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Geometric Conditions on Uniqueness Problem
for Meromorphic Mappings

YOSHIHIRO AIHARA
Numazu Colege of Technology

(沼津高専・相原義弘)

Introduction.

This paper is asummary report of the author’s recent research on the uniqueness
problem ofmeromorphic mappings from the point of view of Nevanlinna theory. The study
of the uniqueness problem of meromorphic mappings under condition on the preimages
of divisors was first studied by G. Polya and R. Nevanlnna ([21] and [17]). They proved
the following famous five point theorem: Let $f$ and $g$ be nonconstant meromorphic
functions on C. If $f^{-1}(a_{j})=g^{-1}(a_{j})$ for distinct five points $a_{1}$ , $\cdots$ , $a_{5}$ in $\mathrm{P}_{1}(\mathbb{C})$ , then
$f$ and $g$ are identical (see also [18]). This may be called an absolute unicity theorem in as
much as the condition concerns set equality. On the other hand, G. P\’oly -R. Nevanlinna
also have arelative unicity theorems. These theorems add the requirement that, for each
inverse image in question, $f$ and $g$ take their value there with the same multiplicity.
For example, the following four point theorem is well-known: Let $f$ and $g$ be as above.
If $f\cdot a_{\mathrm{j}}=g.a_{j}$ as divisors for distinct four points $a_{1}$ , $\cdots$ , $a_{4}$ in $\mathrm{P}_{1}(\mathbb{C})$ , then either
$f\equiv g$ or $g=T(f)$ for an automorphism $T$ of $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{P}_{1}(\mathbb{C}))$ determined by $a_{1}$ , $\cdots$ , $a_{4}$ .
Until now, many researchers have studied unicity theorems for meromorphic functions
on $\mathbb{C}$ , as well there have been many contributions in the multidimensional case. Some
of relevant papers lsted in references. Among these, H. Fujimoto has proved anumber
of remarkable unicity theorems in relative case. For example, he proved the following
brilliant theorem ([10, p. 1] and [11, p. 117]):

Theorem (Fujimoto). Let $f$, $g$ : $\mathbb{C}^{m}arrow \mathrm{P}_{n}(\mathbb{C})$ be nonconstant meromorphic map
pings with the same inverse images of $q$ hyperplanes in general position.
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(1) If $q^{\ovalbox{\tt\small REJECT}}3n+1$ , then there exists an automorpl#m L of Pn(C) such that f $\ovalbox{\tt\small REJECT}$ $L(g)$ .
(2) If $q^{\ovalbox{\tt\small REJECT}}$ 3rr $+2$ and either f or g is linearly nondegenerate, then f $\ovalbox{\tt\small REJECT}$ g.
(3) If $q^{\ovalbox{\tt\small REJECT}}$

2yz $+3$ and either f or g is algebraically nondegenerate, then f $\ovalbox{\tt\small REJECT}$ g.

His proofs are based on the Borel identity. On the other hand, S. J. Drouilhet [8] gave
the first several variable extention of absolute unicity theorem as follows:

Theorem (Drouilhet). Let $M$ be aprojective algebraic manifold and $A$ asmooth
affine variety. Let $Larrow M$ be an ample line bundle over $M$ and $Harrow Pn(C)$ the
hyperplane bundle over $\mathrm{P}_{N}(\mathbb{C})$ . Let $\iota$ : $Marrow \mathrm{P}_{N}(\mathbb{C})$ be anonconstant holomorphic
mapping. Let $D\in|L|$ be hypersurfaces with normal crossings. Let $f$, $g:Aarrow M$ be
transcendental meromorphic mappings. Suppose that $f^{-1}(D)=g^{-1}(D)=Z(\neq\emptyset)$ as
point set. If $f=g$ on $Z$ and $L$ Ci $K_{M}\otimes(-2\iota^{*}H)$ is ample, then $\iota$ $\circ f\equiv\iota$ $\circ g$ .

In this paper, we deal with the absolute case. In [17] and thereafter methods used
proving relative theorems have been essentially different from those in the absolute case.
In the proof of absolute unicity theorems, we use asecond main theorem for meromorphic
mappings in an essentially computational way (cf. [1], [3], [4] and [8]). Note that the second
main theorem for meromorphic mappings is established in afew cases. Hence, we deals
with the case of dominant mappings. In what follows, we consider the following settings.
Let $\pi$ : $Xarrow \mathbb{C}^{m}$ be afinite analytic covering space and $M$ aprojective algebraic
manifold. Let $f_{1}$ , $f_{2}$ be dominant meromorphic mappings ffom $X$ into $M$ . Suppose that
they have the same inverse images of given divisors on $M$ . We first give conditions under
which $f_{1}$ , $f_{2}$ are algebraically related. We consider propagation of algebraic dependence of
meromorphic mappings and their applications to uniqueness problem. Roughly speaking,
our results say that if these mappings satisfy the same algebraic relation at all points of
the set of the inverse images of divisors and if the given divisors are sufficiently ample,
then they must satisfy this relationship identically. These results are considered as the
propagation theorems of algebraic dependence. The propagation of dependence from a
proper analytic subset to the whole space was first studied by L. Smiley [27] (cf. [29,
p. 176]). There have been several studies on the propagation of dependence (cf. [9], [16]
and [31] $)$ . So far, this problem has been studied under the conditions on the growth of
meromorphic mappings. For example, W. Stol [31] proved some interesting theorems
on the propagation of dependence of meromorphic mappings $f$ : $Xarrow M$ under a
condition on the growth of mappings in different settings. In his results, at least one
of the mappings $f_{j}$ must grow quicker than the ramification divisor $B$ of $\pi$ : $Xarrow$

