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Pitman’s model of random partitions

Masaaki Sibuya and Hajime Yamato
Takachiho University and Kagoshima University

Random partition of a finite set or number is rudimental in applied probability and
statics. The most elementary family of random partitions of a number is Ewens’ one-
parameter family of random partitions, known as Ewens’ sampling formula, which has
been developed in the population genetics. See, for example, Ewens (1990) and Johnson
et al. (1997).

In a series of papers Pitman enlarged Ewens family to a two-parameter family of
random partitions, which will be called Pitman’s model, Pitman (1955-1999). In this
report the estimation of parameters of Pitman’s model is discussed. Further, geneses of
random partitions and its statistical applications are reviewed.

1 Random partition of a finite set

1.1 An urn model

Balls By, By, ..., are randomly and sequentially put into urns Uy, U,, ... Ball B, is put
into U; with probability 1. If B,,...,B, are in Uy,..., Uy, in such a way that ¢; > 0
balls are in Uj, j = 1,...,k, z;=1 ¢; = n, ball By, is put into

a new urn Uy, with probability (0 + ka)/(6 + n),
an old urn U; with probability (¢; — a)/(0 + n),1 < j < k.

The partition of balls into urns is, in terms of the subscript of balls, a partition of the
generic set M, = {1,...,n} into an ordered subsets

(al,...,ak), ainaj = @17' #]’ U;:laj =Nn.
Its probability is, by induction,

k
p((ay,-..,ak);0,a) = % H(0 + (- 1Da)(1 - a)ls1, 1)

1
c,-=|aj|>0, 1<k<n,

where |a;| denotes the cardinality (number of elements) of a;, and 2™ = z (z+1) -+ (z +
n — 1) =(z + n — 1)™. Note that the probability does not depend on the elements of
the subsets, nor on the permutation of {c,,..., ¢k}
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Let A2 denotes the set of all ordered partition of N, and call a discrete probability
distribution on A° random partition. The random partition (1) is denoted by P (6, o; A?).
If @ = 0 everything is simplified, and, for example,

6%
o((ay,...,ax);0,0) = WH(cj -1), ¢i=la;|>0, 1<k<n.
i=1 |

1.2 Restriction on the parameters

Ifa = 1, B, is put into U, with probability 1, n = 1,2,... If § = —q, B, is put into U;
with probability 1, n = 1,2,... These are the degenerating boundaries. The probabilities
are nonnegative if only if

0<a<land —a<¥8; or a<0and0=—Ma, M=12,...

In the last case, B,, n=1,2,..., enters By 1 with the probability 0.

1.3 Size index

The number of balls in urns (cy, ..., cx) is an ordered partition of number n into a sum
of positive numbers. Let C3 denote the set of all such partitions.

If the order (ci,...,cx) is disregarded, its ‘order statistics’ is expressed by the set
{c1,-- -y}, €a) 2 €2y = -+ = ck), OF by its size index

s=(51,...,8n), sj=|{i:a=451=1...,k}20,j=1,...,n
n n
Zsjzk and }:jsjzn,
j=1 j=1

Let A% denote the set of all unordered partitions of N, and the corresponding random
partition denoted by P(0, c; A}) is

k n .
1 ) 11\ S5
p{ar,.- axi0,0) = g [1@0+ G- D) [ ] (@ -0 N7, (2)
1= J:
where (sy, ..., 8,) is the size index of (Ja1,.. ., |ax|), and k = 3°7_; s;.

1.4 Types of partitions and random partition of numbers.

In the urn model balls and urns may be distinguishable or undistinguishable. Hence,
there are four possible types of the partition. ’ ‘

Two of them are mentioned already, and if both balls are undistinguishable, observable
is the partition of a positive number to a sum of positive numbers. See Table 1 for the
types of partitions. Each entry is a symbol denoting the set of all possible partitions. The
corresponding distribution is denoted using them.

