and showing
that the average value of $f_{\pi}$ is at most $(2- \frac{3}{k})f(\mathcal{P}^{*})$ .

Let us rewrite $f_{\pi}$ as $2f(P^{*})-\Delta_{\pi}$ where $\Delta_{\pi}=2f(V_{\pi(k)}^{*})+\sum_{i=1}^{m}(f(V_{\pi(2i-1)}^{*})+f(V_{\pi(2:)}^{*})-f(V-$

$V_{\pi(2i-1)}^{*}-V_{\pi(2i)}^{*}))$ . Thus we only need to show that the average value of $\Delta_{\pi}$ is at least $\frac{3}{k}f(\mathcal{P}^{*})$ . For each
hyperedge $e$ , we consider the average number that $e$ is counted in $\Delta_{\pi}$ . For simplicity, let us contract
each $V_{i}^{*}\in p*\mathrm{t}\mathrm{o}$ asingle node $v_{i}$ (this may decrease the degree of $e$). Let $H|\mathrm{p}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}$ the contracted
hypergraph. To avoid confusing we use the word “node” in $H|_{\mathcal{P}^{\mathrm{r}}}$ to denote the contracted vertex subsets.
We assume without loss of generality that $H_{P^{*}}$ is simple and complete. Otherwise we can meet this by
merging the hyperedges with the same endpoints and adding zero cost hyperedges. Suppose that after
contraction $e$ has degree $d\geq 2$ (otherwise $e$ is not counted in $\Delta_{\pi}$ ).

Recall that $f(S)$ is the sum of costs of hyperedges that has at least one but not all endpoints in $S$ for
$S\subseteq V$ . Thus due to the $2f(V_{\pi(k)}^{*})$ term in \^A, $e$ is counted twice if one endpoint of $e$ is numbered $k$ .
Since $H|r*\mathrm{h}\mathrm{a}\mathrm{s}$ $k$ nodes and $e$ has $d$ endpoints, we see that the average number (expected value) that $e$ is
counted due to the $2f(V_{\pi(k)}^{*})$ term is $\frac{2d}{k}$ . On the other hand, due to the other term $\sum_{i=1}^{m}(f(V_{\pi(2:-1)}^{*})+$

$f(V_{\pi(2i)}^{*})-f(V-V_{\pi(2i-1)}^{*}-V_{\pi(2i)}^{*}))$ in $\Delta_{\pi}$ , $e$ is counted twice if $d=2$ and the two endpoints of $e$ are
numbered $\pi(2i-1)$ and $\pi(2i)$ for some $i\in\{1,2, \ldots, m\}$ , otherwise $e$ is counted $p$ times if $d\geq 3$ and
the endpoints of $e$ contains $p$ pairs of nodes that are numbered $\pi(2i_{\mathrm{p}}-1)$ and $\pi(2i_{p})$ for some distinct
$i_{\mathrm{p}}\in\{1,2, \ldots, m\}$ . Notice that for each fixed pair of indices $2i-1$ and $2i$ , the average number (probability)
that both nodes $\mathrm{V}2\mathrm{i}-\mathrm{i}$ and $v_{2i}$ become endpoints of $e$ is $(\begin{array}{l}k-2d-2\end{array})/(\begin{array}{l}kd\end{array})=\frac{d(d-1)}{k(k-1)}$. Thus the average number that
$e$ is counted due to the $\sum_{i=1}^{m}(f(V_{\pi(2i-1)}^{*})+f(V_{\pi(2i\rangle}^{*})-f(V-V_{\pi(2i-1)}^{*}-V_{\pi(2i)}^{*}))$ term is 2 . $m \cdot\frac{2\cdot(2-1)}{k(k-1)}=k2$

if $d=2$ , or $m \cdot\frac{d(d-1)}{k(k-1)}=\frac{d(d-1)}{2k}$ if $d\geq 3$ . Since $e$ is counted $d$ times in the optimum $f(\mathcal{P}^{*})$ , we see that
the contribution of $e$ to the average value of $\Delta_{\pi}$ is $\frac{1}{2}(\frac{4}{k}+\frac{2}{k})=\frac{3}{k}(d=2)$ or $\frac{1}{d}(\frac{2d}{k}+\frac{d(d-1)}{2k})\geq\frac{3}{k}(d\geq 3)$

times the contribution to $f(\mathcal{P}^{*})$ . Thus we see that the average value of $\Delta_{\pi}$ is at least $\mathrm{F}3$ times $f(\mathcal{P}^{*})$ ,
which finishes the proof of the theorem for an odd $k$ .