Cm. However, there can be only afew restricted cases where meromorphic mappings
satisfying these conditions even if $\dim M=1$ (cf. [20] and [22]). In this paper we first
give criteria for the propagation of algebraic dependence of meromorphic mappings from
$X$ into $M$ under the condition on the existence of meromorphic mappings separating
the fibers of $\pi$ : $Xarrow C^{m}$ . Thanks to the theory of algebroid reduction of meromorphic
mappings, we can always find such amapping. Thus it seems that our condition is more
natural and essential than the above mentioned conditions. The theorem on algebroid
reduction of meromorphic mappings and the ramification estimate due to J. Noguchi [19]
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are essentially important in the proofs of our results. In some of our criteria, we assume
complicated conditions, but they have wider ranges of applicability. These criteria are
actually corollaries of Lemmas 2.2 and 2.3, which are fundamental lemmas for our study.
In \S 1, we recall some known facts in Nevanlinna theory of meromorphic mappings. In \S 2,
we give those criteria. We consider the case where given divisors may determine distinct
line bundles. In \S \S 3-4, we will give their applications. We note that acertain kind of
unicity theorems such as results in [3] and [8] may be considered as aspecial case of
theorems on the propagation of dependence. In these theorems we can see that, for two
meromorphic mappings $f$, $g:Xarrow M$ with the same inverse images of divisors as point
sets (say $Z$) satisfying $f=g$ on $Z$ , the algebraic relation $f=g$ on $Z$ propagates to
the whole space $X$ . We give some unicity theorems from this point of view in \S 3. In \S 4,
we study the uniqueness problem of holomorphic mappings into smooth elliptic curves.
In particular, we give some conditions under which two holomorphic mappings are related
by endomorphism of elliptic curves. For details, see [5] and [6].

\S 1. Preliminaries.

Let $\pi$ : $Xarrow \mathbb{C}^{m}$ be afinite analytic (ramified) covering space over $C^{m}$ and let
$s_{0}$ be its sheet number, that is, $X$ is areduced irreducible normal complex space and
$\pi:Xarrow \mathbb{C}^{m}$ is aproper surjective holomorphic mapping with discrete fibers. We denote
by $B$ the ramification divisor. Let $z=$ $(z_{1}, \cdots,z_{m})$ be the natural coordinate system
in $\mathbb{C}^{m}$ , and set

$||z||^{2}= \sum_{--1}^{m}z_{\nu}\overline{z}_{\nu}$ , $X(r)$ $=\pi^{-1}(\{z\in \mathbb{C}^{m};||z||<r\})$ and a $=\pi^{*}d\#||z||^{2}$ ,

where $\theta$ $=(\sqrt{-}1/4\pi)(\overline{\partial}-\partial)$ . For a $(1,1)$-current $\varphi$ of order zero on $X$ we set

$N(r, \varphi)=\frac{1}{s_{0}}[_{1}\langle\varphi$ A $\alpha^{m-1}$ , $\chi_{X(t)}$ ) $\frac{dt}{t^{2m-1}}$ ,

where Xx(r) denotes the characteristic function of $X(r)$ . Let $M$ be acompact complex
manifold and let $Larrow M$ be aline bundle over $M$ . Denote by $|\cdot|$ ahermitian fiber
metric in $L$ and by $\iota v$ its Chern form. Let $f$ : $Xarrow M$ be ameromorphic mapping.
We set

$T_{f}(r, L)=N(r, f^{*}\omega)$ ,

and call it the characteristic function of $f$ with respect to $L$ . We also define $T_{f}(r, F)$ for
$F\in \mathrm{P}\mathrm{i}\mathrm{c}(M)$ $\otimes \mathrm{Q}$ in the following way. If $\nu$ is apositive integer with $\nu F\in \mathrm{P}\mathrm{i}\mathrm{c}(\mathrm{M})$ ,
then we set

$T_{f}(r, F)= \frac{1}{\nu}T_{f}(r, \nu F)$ .

It is easy to see that $T_{f}(r, F)$ is will define Let $|L|$ be the complete linear sys-
tem determined by $L$ . We have the following Nevanlinna’s inequality for meromorphic
mappings (cf. [19, p. 269])
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Theorem 1.1. Let L $\ovalbox{\tt\small REJECT}$ M be a line bundle over M and let f $\ovalbox{\tt\small REJECT}$ X $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ M be $a$

nonconstant meromorphic mapping. Then

$N(r, f^{*}D)\leq T_{f}(r, L)+\mathrm{O}(1)$

for D $\in|L|$ with $f(X)\not\subset$ Supp D, where $O(1)$ stands for a bounded term as r $arrow+\infty$ .

Let $f$ : $Xarrow M$ be ameromorphic mapping, and let $D\in|L|$ . Let $E$ be an effective
divisor on $C^{m}$ such that $E= \sum_{\mathrm{j}}\nu_{j}E_{j}’$ for distinct irreducible hypersurfaces $E_{\mathrm{j}}’$ in
$C^{m}$ and for nonnegative integers $\nu_{\mathrm{j}}$ , and let $k$ be apositive integer. We set

$N_{k}(r, E)= \sum_{j}\min\{k, \nu_{\mathrm{j}}\}N(r, E_{\mathrm{j}}’)$
.