The corresponding probabilities are '
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Table 1: The Set of All Partitions of Four Types

balls
urns distinguishable undistinguishable
distinguishable A2 c?
undistinguishable A Co

P(6,a; A3) : (1); P(6,a;.A%) : (2), and the others are as follows

P(0,a;C1) : p((cn, - - -, k)3 6, @)
_ n9@+a)---(0+ (k- 1)a) H (1 — a)le-1

or) i (i) e - 1 @
P(0,0;C) - p(s; 6, )
9@ +a)---(0+ (k—1a 1—a)b-1l 1
_ nlé( )elnl ( ))H(( j!) ) 5 @

n
s =(s1,-. ,sn)e bl k=Zsj.
Jj=1

P(0,0;C") is known as Ewens’ sampling formula.

2 Specific properties

2.1 Partition structure

The random partitions A3 and A% are essentially the same. Any partition of A% can be
ordered by the elements of subsets: The subset (urn) containing 1 is the first subset a;.
The subset containing min(N, — U!Z a;) is the j-th subset a;. The difference between
A, and A} is to regard M, as a generic finite set or a linearly ordered subset.

Proposition 1. For any renumbering (permutation) of the elements, P(0,a; A?) and
P(6,0;.A%) are invariant.

Proposition 2. From the random partition P(0, a; A2) sample one element at random
with the equal probability 1 /n, and delete it. The result is P (0, c; A% _,) if the elements
are renumbered.

Further, if the selected one belongs to the set a; delete a;. The result is P(8, o; A2 _ &)

= |aj|.
Prop051t10n 3. Let {j1,---,Jk} € Na, In P(0,a; A3) the probability that {jy,...,jx} is
the same set. This is equal to the probability that {1,...,k} is the same set in P(8, o; A2),

(1 — a)k—1 /g,
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2.2 Size biased random permutation

The ordering of P(6, o; AY) into P (6, o; A2) suggests a similar ordering of P (6, ; Cy;) into
P(6,a;C2).

Let {ci,...,c} be a partition of n following P(6, a;Cy). The simple random sampling
of a ball is now to choose c;, with the probability c¢;, /n. The i-th number c;; is sampled
from the remaining ones with the probability

i—1
cj, [ (n — chy), i=12,...,k — L
v

Then (cjy,-..,c;,) from P(6,a;C2) is P(6,a;C3). The procedure is called “size biased
random permutation”, which appeared as a heap problem of the computer file organiza-
tion.

2.3 Residual allocation model
The probabilities (3) of P (6, «; C2) is expressed as follows

p((cy, ..., ck);0,a) =

k—1 _ v :
Zf:j ¢ —1\(6+ ja)[zi=j+161](1 — a)[c;—l] (1- a)[ck-—l]
([(5e) )

c;—1 @+ (G—1a+ 1)[Zf=j ci—1] 0+ ko + 1)lex=11"

j=1
At the j-th stage, if the remaining number (of balls) isr; = n — i1 ¢,, ¢; — 1 follows
the negative hypergeometric distribution NgHg (r; — 1,1 — «, 6 + j ).

NgHg (n;c, ) means the mixture of binomial distribution Bn (n,p) when p is a
random variable following the beta distribution Be (, ). This fact is used to generate
the random partition P (6, a; C%) using quasi random numbers.

The Markovian process generating P(, a;C2), that is transform of P(6,0;Cy) to
P(0,;C?) is a special case of residual allocation model developed in the ecology for
habitats. If z ~ NgHg (n; a, 8), £/n converges to Be (o, 8),n — oo, and (c1/n, . ..,cx/n)
converges to a residual allocation of the interval (0, 1).

Let the standard simplex of countable dimension be denoted by

Aoo={xz(xl,xg,...);meO,Zxk=1}.' v (5)
k=1

A probability distribution on A is a random partition of (0, 1).
Let (W;)%, be a sequence of independent random variables on the interval (0,1).
Another sequence (V;)$2, is constructed from it as follows:

Vi=Wi; Vo= (1=-W)W,, 1-Vi =V = (1= W) (1 - Wa);

and generally

{Vk = (Hf;ll(l - Wi)) We = (1 —Xi V’) W (6)

1-YF Vi =T,0-W), k=23,....
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The sequence (V;)2, is a random variable on A, and Markovian, if Zf;ll Vi=wv, Viis
a random variable on (0,1 — v). The random mechanism generating (V)% , from (Wi,
is the residual allocation model. The above discussion is its finite and discrete version.

