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Scaling Algorithms for M-convex Function Minimization

RIK - fEm# T Z0O B+ (Satoko Moriguchi)
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

RA - BRI £H —H (Kazuo Murota)

Research Institute for Mathematical Sciences, Kyoto University

ALK - fEEFE 15 B8# (Akiyoshi Shioura)

Graduate School of Information Sciences, Tohoku University

Abstract: M-convex functions have various desirable properties as convexity in discrete
optimization. We can find a global minimum of an M-convex function by a greedy algorithm,
i.e., so-called descent algorithms work for the minimization. In this paper, we apply a scaling
technique to a greedy algorithm and propose an efficient algorithm for the minimization of an
M-convex function. Computational results are also reported.

Keywords: matroid, convex function, scaling algorithm, discrete optimization.

1 Introduction

The concept of convexity for sets and functions plays a central role in continuous optimization
(or nonlinear programming with continuous variable). It has various applications in the areas
of mathematical economics, engineering, operations research, etc. [2, 11, 13]. The importance of
convexity relies on the fact that a local minimum of a convex function is also a global minimum.
Due to this property, we can find a global minimum of a convex function by iteratively moving in
descent directions, i.e., so-called descent algorithms work for the convex function minimization.

In the area of discrete optimization, on the other hand, discrete analogues of convexity, or
“discrete convexity” for short, have been considered, with a view to identifying the discrete
structure that guarantees the success of descent methods, so-called “greedy algorithms.” Ex-
amples of discrete convexity are “discretely-convex functions” by Miller [5], “integrally-convex
functions” by Favati-Tardella [3]. It would be natural to expect that discrete convexity yields
a theory of “discrete convex analysis,” which covers discrete analogues of the fundamental con-
cepts such as conjugacy, subgradients, duality, and separation theorems. Unfortunately, neither
“discretely-convex functions” nor “integrally-convex functions” seem to be fully suitable for such
a theory. This suggests that we must identify a more restrictive class of well-behaved “discrete
convex functions.”

The concept of M-convex functions was proposed by Murota [6, 7] in 1996 as a natural
extension of the concept of valuated matroids. Let V be a finite set. A function f : ZV —
R U {+o0} is said to be M-convex if it satisfies

(M-EXC) Vz,y € dom f, Yu € supp*(z — y), v € supp~(z — y) such that

f@)+ f(y) = f(xz— xu+x0) + Fy+ Xu — Xv),
where x,, € {0,1}V is the characteristic vector of w € V and

dom f = {z € ZY | f(z) < +o00},
suppt(z — y) = {w € V | z(w) > y(w)},
supp™(z —y) = {w € V | z(w) < y(w)}.

M-convexity is quite a natural concept appearing in many situations; linear and separable-convex
functions are M-convex, and more general M-convex functions arise from the minimum cost
flow problem with separable-convex cost functions. M-convex functions have various desirable
properties as discrete convexity:
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(i) local minimality leads to global minimality for M-convex functions,

(ii) M-convex functions can be extended to ordinary convex functions,

(iii) various duality theorems hold,

(iv) M-convex functions are conjugate to L-convex functions.

In particular, the property (i) shows that greedy algorithms (descent algorithms) work for the
minimization of an M-convex function. A theory of “discrete convex analysis” [7, 8, 9] has been
developed with the use of M- and L-convex functions.

In this paper, we consider the problem of minimizing an M- -convex function. Although an
M-convex function can be minimized by a descent algorithm, it may require exponential time.
A steepest descent algorithm, a faster version of a descent algorithm, terminates in pseudo-
polynomial time. The domain reduction-type polynomial time algorithm of Shioura [12] has the
time complexity O(n?(log L)?), where

n=|V|, L=max{||z—-ylle |,y € domf}.

Although the domain reduction-type algorithm has polynomial time complexity, our numerical
experiments show that it does not run fast in practice.

The objective of this paper is to propose faster polynomial time algorithms for the minimiza-
tion of an M-convex function by using a scaling technique. Scaling is a fundamental technique
used extensively in polynomial time algorithms for combinatorial optimization problems. Indeed,
scaling-based algorithms achieve better time complexities for the resource allocation problem
[4], the minimum cost flow problem [1], etc.

We propose efficient minimization algorithms for functions in the class of M-convex func-
tions closed under the scaling operation. We apply the scaling technique to a steepest descent
algorithm to obtain faster algorithms. A minimizer of an M-convex function f can be found
by the scaling algorithms proposed in this paper. Moreover, if f is in the class of M-convex
functions closed under the scaling operation, the time complexity of each scaling algorithms is
bounded by a polynomial in n and L. Some fundamental classes of M-convex functions such
as separable convex functions and quadratic M-convex functions are closed under the scaling
operation, although this is not the case with general M-convex functions.