Ameromorphic mapping $f$ : $Xarrow M$ is said to be dominant provided that rank $f=$
$\dim M$ . The following second main theorem for dominant meromorphic mappings gives
an essential computational way in the next section (cf. [19, Theorem 1]):

Theorem 1.2. Let $M$ be a projective algebraic manifold with $m\geq\dim M$ and let
$Larrow M$ be an ample line bundle. Suppose that Di, $\cdots$ , $D_{q}$ are divisors in $|L|$ such
that $D_{1}+\cdots+D_{q}$ has only simple normal crossings. Let $f$ : $Xarrow M$ be a dominant
meromorphic mapping. Then

$qT_{f}(r, L)+T_{f}(r, K_{\mathrm{A}\mathrm{f}}) \leq\sum_{\mathrm{j}=1}^{q}N_{1}(r, fWj)+N(r, B)+S_{f}(r)$,

where $S_{f}(r)=O(\log T_{f}(r, L))+o(\log r)$ except on a Borel subset $E\subseteq[1, +\infty)$ with
finite measure.

In application of Theorem 1.2, it is essential to give the estimate for $N(r, B)$ by the
characteristic function of $f$ . In the case where $m=1$ and $M=\mathrm{P}_{1}(C)$ , the ramification
theorem due to H. Selberg is well-known (cf. [24]). In the case of meromorphic mappings
$f$ : $Xarrow M$ , we have afollowing ramification estimate proved by J. Noguchi.

Definition 1.3. Let $\mathrm{Y}$ be acompact complex manifold. We say that ameromorphic
mapping $f$ : $Xarrow \mathrm{Y}$ separates the fibers of $\pi$ : $Xarrow C^{m}$ , if there exists apoint $z$ in
$C^{m}$ -(Supp $\pi_{*}B\cup\pi(I(f))$ ) such that $f(x)\neq f(y)$ for any distinct points $x$, $y\in\pi^{-1}(z)$ .
In this case, $X$ is said to be the proper existence domain of $f$ .

Assume that $f$ : $Xarrow M$ separates the fibers of $\pi$ : $Xarrow M$ and $L$ is ample. Then
there exist the least positive integer $\mu_{0}$ and apair of sections $\sigma_{0}$ , $\sigma_{1}\in H^{0}(M, \mu_{0}L)$ such
that ameromorphic function $f^{*}(\sigma_{0}/\sigma_{1})$ separates the fibers of $\pi$ : $Xarrow C^{m}$ . Then we
have the following ramification estimate due to J. Noguchi ([19, p. 277])
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Theorem 1.4 (Noguchi). Suppose that $Larrow M$ is ample and $f$ : $Xarrow M$ separates
the fibers of $\pi:Xarrow M$ . Let $\mu_{0}$ be as above. Then

$N(r, B)\leq 2\mu_{0}(s_{0}-1)$ $T_{f}(r, L)+O(1)$ .

In the case where $f$ does not separate fibers of $\pi:Xarrow M$ , we cannot estimate the
growth of the ramification divisor in general. However, we have the following reduction
theorem proved by J. Noguchi ([19, p. 273]):

Theorem 1.5 (Noguchi). Let $f$ : $Xarrow M$ be a meromorphic mapping. Then there
exist a finite andytic covering space $\varpi$ : $\underline{X}arrow Cm$ , a surjective proper holomorphic
mapping $\lambda:Xarrow\underline{X}$ and a meromorphic mapping $\underline{f}$ : $\underline{X}arrow M$ separating the fibers of
$\varpi$ : $\underline{X}arrow \mathbb{C}^{m}$ such that the following diagram

$\mathbb{C}^{n}arrow\pi Xarrow fM$

$1\mathrm{d}\downarrow$ $\lambda\downarrow$ $\downarrow \mathrm{H}$

$\mathbb{C}^{m}arrow\varpi\underline{X}\vec{\underline{f}}M$

is commutative. Fkfflemofe, $\dot{\iota}ff$ is dominant, so is $\underline{f}$.

From the above theorem, we can determine the proper domain of existence for an
arbitrary meromorphic mappings $f$ : $Xarrow M$. For the theory of algebroid reduction, see
also [30].

Remark 1.6 We note that $\underline{X}$ is also anormal complex space. By making use of
Theorem 1.4, we can easily obtain the following equalities (cf. [19, p. 273]):

$T,(r, L)=T_{\underline{f}}(r, L)$ , and $N(r, f\cdot D)$ $=N(r, \underline{f}\cdot D)$ .

Thus we also have
$N_{k}(r, f\cdot D)$ $=N_{k}(r, \underline{f}\cdot D)$

for each positive integer $k$ . Hence, by Theorems 1.2 and 1.4, we have the following: For
an arbitrary dominant meromorphic mapping $f$ : $Xarrow M$, the following inequality

$qT,(r, L)+T_{f}(r, K_{M}) \leq\sum_{j=1}^{q}N_{1}(r, f^{*}Dj)+N(r, \underline{B})+Sf(r)$

holds, where $\underline{B}$ is the ramification divisor of $\varpi$ : $\underline{X}arrow \mathbb{C}^{m}$ . We also see that the
following inequality holds:

$\mathrm{N}\{\mathrm{r},$ $\underline{B})\leq 2\mu_{0}(s_{0}-1)T_{f}(r, L)+O(1)$ .
Therefore we can apply Theorems 1.2 and 1.4 for an arbitrary meromorphic mapping
$f$ : $Xarrow M$. This observation is very useful and will be essentialy used in the next
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\S 2. Criteria for propagation of algebraic dependence.