Proposition 4. The limit distribution of the ratio of a random partition of (ci/n,...,ck/n
following P (6, a;Cy) is the residual allocation model (V;)2.,, generated from (W;)2,,
Wi~Be (1 — o,0 + ia). :

This is a generalization of GEM (generalized Engen-McClosley) distribution, which
is the case @ = 0 and W;){2, is i.i.d. The limit distribution of the proposition will be
denoted by P(0, a; A). :

Conversely, a ‘multinomial sample’ from P (6, a; Ay,) is P(8, a; Ct), and if the sampling
is sequential and the observation is numbered, the other types are obtained.

3 The number of subsets

The number K, of subsets of a partition, or the number of nonempty urns plays naturally
an important role in random partitions. For example, if o = 0, K,, is the sufficient
statistic of P(6,0;Cy), and of all types of random partitions.

In the random partition P(6, a; A3), P(6, o; AZ), P(0, a;C2), P(9, a;CY), the number

of subsets Ky, (= 3_7_, Sj is terms of the size index) has the following distribution

@+a)---(0+(k-1)
flnlok

where |c(n, k;0)| = (—1)"~*C(n,k;a), and C(n, k; ) is defined by the following two-
variable polynomial identity.

P{K,=k} =" Dlem kia)], k=1,....m, ()

(st)™ = i C(n, k; s)t®), (8)

C(n, k; s) was named C-number by Charalambides (1998), actually it is a polynomial in
s of order n — k. The factor |c(n, k; @)| / o* in the above expression is a polynomial of «
of degree n — k with integer coefficients.

Using the stirling numbers of the first kind (unsigned) [}] and the second kind {7},

e TS

T
r=k

- n k n
n] __ § : n __ (k)

k=1 k=1
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4 Limit distribution

The factorial moments of K, is

(r)y — H:=1(0 + (z _ l)a) - _1\r—k r [n} |
E(K{) = — o Z( 1) )@+ k) (10)
raH (0 + (’L — l)a) F(o)
" argn] L@ +ra) n oo
hence
K. \" _ ([0 + G- Do)  T(6)
nlggoE [(na) ] - o' @ +ra) (1)
This is the r-th moment about origin of the probability density
FO+1) o4 ‘

where g, () is the probability density of Mittag-Leffler distribution, which is characterized
by its moment

/ 2P gq(z)dz = Lo+ Vp > —1.
0

The distribution with the density (12) is called Generalized Mittag-Leffler distribution
and denoted by GMtLf (6, a). It is shown from (11) that K,/n® 4 GMLLf (n = o).

Let S = (Si,...,S,) be a size index of P(6, o; C%), its factorial moments are given by

n (s) B L - — a)U-1\"
E(HSJ(.U)) L (9;[,1]) H(0+(i—1)a)H((—1';—)—) ,  (13)

=1
n n
r;=0,1,...; r:=§ rj,szzz JT;-

Specially

(-G

The right hand side is the probability function of NgHg (n — 1,1 — «,0 + ), which is
the distribution of C; of P(6, a;Cy). :
From the above moments

(H (a(l _ a)b 1]na)rj)“ Hre (15)
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Hence, for any S;, j < oo,

7'S;

(1 = )i~ 4 GMtLf 0,0), n— oco.

This means that

( 15 2! 215, 3! Ss )

an?’a(l —a) ne "a(l - PR

degenerates as n — oo to the one-dimensional distribution GMtLf (6,a). The sharing
proportions

a(l —a)t-Yg z2=12.. 0<a<l

is a distribution named Sibuya’s distribution, Devroye(1993).