In order to compare the performance of our new scaling algorithms to those of the previously
proposed algorithms, we make numerical experiments with randomly generated test problems.
It is observed from numerical results that our new scaling algorithms are much faster than the
previously proposed algorithms from the viewpoint of both theory and practice.

2 Scaling of M-convex Functions

For f : ZV — R U {+oc}, a positive integer o and a vector b € ZV, define a function f* :
ZV — R U {+oo} by

f*b(z) = f(az + b) (x eZ").
This operation is called scaling. Even if f is an M-convex function, f*® is not necessarily M-
convex in general. We can still identify a number of subclasses of M-convex functions that are
closed under the scaling operation. ‘

Example 2.1 (Separable convex functions) : For a family of convex functions f; : Z — R
indexed by ¢ € V and an integer (3, the (separable convex) function f : ZV — RU{+oo} defined
by

Z filzs) if z(V)=

+00 otherwise

flz) =

is M-convex. ‘
Since f*°(x) = Y, fi(ax; + b;) is also a separable convex function, the class of separable
convex functions is closed under the scaling operation.
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Example 2.2 (Quadratic M-convex functions) : Let A = (aij) € R™" be a symmetric
matrix. A quadratic function f : Z¥ — R U {+oc} given by
3xTAz ifz(V)=0
_J 327 Az ifz(V) =0,
/() { +00 otherwise

is M-convex if and only if ’
Vi, 5, k,l € V with {i,j} N {k,l} =0, aij + ar; > min{a; + aji, a; + ajk}
(see [9, 10]). For the quadratic M-convex function f, the function f*? is written as

2
ob(x) = %(am +b0)TA(az +b) = %mTAx + abT Az + %bTAb.

This expression shows that the function f®? is M-convex. Therefore, the class of quadraiic
M-convex functions is closed under the scaling operation.

Example 2.3 (Laminar convex functions) : A nonempty family 7 of subsets of V is called
a laminar family if it satisfies the following property:

VX,Y€T:XNY=0orXCYor XDY.

Given a laminar family 7 and a family of convex functions fx : Z — R indexed by X € T as
well as an integer 3, define a function f : Z¥ - R U {400} by

> fx(x(X)) if z(V) =4,
f(@) =14 xer

+00 otherwise.
This is called a laminar convez function. We show that laminar convex functions constitute a
class of M-convex functions closed under the scaling operation.

Without loss of generality, assume V € 7. Otherwise, we can add V to 7 and put fv(a) =

0 (Va € Z). We denote by 7(X) the family of all maximal proper subsets of X in 7. For any
z € ZV we have

z(X) =) {z(Y)|Y e T(X)}+ > {z(v) |ve X\ U r (1)
YeT(X)
Take any z,y € dom f and u € supp™(z — y). To prove (M-EXC), it suffices to show that there
exists some v € supp~ (z — y) satisfying
vEX, vé X, XeT = z(X) > y(X) (2)
and
ugX,veX, Xe€T = z(X) < y(X). 3)
Let Xo be the unique minimal set in 7 satisfying u € X and z(X) < y(X). By the minimality
of X and (1), there are two cases:
(i) v e Xo \ Uverxg) Y : (@) < y(v),
(ii) 3X; € T(Xo) : z(Xl) < y(Xl).
In case of (i), this v satisfies (2) and (3). In case of (ii), from (1) follows
(i) Jv € X3\ Uyerx,) Y : 2(v) < y(v), or '
(ii) dX, € T(Xl) : (L‘(Xz) < y(Xg).
Repeating this argument, we reach the case (i). Therefore, a laminar convex function is M-

convex.
Moreover,
o) = ) fx(ax(X) +b(X))
XeT
is a laminar convex function. Therefore the class of laminar convex functions is closed under
the scaling operation.
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3 Theorems on the Minimizers of M-convex Functions

Global minimality of an M-convex function is characterized by local minimality.

Theorem 3.1 ([6, 7]) : Let f : Z¥ — RU{+oo} be a function with (M-EXC). For x € dom f,
f(z) < f(y) (Yy € Z) if and only if f(z) < f(z — Xu + Xo) (Yu,v € V). i

Any vector in dom f can be easily separated from some minimizer of f.

Theorem 3.2 ([12]) : Let f : ZYV — RU{+o0} be a function with (M-EXC). Assume arg min f #

0.