We first give definition of algebraic dependence of meromorphic mappings. Let $M$ be
aprojective algebraic manifold and $Larrow M$ an ample line bundle over $M$ . Set $M^{2}=$

$M\cross M$ . For meromorphic mappings $f_{1}$ , $f_{2}$ : $Xarrow M$, we define ameromorphic mapping
$f_{1}\cross f_{2}$ : $Xarrow M^{2}$ by

$(f_{1}\cross f_{2})(z)=(f_{1}(z), f_{2}(z))$ , $z\in X-(I(f_{1})\cup I(f_{2}))$ ,

where $I(f_{j})$ are the indeterminacy loci of $f_{j}$ . Aproper algebraic subset Iof $M^{2}$ is
said to be decomposable if there exist algebraic subsets $\Sigma_{1}$ , $\Sigma_{2}$ such that $\Sigma=\Sigma_{1}\cross\Sigma_{2}$ .

Definition 2.1. Let $S$ be an analytic subset of $X$ . Nonconstant meromorphic
mappings $f_{1},f_{2}$ : $Xarrow M$ are said to be algebraically dependent on $S$ if there exists
aproper algebraic subset Iof $M^{2}$ such that $(f_{1}\cross f_{2})(S)\subseteq\Sigma$ and Iis not
decomposable. In this case, we also say that $f_{1}$ and $f_{2}$ are $\Sigma$-related on $S$ .

Let $D_{1}$ , $\cdots$ , $D_{q}$ be divisors in $|L|$ such that $D_{1}+\cdots+D_{q}$ has only simple normal
crossings. Let Si, $\cdots$ , $S_{q}$ be hypersurfaces in $X$ such that din $S\dot{.}\cap S_{j}\leq m-2$ for any
$i\neq j$ . We define ahypersurface $S$ in $X$ by $S=S_{1}\cup\cdots\cup S_{q}$ . Let $E$ be an effective
divisor on $X$ , and let $k$ be apositive integer. If $E= \sum_{\acute{J}}\nu_{j}E_{\mathrm{j}}’$ for distinct irreducible
hypersurfaces $E_{\mathrm{j}}’$ in $X$ and for nonnegative integers $\nu_{\mathrm{j}}$ , then we define the support of
$E$ with order at most $k$ by

$\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k}E=$ $\cup$ $E_{j}’$ .
$0<\mathrm{v}_{\mathrm{j}}\leq\$

Assume that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k_{j}}f_{0}^{*}D_{j}$ coincides with $S_{j}$ for all $j$ with $1\leq j\leq q$ , where
$k_{j}$ is afixed positive integer. Let $\mathrm{y}$ be the set of all dominant meromorphic mappings
$f$ : $Xarrow M$ such that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k_{\mathrm{j}}}f^{*}D_{\mathrm{j}}$ is equal to $S_{j}$ for each $j$ with $1\leq j\leq q$ . Let
$F_{1}$ and $F_{2}$ be big line bundles over $M$ . We define aline bundles $\tilde{F}$ over $M^{2}$ by

$\tilde{F}=\pi_{1}^{*}F_{1}\otimes\pi_{2}^{*}F_{2}$ ,

where $\pi_{j}$ : $M^{2}arrow M$ are the natural projections on $j$-th factor. Let $\tilde{L}$ be abig line
bundle over $M^{2}$ . In the case of $\tilde{L}\neq\tilde{F}$ , we assume that there exists apositive rational
number $\tilde{\gamma}$ such that $\tilde{\gamma}\tilde{F}\otimes\tilde{L}^{-1}$ is big. If $\tilde{L}=\tilde{F}$ , then we take $\tilde{\gamma}=1$ . Let Ibe the
set of all hypersurfaces Iin $X$ such that $1=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}$

$\tilde{D}$ for some $\tilde{D}\in|\tilde{L}|$ and Iis
not decomposable.

Assume that $f$ : $Xarrow M$ separates the fibers of $\pi$ : $Xarrow M$. Since $L$ is ample,
there exist apositive integer $\mu$ and apair of sections $\sigma_{0}$ , $\sigma_{1}\in H^{0}(M, \mu L)$ such that
ameromorphic function $f^{*}(\sigma_{0}/\sigma_{1})$ separates the fibers of $\pi$ : $Xarrow C^{m}$ for all such
mappings $f$ . We denote by $\mu_{0}$ the least positive integer among those $\mu’s$ . We assume
that there exists aline bundle, say $F_{0}$ , in $\{F_{1}, F_{2}\}$ such that $F_{0}\otimes F_{j}^{-1}$ is either big or
trivial for $j=1,2$. Set $h$ $= \max_{1<\leq q}.k_{\mathrm{j}}\lrcorner$. We define $L_{0}\in \mathrm{P}\mathrm{i}\mathrm{c}(M)$ $\otimes \mathbb{Q}$ by

$L_{0}=( \sum_{j=1}^{q}\frac{k_{j}}{k_{j}+1}-2\mu \mathrm{o}(s_{0}-1))L\otimes(-\frac{2\tilde{\gamma}k_{0}}{h+1}F_{0})$ .
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Then, by making use of Theorems 1.2 and 1.4, we have our basic result, from which we
see that, if $L_{0}$ is sufficiently big, then the algebraic dependence on S propagates to the
whole space X.

Lemma 2.2. $L$ et $f_{1}$ and $f_{2}$ be arbitrary mappings in ff and $\Sigma\in\Re$ . Suppose that
$f_{1}$ and $f_{2}$ are $\Sigma$-related on S. If $L_{0}\otimes K_{M}$ is big, then $f_{1}$ and $f_{2}$ are $\Sigma$ -related on
$X$ .