5 Parameter estimation

The log likelihood of P (6, a; C%), in terms of size index s = (sy,..., Sp) is

L =const + Zlog(e +ia) — Z log(8 + j) + Z 8; (Z log(i — a))

=2

and the likelihood equation is

00 6 0+ (k—1)a \0 0+n—-1) 7
oL 1 k-1 = 1 1
£_0+a+“.0+(k—l)a ;s"(l—a-i_“”'-j—l—a)_o' (16)

Proposition 5. Let I(a,0) be the Fisher information matriz, if o > 0, and n — oo its
elements are

Iga = O(l), Iga = O(logn), Iaa = O(n“).
Further, if o/ logn — 0,
I = O(logn), Inx = O((logn)?), I.a = O((logn)?).

If a = 0, K, is a sufficient statistics its distribution is in the exponential family
(power series family), and its information is O(logn). In the case @ > 0 the estimation
problem is irregular and difficult. The ML estimator does not look optimal.

Other possible estimators are as follows. Let

(’)S
—ZJ i=0,1,..., (Ro= Ky Ri=n).

n(') ’
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The simplest estimation is
6 =5/Ry, 6=(1-6&)/Ry — 1
Using R, and Rj, the estimators are

Ry/Ry—2Ry+ Ry 5 _ 1+ Ry—2Ry/Ry
Rs/R.— Ry ' Rs/R;— Ry '

or solve the nonlinear equation
E(Rz) = R2 and E(R{)) = R() (OI‘ E(Sl) - Sl)
Least sum of squares (or other distance) estimator looks favorable:

(6,6) = argmin||jS; /n — E(j S;/n)||-

a=

(17)

6 Some geneses

P(1,0;43), P(1,0;Cy)

Al A permutation (o4, . . ,0q) of V,, is a bijection M, — N, and the mapping divides
N, into cycles. If the probabilities of all the permutations are equal to 1 / nl. The
random partitions by cycles is P(1,0;.42).

A2 Let (X3,...,X,) be arandom sample from a continuous distribution function. X1y =
X, is the initial maximum record. If X;,.. Xk_l < Xg-1 and X1 < Xk
then X(;)y = Xj is the j-th maximum record i =12,. A new record breaks

the sample into before the record and after it 1nc1ud1ng 1tself The numbers of
components broken by records is P(1,0;C%).

A3 Let (Xi,...,X,) be independent and X; ~ N (u;,0%). The maximum likelihood or
least squares estimate of (ui,...,u,) under the order restriction p; < -+ <y
is obtained by Pool Adjacent Violators Algorithm. It is to divided A, into the
intervals (1 = 1,...,72 — 1), (Jo,.-.,J3 — 1) vovy(Jky+ -+ Jk+1 = n) such that

]l+1_1
ﬂ.iz-.._—_ﬂ.i _ — X’ [J, _.._
j e A Uz; v 1 fin.
Under the null hypothesis gy = -+ = pn, (jo — J1,.--,7 — Jjk) is the random

partition P(1,0;C%).

A4 There are n particles on a line. A particle has mass m;, is located at z;, and moving
with the velocity v;, j = 1,...,n. If two particles j and k collide they reduce
to one particle (or a cluster of particles) with mass m; + my, velocity (m;v; +
my v) / (mj + my), that is, the completely inelastic collision. After some finite time
interval, the particles do not collide, the velocities of particles are ordered according
to their positions. The size of final clusters, the number of particles collided into
one, is P(1,0;C%) only if the initial velocities (v1,...,v,) is an i.i.d. sequence of
random variables. Sibuya, et al.(1990).
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P(6,0; A2)

A5 Taga and Isii model of spreading rumor. See, Taga and Isii (1959) and Bartholomew
(1967). From an information source Iy, a news, rumor, technology, or knowledge is
spread to people of a community in time as a Poisson process with the intensity ).
From the primary informant Iy, I, . . ., the news is spread to other people, and from

“them to others, with the same intensity u for each. Let a person, excluding Iy, be
denoted by B;, i = 1,2,... in the order of time when the news is received. When
n people, including I;, have received the news, they are divided into the branches

of the root. The group a;, started from I, i = 1,2,... is a random partition
P(0,0; A7), 0 = X/ p.
P(6,0;Cx)

A6 The classification of homonyms by the accent, Sibuya(1991)
P(6,a;Cy)

A7 Stochastic abundance, Engen (1978), and Statistical disclosure control, Hoshino(2001).
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