(i) Forx € dom f and v € V, let u € V satisfy f(x — xu + Xv) = Hél‘l/lf(.'l! — Xs + Xv)- Set
8

z' =& — Xu + Xv- Then, there erists z* € argmin f with z*(u) < z’(u).
(i1) For x € dom f and u € V, let v € V satisfy f(x — xu + Xo) = Itlél‘rllf(z‘ — Xu + Xt)- Set

&' = — Xy + Xv- Then, there ezists z* € argmin f with z*(v) > z'(v). [
Corollary 3.3 ([12]) : Let z € dom f with z ¢ argmin f, and u,v € V satisfy

f(x — Xu+ Xv) = min f(z — xs + xt)-
s,tevV

Then, there exists z* € argmin f with z*(u) < z(u) — 1, z*(v) > z(v) + 1. |

Let a be a positive integer, and z, € dom f. We call z, an a-local minimum of f if it
satisfies

[(za) < f(@a + a(xv — xu)) (Vu,v € V).

The following is a “proximity theorem,” showing that a global minimizer of an M-convex function
exists in the neighborhood of an a-local minimum.

Theorem 3.4. Let f : ZV — R U {+00} be an M-convexr function and o be any positive
integer. Suppose that z, € dom f satisfies f(zo) < f(za + a(xv — Xu)) for all u,v € V. Then,
argmin f # 0 and there ezists some x, € argmin f such that

|Za(v) —z.(v)| < (n - 1)(@-1) (veV). (4)
|

Proof. It suffices to show that for any v > inf f there exists some z, € dom f satisfying
f(z+) < v and (4).

Let z, € dom f satisfy f(z.) < <, and suppose that x, minimizes the value ||z, — z4]1
among all such vectors. In the following, we fix v € V and prove z,(v) — z+(v) < (n —1)(a—1).
The inequality z.(v) — 4(v) < (n — 1)(a — 1) can be shown similarly.

We may assume z,(v) > z.(v). We first prove the following two claims. Let k = z4(v) —
Z4(v).

Claim 1. There exist wy,ws,---,w; € V \ {v} and yo(= za),y1, -+, Yk € dom f such that

Yi = Yi-1 — Xo + Xwiy (i) < flyi-1) (i =1,---,k).

[Proof of Claim 1] We show the claim by induction on i. Suppose y;—; € dom f. By (M-
EXC) applied to y;—1,Z«, and v € supp™ (y;—1 — T.), we have some w; € supp™(yi—1 — Z4) C
supp” (zo —@+) € V' \ {v} such that f(z.) + f(yi-1) = f(Z+ — Xw; +Xo) + f(¥i-1 + Xw; — X0)- By
the choice of z., we have f(z«+ Xy — Xw;) > f(2*) since [|(z« + Xv — Xw;) — Zall1 < |2+« — Zall1-
Therefore, f(yi) = f(yi-1 — Xv + Xw;) < f(¥i-1)- [End of Proof for Claim 1]
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Claim 2. For any w € V' \ {v} with yx(w) > zo(w) and p € [0, yp(w) — zo(w) — 1], we have

f(@a = (1 + 1) (v — xw)) < f(@a — p(Xv — Xw))- (5)

[Proof of Claim 2] We prove (5) by induction on . Put 2/ = z4 — p(xw — xw) for p €
[0, yx(w) — zo(w) — 1], and suppose =’ € dom f. Let j. (1 < j. < k) be the largest index such
that w;, = w. Then, y;, (w) = yr(w) > z'(w) and supp™(y;, — =) = {v}. (M-EXC) implies that

f(z ’)+f(yj.) 2> f(.’l: Xv+Xw)+f(yJ‘+Xv Xw) By Claim 1, we have f(yj.+Xv Xw) > f(yj*)
Hence, (5) follows. [End of Proof for Claim 2]

The a-local minimality of z, implies f(zo — @(Xv — Xw)) > f(Za), Which, combined with
Claim 2, implies yx(w) — Zo(w) < a—1 for all w € V' \ {v}. Thus,

Ta(v) = 7.(v) = Za(0) —wm@®) = D {w(w) - za(w)} < (n—1)(a - 1),

weV\{v}

where the second equality is by z(V) = y(V) (Vz,y € dom f). " - 0O

4 Minimization Algorithms of an M-convex Function

4.1 Previous Algorithms

Let f : Z¥ - R U {400} be a function such that dom f is a nonempty bounded set, and put
L = max{|lz — y|loo | ,y € dom f}. Assume (M-EXC) for f. Then, Theorem 3.1 and Corollary
3.3 immediately lead to the following algorithm.