Now, let us consider amore general case. Let $L_{1}$ and $L_{2}$ be ample line bundles over
$M$. Let $q_{1}$ , $\cdots,q_{l}$ be positive integers and assume that $D_{j}=D_{j1}+\cdots+D_{jq_{\mathrm{j}}}\in|qjL|$ has
only normal crossings, where $Djt\in|L_{j}|$ . Let $Z$ be ahypersurface in $X$ . Let $\mathrm{S}$ be a
family of dominant meromorphic mappings $f$ : $Xarrow M$ such that

$\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k_{\mathrm{j}}}f^{*}D_{j}=Z$

for some $j$ . In the case where $L_{j}=L$ for $j=1,2$, we define $G_{0}\in \mathrm{P}\mathrm{i}\mathrm{c}(M)$ $\otimes \mathbb{Q}$ by

$G_{0}=( \min_{j=1,2}\{\frac{q_{j}k_{j}}{k_{j}+1}\}-2\mu_{0}(s_{0}-1))L\otimes(-\frac{2\tilde{\gamma}h}{h+1}F_{0})$ .

Then we have one more fundamental result for our study.

Lemma 2.3. L et $f_{1}$ and $f_{2}$ be arbitrary mappings in 9 and $\Sigma\in \mathfrak{N}$ . Suppose that
$f_{1}$ , $f_{2}$ are $\Sigma$-rdated on Z. If $G_{0}\otimes K_{M}$ is big, then $f_{1}$ , $f_{2}$ are $\Sigma$ -related on X.

Now, we $\mathrm{w}\mathrm{i}\mathrm{U}$ give criteria for the propagation of algebraic dependence of dominant
meromorphic mappings, which is acorollary of Lemma 2.2. For $F\in \mathrm{P}\mathrm{i}\mathrm{c}(M)\otimes \mathbb{Q}$ , we
define $[F/L]$ by

$[F/L]=i\cdot f$ { $\gamma\in \mathrm{Q}$; $\gamma L\otimes F^{-1}$ is big}.
Set

Th $= \sum_{j=1}^{q}\frac{k_{j}}{k_{j}+1}-[K_{M}^{-1}/L]-2\mu_{0}(s_{0}-1)$ .

We also set

$m_{1}=q-[K_{M}^{-1}/L]-2\mu \mathrm{o}(s_{0}-1)$ and $m_{2}=q-[K_{M}^{-1}/L])$ .

Then we have the following criterion for the propagation of algebraic dependence:

Corollary 2.4. $L$ et $f_{1}$ , $f_{2}\in \mathrm{f}\mathrm{f}$. Suppose that they are $\Sigma$ -related on S. If $m_{\mathrm{j}}$ are
positive $and|.f$

$n$ $- \frac{2\tilde{\gamma}h}{h+1}[F_{1}/L]+m_{1}n-\frac{2\tilde{\gamma}h}{h+1}[F_{\mathrm{j}}/L]>0$,

then $f_{1}$ , $f_{2}$ are $\Sigma$-related on $X$ .
By making use of Lemma 2.3, we also have the folowing two criteria. Set

$n_{1}=q_{1}-[K_{M}^{-1}/L_{1}]-2\mu_{0}(s_{0}-1)$ and $n_{2}=oe$ $-[K_{\lambda \mathrm{f}}^{-1}/L_{2}]$ .
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We also set
$p_{j}= \frac{q_{j}k_{j}}{1+k_{j}}-[K_{\mathrm{A}\mathrm{f}}^{-1}/L_{j}]-2\mu_{0}(s_{0}-1)$

for $j=1,2$. Then we have the following criterion:

Corollary 2.5. Let $f_{1}$ , $f_{2}$ be arbitrary mappings in $\mathrm{S}$ and $\Sigma\in \mathfrak{N}$. Suppose that
$f1$ , $f_{2}$ are $\Sigma$ -related on Z. If all $n_{\mathrm{j}}>0$ and if

$p_{1}- \frac{2\tilde{\gamma}h}{k_{0}+1}[F_{1}/L_{1}]+n_{1}\mu-\frac{2\tilde{\gamma}h}{h+1}[F_{2}/L_{2}]>0$ ,

then $f_{1}$ , $f_{2}$ are $\Sigma$ -related on $X$ .

Set $e_{0}=2\mu_{0}(s_{0}-1)$ $+1$ . Then we also have the following:

Corollary 2.6. $L$ et $f_{1}$ , $f_{2}$ be as in Corollary 2.5. If all $n_{j}>0$ and $\dot{\iota}f$

$p_{1}- \frac{2\tilde{\gamma}k_{0}}{h+1}[F_{1}/L_{1}]+n_{1}p_{2}-\frac{2\tilde{\gamma}e_{0}k_{0}}{n_{2}(h+1)}[F_{2}/L_{2}]>0$,

then $f_{1}$ , $f_{2}$ are $\Sigma$ -related on X.

Remark 2.7. The case, where either all $k_{j}=1$ or all $k_{j}=+\infty$ , are especialy
important from the viewpoint of Nevanlnna theory. We now consider the case where
$k_{j}=+\infty$ for some $j$ . We first note that Supp $f^{*}D=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k_{\mathrm{j}}}f^{*}D$ if $k_{\mathrm{j}}=+\infty$.
Set $k_{j}/(k_{j}+1)=1$ and $1/(k_{\mathrm{j}}+1)=0$ for $k_{\mathrm{j}}=+\infty$ . Then it is easy to see that
the proofs of Lemmas 2.2 and 2.3 also work in the case where $k_{j}=+\infty$ for some $j$ .
Hence the conclusions of the above propositions are still valid for the case where some of
the $k_{j}=+\infty$ . We also note that the proof of Lemma 2.2 also works in the case where
some of the $S_{j}$ are empty sets.