Similarly, we can prove the theorem for an even $k$ . We note that the bounds are tight, see [19]. $\square$

4Target Split Problem in Submodular Systems
Given atarget set $T\subseteq V(|T|\geq k)$ as an additional input, the target split problem in submodular systems
(TSPSS) is to find aminimum $k$-partition $\{V_{1}, V_{2}, \ldots, V_{k}\}$ such that each $V_{i}$ contains at least one target.
By considering only “valid” $k$-partitions(i.e., atarget split of $T$), we extend our algorithms to TSPSS.

Let us first consider algorithm GSA. In step 3of GSA, we need to compute avalid 2-partition for
some $W$ in the current solution $\mathcal{P}_{i}$ at the minimum cost. This can be done if we can compute aminimum
valid 2-partition for each $W\in \mathcal{P}_{i}$ . We do this in the next way
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We do nothing with WE $1_{4}$ such that |Tn W| $\ovalbox{\tt\small REJECT}$ 1. For each WE $\mathrm{T})_{\ovalbox{\tt\small REJECT}}$ with |Tn $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}|\ovalbox{\tt\small REJECT} 2$ , we
choose atarget sE $T\ovalbox{\tt\small REJECT}"*W$ compute aminimum 2-partition of W that separates s and t for each target
tE $T\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT} I}W-\{\ovalbox{\tt\small REJECT} \mathrm{s}\}$ and choose the one with the minimum cost. We see that aminimum 2-partition of $W$

that separates specified vertices s and t can be found in polynomial time.

Lemma 5Given a submodular system $(\mathrm{F}, f)$ and a $W\subseteq V$ , for any $s,t\in W(s\neq t)$ , a subset $S^{*}$ of $W$

such that $s\in S^{*}$ , $t\not\in S^{*}$ and $g(S^{*})+g(W-S^{*})$ is minimurn can be found in polynomial time.

Proof. Consider asubmodular system $(W-\{s,t\},g)$ where $g(S)=f(S\cup\{s\})+f(W-S-\{s\})$ for all
$S\subseteq W-\{s,t\}$ . Clearly we need only to find asubset $S’$ of $W-\{s,t\}$ that $g(S’)$ is minimum by letting
$S^{*}=S’\cup\{s\}$ . Since $g$ is submodular, it can be minimized in polynomial time $[5, 17]$ . $\square$

Hence we have seen that GSA can be extended to the TSPSS and runs in polynomial time. Further-
more, the performance can still be shown in astraightforward manner as Lemma 1and Theorem 3. We
summarize this as the next theorem.

Theorem 8Given a nonnegative submodular system $(V, f)$ with a target set $T\subseteq V$ , the TSPSS can
be approximated within factor $(1+ \alpha)(1-\frac{1}{k})$ in polynomiil time, where $\alpha$ is any number that satisfies
$\sum_{\dot{|}=1}^{k}f(V-V_{\dot{1}})\leq\alpha\sum_{=1}^{k}.\cdot f(V.\cdot)$ for all $k$ -partitions $\{V_{1}, \ldots, V_{k}\}$ of $V$ that is a target split ofT, where we
can let $at=k-1$ in general, and let $\alpha=1$ for $s$ ymmetric $f$ . $\square$

Let us consider GSA2. Since the multiterminal cut problem is $\mathrm{N}\mathrm{P}$-hard even for $k=3$, we cannot
expect apolynomial time algorithm to compute aminimum 3-partition that is atarget split in general
(unless $\mathrm{P}=\mathrm{N}\mathrm{P}$). Nevertheless, we note that Lemma 3, 4can be extended in astraightforward manner.

5Conclusion and Remark
In this paper, we have presented asimple and unified approach for developing and analyzing approxima-
tion algorithms for some multiway partition related minimization problems. The main idea is agreedy
splitting approach to unified problems $k$-PPSS($k$-partition problem in submodular systems) and TSPSS
(target split problem in submodular systems). Several important and interesting results are shown in
this paper. We note that it is still open whether the $k$-PPSS can be solved in polynomial time for any
$k\geq 3$ (the 2-PPSS is shown to be solvable in polynomial time). Finally, we remark that it seems not so
easy as in this paper to show the performance guarantee of greedy algorithms that increase the number of
partitions three (or more) by three (or more). This is because analogous properties that we have shown
in Lemma 1, 3and 4no longer hold even for $k$-PPG[19].
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