Algorithm STEEPEST_DESCENT (SD)
S0: Let z be any vector in dom f. Set B := dom f.
S1: If f(z) = IItléI‘l/ f(z — xs + xt) then stop [z is a minimizer of f].

3

S2: Find u,v € V with £ — xy + xv € B satisfying
f(@ = Xxu+ xv) = min{f(z — xs + xt) | 5,t € V;z — xs + x¢ € B}.

S3: Set z:=z — xu+ Xxvand B:=BN{yeZV |y(u) <z(u) -1, y(v)>z(v)+1}.
Go to S1. a

By Corollary 3.3, the set B always contains a minimizer of f. Hence, Algorithm SD finds a
minimizer of f. To analyze the number of iterations, we consider the value

> {maxy(w) — miny(w)}.

wevV

This value is bounded by nL and decreases at least by two in each iteration. Therefore, SD
terminates in O(nL) iterations. Each iteration can be done in O(n?) time. Therefore, Algorithm
SD finds a minimizer of f in O(n3L) time, i.e., SD is a pseudo-polynomial time algorithm. In
particular, if dom f C {0,1}V then the number of iterations is O(n?).

We propose the following modified version of Algorithm SD, where we exploit Theorem 3.2.

Algorithm MODIFIED_STEEPEST _DESCENT (MSD)

S0: Let = be any vector in dom f. Set B := dom f.

S1: Choose u € V such that Jv € V with = — xy + Xy € B. If there is no such u then stop [z
is a minimizer of f].

S2: For u, find v € V with £ — xy, + xv € B satisfying

f(=xu+xo) =min{f(z—xu+xt) |t EV, z — xu + Xt € B}.
S3: Setz: =z — xu+ Xy and B:= BN{y € ZV | y(v) > z(v) + 1}. Go to S1. m]
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Although the number of iterations of Algorithm MSD is equal to that of Algorithm SD,
each iteration of MSD can be done in O(n) time, while each iteration of SD can be done in
O(n?) time. MSD is also a pseudo-polynomial time algorithm.

It is snown in [12] that the minimization of an M-convex function can be done in polynomial
time by the domain reduction method explained below.

Given a bounded M-convex set B, the set Ng C B is defined as follows. For w € V, define

Lp(w) = min y(w),  up(w)=max y(w),

)= |- s+ Lus| up) = [Fis(w)+ 0 - Dus(w)]
Then, N is defined as |
Np = {y € B|lp(w) < y(w) < up(w) (Vw e V)}.
Theorem 4.1 ([12]) : Np is a (nonempty) M-conves set. . N

The next algorithm maintains a set B C dom f which is an M-convex set containing a
minimizer of f. It reduces B iteratively by exploiting Corollary 3.3 and finally finds a minimizer.

Algorithm DoMAIN_REDUCTION (DR)

S0: Set B :=dom f.

S1: Find a vector x € Np.

S2: If f(z) = gxtlér‘lf f(z — xs + xt) then stop [z is a minimizer of f].

S3: Find u,v € V with £ — x, + xv € B satisfying
f(w_Xu+Xv) =min{f($‘—Xs+Xt) ‘ S,tE ‘/, x_X3+Xt E B}.
S4: Set B:=Bn{yeZ" |y(u) <z(u) -1, y(v) > z(v) + 1}. Go to S1. O

Theorem 4.2 ([12]) : If a vector in dom f and the value L are given, Algorithm DR finds a
minimizer of f in O(n*(log L)?) time. : |

4.2 Scaling Algorithms

We apply a scaling technique to Algorithm SD to obtain a faster algorithm.
Algorithm SCALING_STEEPEST_DESCENT (SSD)
S0: Put o := 2/ls(l/4n)] B = dom f. Let x5, be any vector in dom f.
S1: [a-scaling phase] Define f : ZV — R U {+o0} by

f~( )= f(xza-i-ay) ifxga—{—ayeB,
Y too if 9o + oy &€ B.

Compute a minimizer y, of f by applying Algorithm STEEPEST_DESCENT.
Set T4 = Toq + QYs.
S2: If a =1 then stop [z, is a minimizer of f].