\S 3. Unicity theorems for meromorphic mappings.

In this section we give some unicity theorems as an application of criteria for dependence
by taking line bundles $F_{j}$ of special type. For the details of this direction, see [1], $[3],[4]$ ,
[8] and [28]. We keep the same notation as in \S 2. Let $\Phi$ : $Marrow \mathrm{P}_{n}(C)$ be ameromorphic
mapping with rank# $=\dim$ $M$. We denote by $H$ the hyperplane bundle over $\mathrm{P}_{*},(C)$ .
Take $F_{1}=F_{2}=\Phi^{*}H$ . We also take $\tilde{L}=\tilde{F}$ . Then we see

$L_{0}=( \sum_{\mathrm{j}=1}^{q}\frac{k_{j}}{k_{j}+1}-2\mu \mathrm{o}(s_{0}-1))L\otimes(-\frac{2h}{h+1}\Phi^{*}H)$ .

We fix $f_{0}\in \mathrm{y}$. Set

$\Omega_{0}=M$ -({w $\in M-I(\Phi)$ ;rank $d\Phi(w)<\mathrm{d}\mathrm{i}$. $M\}\cup I(\Phi)$ ),
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where $\mathrm{Z}(\mathrm{O})$ is the locus of indeterminacy of 0. Aset $\{D_{\ovalbox{\tt\small REJECT}}\}7_{\ovalbox{\tt\small REJECT}}$. of divisors is said to be
generic with respect to $f_{\mathit{0}}$ and 4provided that

$f_{0}(C^{m}-I(f_{0}))\cap \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}$ $D_{j}\cap\Re$ $\neq\emptyset$

for at least one $1\leq j\leq q$ , where $I(f_{0})$ denotes the locus of indeterminacy of /0.
We assume that $\{D_{\mathrm{j}}\}_{j=1}^{q}$ is generic with respect to $f_{0}$ and $\Phi$ in what follows. Let
$\mathrm{f}\mathrm{f}_{1}$ be the set of all mappings $f\in \mathcal{F}$ such that $f=f_{0}$ on $S$ . Then we have the
following unicity theorems by Lemma 2.2 and by uniqueness of analytic continuation (cf.
[3, Theorem 2.1] $)$ :

Theorem 3.1. Suppose that $L_{0}\otimes K_{M}$ is big. Then the family $\mathcal{F}_{1}$ contains just one
$mapp\dot{\iota}ngf_{0}$ .

We next consider the case $\dim M=1$ . Assume that $M$ is acompact Riemann
surfaxya with genus $g_{0}$ . In the case $\alpha$ $=0$ , we have the following unicity theorem for
meromorphic functions on $X$ by Theorem 3.1, which is closely related to the uniqueness
problem of aJgebroid functions (cf. [1, Theorem 3.3]).

Theorem 3.2. Let $f_{1}$ , $f_{2}$ : $Xarrow \mathrm{P}_{1}(\mathbb{C})$ be nonconstant holomorphic mappings. Let
$a_{1}$ , $\cdots$ , $a_{d}k$ distinct points in $\mathrm{P}_{1}(\mathbb{C})$ . The follows. hold.

(1) Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}f_{1}^{*}a_{\mathrm{j}}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}f_{2}^{*}a_{j}$ for all $j$ . If $d\geq 2s_{0}+3$, then $f_{1}$ and
$f_{2}$ are identical on $X$ .

(2) Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{1}.a_{\mathrm{j}}$ $=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{2}^{*}a_{\mathrm{j}}$ for all j. If d $\geq 4s_{0}+3$, then $f_{1}$ and
$f_{2}$ are identical on X.

Note that the above theorem is sharp in the case X $=\mathbb{C}$ .
Example 3.3. We consider the integral

$z=\varphi(w):=f_{0}(1-t^{4})^{-\frac{1}{2}}dt$

on the unit disc in C. Set $z_{1}=\varphi(1)$ , $z_{2}=\varphi(\sqrt{-1})$ , $z_{3}=\varphi(-1)$ and $z_{4}=\varphi(-\sqrt{-1})$ .
Then $\varphi$ maps the unit disc onto the square $z_{1}\mathrm{a}\mathrm{e}z_{3}z_{4}$ . By Schwarz’s reflection principle,
the inverse function of $z=\varphi(w)$ can be analytically continued over the complex plane
$\mathbb{C}$ , and the resulting function $w=f(z)$ is doubly periodic. Let $a_{1}=1$ , $a_{2}=\sqrt{-1}$ , $a_{3}=$

$-1$ , $a_{4}=-\sqrt{-1}$ , $a_{5}=0$ and $*$ $=\infty$ . Set $f_{1}=f$ and $f_{2}=\sqrt{-1}f$ . Then
$\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{1}.a_{\mathrm{j}}$ $=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{2^{\mathrm{t}}}a_{\mathrm{j}}$ for ffi $j$ , but $f_{1}\not\equiv f_{2}$ .