S3: Put
B:=Bn{yeZV |z4(w)— (n—-1)(a—1) <y(w) < xa(w) +(n-1)(a-1) (VweV)}
and a := /2. Go to S1. : O

Although this algorithm works for any M-convex function, it does not terminate in polyno-
mial time in general. This algorithm terminates in polynomial time for a function in the class
of M-convex functions closed under the scaling operation. We analyze the time complexity of
Algorithm SSD for a function closed under the scaling operation. The number of scaling phases
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is [log(L/4n)]. Since the number of iterations in each scaling phase is (4na x n)/a, each scal-
ing phase terminates in O((4na x n)/a x n?) = O(n?) time. We can compute the value L in
O(n?log L) time. Here, we have the following theorem.

Theorem 4.3. Suppose that f : ZV — R U {+oo} satisfies (M-EXC) and is closed under the
scaling operation. If a vector in dom f is given, Algorithm SSD finds a minimizer of f in
O(n%log(L/n)) time.

Algorithm SSD above can be improved further by using MSD in place of SD in each scaling
phase. We refer to the algorithm resulting from this modification as SCALING_MODIFIED_STEEP-
EST_DESCENT (SMSD). Each scaling phase of SMSD terminates in O(n3) time, and therefore, .
its overall time complexity for finding a minimizer of f is O(nlog(L/n)). Thus the replacement
of SD by MSD results in an O(n) improvement upon SSD.

Theorem 4.4. Suppose that f : ZV — R U {+o0} satisfies (M-EXC) and is closed under the
scaling operation. If a vector in dom f is given, Algorithm SMSD finds a minimizer of f in
O(n3log(L/n)) time. '

5 Numerical Experiments

5.1 Test Problems and Implementation

As test problems we consider the minimization of a quadratic laminar convex function of the
following form:
TREE : minimize Z {axz(X)? + bxx(X) + cx}
XeT
n
subject to Z z(i) = L,

i=1

z; 2 0, integer,t1=1,...,n.

For each n and L fixed (dimension of the variable z and the sum of (i), respectively), we
generated ten test problems with randomly chosen real variables 0 < ax, bx, cx < 1000 (X e
T) and laminar families 7. The C language function random() is used to generate these pseudo-
random numbers. We measure the execution time and present average execution times of ten
generated test problems for each size. The two main parameters n and L have a strong influence
on the execution time. We make experiments with test problems of various sizes by changing n
and L. For comparison of the performance of four algorithms, we implemented SD, DR, SSD
and SMSD.

In our implementation, we tailored DR for the minimization of a laminar convex function,
in which the following algorithm is used to find a vector z in Np.

Algorithm FIND_VECTOR_IN_Npg
S1: For each w € V, compute Iz(w) and u'g(w).
S2: Forw=1,2,---,n, put

w-1 n
up(w) if Y a(w) +up(w) + Y (i) < L,
z(w) = w1 n i=1 i=w+l
L-) x(i)— ) Ip(i) otherwise.
i=1 i=w+1

O

Algorithm FIND_VECTOR_IN_Np finds a vector in Ng in O(n) time. The time complexity
of the specialized DR. is O(n*log L) while those of DR mentioned in Section 4 is O(n*(log L)2).
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Figure 2: The execution time in the case n = 100.

Also, in our implementations of SD, DR, SSD and SMSD, it takes O(n) time to evaluate
the function value. Hence, the execution time in our numerical experiments is O(n) times larger
than the theoretical time complexity.

Each of SD, DR, SSD and SMSD is written in the C language, compiled under a personal
computer with the CPU Pentium III 450MHz and 256 MB of memory under Vine Linux V1.1
using the compiler pgec 2.95.2 with the option -mcpu=pentiumpro -march=pentiumpro -O9
-funroll-loops.

5.2 Computational Results

Our numerical results are summarized in Figures 1 and 2. Figure 1 shows the relationship
between the computation time 7" and the dimension n for the case of L = 50000. In all the four
algorithms the relationship is linear in logT and logn, which implies T' = O(n?) for some p.
Our results show the following: ‘
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Algorithm | SD DR SSD SMSD
Time T | n216 1389 ;370 296

Figure 2 shows the relationship between the computation time 7" and the size of the effective
domain L for the case of n = 100. L is given in log scale whereas time T is on linear scale in
this graph. It is verified that T = O(log L) in SSD and SMSD, T = O((log L)?) in DR and
T =0(L) in SD.

The table below shows the standard deviations of execution times in the case of L = 50000
and n = 100, which is the case of the biggest problems in our numerical experiments.

Algorithm SD DR SSD SMSD
Stand. Dev. | 2.770 10.25 0.9075 0.2357

By numerical experiments with randomly generated test problems, we can conclude that our
scaling algorithms are faster than the previously proposed algorithms. In particular, Algorithm
SMSD is the fastest algorithm.
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