The uniqueness problem of holomorphic mappings into acompact Riemann surface
with positive genus is not $\mathrm{w}\mathrm{e}\mathrm{U}$ studied (cf. [1], [9] and [23]). In the case of $g_{0}=1$ , we
will discuss the uniqueness for holomorphic mappings into smooth elliptic curves in \S 4.
We now consider the case where $g_{0}\geq 2$ . Note that Riemann-Roch’s theorem shows
$\mu_{0}\leq\alpha$ $+1$ . In this case, by making use of Theorem 3.1, we have the following unicity
theorem (cf. [1, Theorem 3.6) $])$ :
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Theorem 3.4. Let $f_{1}$ , $f_{2}$ : $Xarrow M$ be nonconstant holomorphic mappings. Let
$a_{1}$ , $\cdots$ , $a_{d}$ be distinct points in M. The folloing hold.

(1) Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}f_{1}^{*}a_{j}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}f_{2}^{*}a_{j}$ for all $j$ . If $d> \max\{4g_{0},2(\mathrm{p}\mathrm{o} 1)(s_{0}-1)\}$,
then $f_{1}$ and $f_{2}$ are identical on $X$ .

(2) Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{1}^{*}a_{\mathrm{j}}$ $=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{2}^{*}a_{\mathrm{j}}$ for all j. If d $> \max$ far, $(2\mathrm{g}+1)(2s_{0}+$

$1)-8g_{0}\}$ , then $f_{1}$ and $f_{2}$ are identical on X.

Note that under the condition of Theorems 3.2 and 3.4, at least one $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f_{1}^{*}a_{\mathrm{j}}$ is not
empty.

\S 4. Holomorphic mappings into smooth elliptic curves.

We finaly consider the case where $M$ is asmooth elliptic curve $E$. The unique
ness problem of holomorphic mappings into elliptic curves was first studied by E. M.
Schmid [23] and Schmid obtained the following unicity theorem: Let $f$, $g:Rarrow E$ be
nonconstant holomorphic mappings, where $R$ is an open Riemann surface of acertain
type. Then there exists anonnegative integer $d$ depending only on $R$ such that, if
$f^{-1}(a_{j})=g^{-1}(a_{j})$ for distinct $d+5$ points $a_{1}$ , $\cdots$ , $a_{d+5}$ in $E$ , then $f$ and $g$ are
identical. In the special case $R=C$, we have $d=0$.

So far, there have been only few studies on the uniqueness problem of holomorphic
mappings $f$ : $Xarrow E$ (cf. [9] and [23]). In this section, we consider the problem to
determine the condition which yields $f=\varphi(g)$ for an endomorphism $\varphi$ of the abelian
group $E$ . We first note the following fact: If $f$ : $Xarrow E$ separates the fibers of
$\pi$ : $Xarrow C^{m}$ , then we can take $\mu_{0}=2$ (cf. [20, p. 286]). Let $L\in \mathrm{P}\mathrm{i}\mathrm{c}(E)$ . Since
$H^{2}$ ( $E$ , Z) $\cong \mathbb{Z}$ , we identify the Chern class $c(L)$ of $L$ with an integer. We now
consider the infimum $[F/L]$ of the set of rational numbers $\gamma$ such that $\gamma c(L)-c(F)$ is
ample. We note that $[F/L]=[F/L’]$ if $c(L)=c(L’)$ . Hence the conclusions of Lemma
$2.3,\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}$ $2.5$ and 2.6 are still valid provided that $D_{\mathrm{j}}\in|q_{j}L_{\mathrm{j}}|$ and aU $c(L_{\mathrm{j}})$ are
identical. We also note that $\tilde{\gamma}$ is not necessarily rational number in this section. It is
well-known that

Pic $(E^{2})\neq\pi_{1}^{*}\mathrm{P}\mathrm{i}\mathrm{c}(E)$ $\oplus\pi_{2}^{*}\mathrm{P}\mathrm{i}\mathrm{c}(E)$ .
We denote by $[p]$ the point bundle determined by $p\in E$ . Let $F_{1}=F_{2}=[p]$ . Let
$f$, $g$ : $Xarrow E$ be nonconstant holomorphic mappings. We denote by End(E) the ring
of endomorphisms of $E$ . If $E$ has no complex multiplication, it is $\mathrm{w}\mathrm{e}\mathrm{U}$-known that
End(E) $\cong \mathrm{Z}$ . Hence $\varphi(x)=nx$ for some integer $n$ .

We now seek conditions which yield $g=\varphi(f)$ for some $\varphi\in \mathrm{E}\mathrm{n}\mathrm{d}(\mathrm{E})$ Let $\varphi\in \mathrm{E}\mathrm{n}\mathrm{d}(E)$

and consider acurve
$\tilde{S}=\{(x, y)\in E\cross E;y=\varphi(x)\}$

in $E\cross E$ . Let $\tilde{L}$ be the line bundle $[\tilde{S}]$ determined by $\tilde{S}$ . In this section, $\tilde{\gamma}$ denotes
the infimum of rational numbers such that $\gamma\tilde{F}\otimes[\tilde{S}]^{-1}\mathrm{i}$ ample. Then we essentially use
the following theorem proved by T. Katsura (see [6, \S 6]):

Theorem (Katsura). Let $\tilde{\gamma}$ be as above. Then $\tilde{\gamma}=\deg\varphi+1$ .
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By the above theorem, we have the following corollary (cf. [26, p. 89]):

Corolary. Let $n$ be an integer. If $\varphi\in \mathrm{E}\mathrm{n}\mathrm{d}(E)$ is an endomorphism defined by
$\varphi(x)=nx$ , then $\tilde{\gamma}=n^{2}+1$ .

By making use of Lemma 2.3, we have the following:

Theorem 4.1. Let $f$, $g$ and $\varphi$ be as above. Let $D_{1}=\{a_{1}, \cdots, a_{d}\}$ be a set of
$d$ points and $\varphi$ $a$ endomorphism of E. Set $D_{2}=\varphi(D_{1})$ . Assume that the number

of points in $D_{2}$ is also $d$. Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k}$ $f^{*}D_{1}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k}$ $g^{*}D_{2}$ for some $k$ . If
$d>2(\deg\varphi+1)+8(s_{0}-1)(1+k^{-1})$ , then $g=\varphi(f)$ .

In the above theorem, we assume that the cardinality $\#\mathrm{D}$ of the point set $D_{2}$ equals
$d$. However, it may happen that $D2 $<d$. For example, if $\varphi(x)=nx(n\in \mathrm{Z})$ and there
exists at least one pair $($:, $j)$ such that $\alpha$

.
$-a_{\mathrm{j}}$ is $n$-torsion point, then $\# D_{2}<d$ . In

this case, by making use of Corollary 2.6, we have the folowing.$\cdot$

Theorem 4.2. $L$ et $f$, $g$ : $\mathbb{C}^{m}arrow E$ be nonconstant holomorphic mappings. Let
$D_{1}=\{a_{1}, \cdots,a_{d}\}$ be a set of $d$ points and $\varphi\in \mathrm{E}\mathrm{n}\mathrm{d}(E)$ . Set $D_{2}=\varphi(D_{1})$ . Assume
that the number of points in $D_{2}$ is $d’$ . Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f\cdot D_{1}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}g^{*}D_{2}$ . If
$dd’>(d+d’)(\deg\varphi+1)$ , then $g=\varphi(f)$ .

Corolary 4.3. Let $f$, $g$ and $X$ be as in Theorem 5.2. $L$ et $D_{1}=\{a_{1}, \cdots,a_{d}\}$ be
a set of $d$ points and set $D_{2}=\{na_{1}, \cdots,na_{d}\}$ for some integer $n$ . Assume that
the number of points in $\alpha$ is Z. Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}f\cdot D_{1}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}g.D_{2}$ . If
$dd’>(d+d)(n^{2}+1)$ , then $g=nf$ . We do not know whether Theorem 5.2 is sharp or

not. However, if the condition $\ovalbox{\tt\small REJECT}’>(d+d’)(\mathrm{d}\mathrm{a}\mathrm{e}\varphi+1)$ is not satisfied, then it is not
necessarily true that g $=\varphi(f)$ .

Example 4.4. Let $\varphi\in \mathrm{E}\mathrm{n}\mathrm{d}(\mathrm{J}\mathrm{S})$ be an endomorphism defined by $\varphi(x)=2x$ . Define
$f,g:\mathbb{C}arrow E$ by $f(z)=\mathrm{W}(\mathrm{x})$ and $g(z)=-2\overline{\pi}(x)$ , where $\overline{\pi}:\mathbb{C}arrow E$ be the universal
covering mapping. Let $D_{1}=$ {$x\in \mathrm{E}$;Ax $=0$}. Then $D_{2}=\varphi(D_{1})=2D_{1}$ . It is clear
that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}$ $f\cdot D_{1}=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}$ $g.b$ . In this case, $d=16$, $d$ $=4$ and $\deg\varphi+1=5$ . Thus
we have

$dd$ $-(d+d)(\deg\varphi+1)=-\mathfrak{X}<0$

and $g\neq\varphi(f)$ .

The following unicity theorem is adirect conclusion of Theorem 4.1:

Theorem 4.5. Let $a_{1}$ , $\cdots$ , $a_{d}$ be distinct points in E. $L$ et $f$, $g$ : $Xarrow E$ be
nonconstant holomorphic mappings. Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k}f\cdot aj=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{k}$ g.aj for $dl$ $j$ ,
where $1\leq k\leq+\infty$ . If $d>8s_{0}-4+8k^{-1}(s_{0}-1)$ , then $f$ and $g$ are identical.

In the case of X $=\mathbb{C}^{m}$ , we have the following:
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Theorem 4.6. Let $a_{\mathit{1}_{\rangle}^{\ovalbox{\tt\small REJECT}}}$ .\rangle $a_{d}$ be distinct points in E. Let f, g $\ovalbox{\tt\small REJECT}$

$\mathrm{C}^{m}$ e E be
nonconstant holomorphic mappings. Suppose that $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{\mathrm{t}}$

$f^{*}a_{f}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}_{1}ga_{\ovalbox{\tt\small REJECT}}$ for all j.
If d $\ovalbox{\tt\small REJECT}$ 5, then f and g are identical.

We give here the concluding remark. If we choose special points of $E$ , we obtain an
example which yields that Theorem 5.6 is sharp. Indeed, let $\mathrm{a}\mathrm{i}$ , $\cdots$ , $a_{4}$ be tw0-torsion
points in $E$ and let $\wp$ be the Weierstrass $\wp$ function. If $f_{1}^{*}a_{j}=f_{2}^{*}a_{j}$ for $j=1$ , $\cdots,4$ , it
is easy to see that $\wp\circ f_{1}=\mathrm{p}\mathrm{o}\mathrm{f}2$ by Nevanlinna’s four points theorem. Hence $f_{1}=f_{2}$ or
$f1=-f_{2}$ . Since $p\mapsto-p(p\in E)$ is an automorphism of $E$, it is acceptable that $f_{1}$ and
$f_{2}$ are essentially identical. In this example, it seems that the structure of the function
field of $E$ affects strongly the uniqueness problem for holomorphic mappings.
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