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Higher Weights for Codes over Finite Rings

Hiroshi Horimoto (7~ 1)
and
Keisuke Shiromoto (IRX7A BF4\)*
Department of Mathematics, Kumamoto University
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1 Introduction

For an [n, k] code C over a finite field F, and 1 < r < k, the rth generalized Hamming
weight (GHW) d,(C) of C is defined by Wei ([10]) as follows:

d(C) := min{|Supp(D)|: D is a [n,r] subcode of C},

where Supp(D) := Ugepsupp(x) and supp(x) := {i | z; # 0} for © = (z,...,z,) € Fy.
A lot of papers dealing with GHW for codes over finite fields have been published (see
9] etc.).

On the other hand, in the last few years, linear codes over finite rings have been in the
focus of the coding research (see (3], [5], (6], [7] and [11], etc.). In particular, Ashikhmin,
Yang, Helleseth et al. ([1], [12], [13] and [4]) introduced the rth generalized Hamming
weight with respect to order (GHWO) d,(C) for a linear code C of length n over Z, and
1 <r < log,|C]| as follows:

d-(C) := min{|Supp(D)| : D is a submodule of C with log, |D| = r}.

And they exactly determined d,(C) of Preparata, Kerdock, Goethals codes et al. over
Z4 for some 7.

In this paper, we shall introduce a concept of rank for linear codes over finite chain
rings and consider some fundamental properties of a generalized Hamming weight with
respect to rank for these codes.

In this paper, all rings are assumed to be finite and associative with 1 5 0. In any
module, 1 is assumed to act as the identity.

*Research Fellow of the Japan Society for the Promotion of Science.
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2 Codes over Finite Chain Rings.

A finite ring R with Jacobson radical J(R) # 0 is call as a chain ring if the principal
left ideals of R form a chain (see [8] and [5]). We remark that a finite chain ring R can
be viewed as a local ring with J(R) = Rf for any § € J(R)\J(R)?. For example, the
ring Z/qZ of integers module ¢, where ¢ is a prime power, the Galois ring GR(g,m) of
characteristic ¢ with ¢™ elements and Fy + uF, (u? = 0) are chain rings. On the other
hand, Z/kZ, where k is not a prime power, and Fs+vF; (v? = v) are not chain rings. Let
m be the index of nilpotency of J(R) and let R* be the group of units of R. In addition,
since R is a local ring, we denote by a prime power ¢ the cardinality of the finite field
R/J(R), that is, R/J(R) = F, and |R| = ¢™. Let R" be the free R-module of rank
n consisting of all n-tuples of elements of R. With respect to component-wise addition
and right /left multiplication, R™ has the structure of an (R, R)-bimodule. A right (resp.,
left) linear code C of length n over R is a right (resp., left) R-submodule of R". If C is
a free R-submodule of R", then we shall call C as a free code. For a right (left) linear
code C over R, we define the rank of C, denoted by rank(C), as the minimum number
of generators of C' and define the free rank of C, denoted by f-rank(C), as the maximum
rank of the free R-submodules of C. In this case, C is isomorphic, as an R-module, to a
direct sum:

C = P(R/RI)™,

=1

where RO¢ := {r0' | r € R} = {x € R | z6™* = 0}, for each i € {1,2,...,m}. We
note that rank(C) = ¥, k; and f-rank(C) = k,, and define the type of C, denoted by
type(C), as the sequence (kq, ks, ..., kn). For an R-module M, the socle of M, that is,
the sum of all simple submodules of M, is denoted by Soc(M). For a right (resp., left)
linear code C over R, we note that

Soc(C) = {x € C | zf = 0}
(resp., Soc(C) = {x € C | 0= = 0}).

For a right (left) linear code C over R, we define I(C) as a minimal free R-submodule
of R™ which contains C and define F(C) as a maximal free R-submodule of C. If C is
a right (resp., left) linear code of length n over R, then I(C) is a right (resp., left) free
code of length n with rank(/(C)) = rank(C) and F(C) is a right (resp., left) free code of
length n with rank(F(C)) = f-rank(C) (cf. [7]). '

For a vector « = (z1,...,Z,) € R", the support of x is defined by

supp(z) = {i | z; # 0}



30

and the Hamming weight wt(x) of « is defined to be the order of the support of z. The
minimum Hamming weight of a linear code C of length n over R is

d(C) := min{wt(x) | (0 #)z € C}.

If Soc(R) = R/J(R) as right R-modules and as left R-modules, then R is called as a
Frobenius ring ([8], [7] and [11]). Since a chain ring R is a Frobenius ring, we have an R-
isomorphism ¢ : Soc(R) = R/J(R). In this case, ¢ induces the following R-isomorphism:

¢" : Soc(R)* = (R/J(R))"
D= (1., 20) & () = (H(T1), ..., D(T0)),

(cf. [8] and [7]). We have the following proposition.

Proposition 2.1 ([7]) If C is a right (left) linear code of length n over R, then
¢"(Soc(C)) 4s a linear [n,rank(C), d(C)] code over the finite field R/J(R).

For two vectors & = (21,...,2,) € R* and y = (y1,...,y,) € R", we define the inner
product
(T, Y) = T1yn + - - - + TpYn.
For a subset C C R", we define the right dual code C* and the left dual code 1C of C as
follows:

Ct = {yeR"|(z,y) =0, Ve e}
1C = {yeR"|(y,x)=0, Vx e C}.

If C is a right (resp., left) linear code of length n over R, then

rank(C) + f-rank(*C) = n
(resp., rank(C) + f-rank(C*) = n)

and (1C)* = C (resp., 1(C*) = C) (cf. [5] and [7]).

A generator matrix of a.right (resp., left) linear code C of length n over R is a
rank(C) X n matrix over R whose rows form a minimal set of generators of C. Similarly,
a parity check matriz of C is an n x (n — f-rank(C)) matrix over R whose columns form
a minimal set of generators of 1C (resp., C*).

In the remaining part of this paper, we shall concentrate on right linear codes because
all results and proofs for left linear codes always go through as well as those for right
linear codes.
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3 Generalized Hamming Weights

For a subset C C R™, we define the support of C by

Supp(C) := |J supp(x). |

xreC

Evidently we note that if C; and C, are subsets of R" such that C; C (3, then
|Supp(C1)| < [Supp(Ca)|-

Definition 3.1 For a right linear code C of length n over R and 1 < r < rank(C), the
rth generalized Hamming weight with respect to rank (GHWR) of C is defined by

d-(C) := min{|Supp(D)| : D is an R-submodule of C' with rank(D) = r}.
The weight hierarchy of C is the set of integers {d,(C) : 1 < r < rank(C)}
The following lemma is essential.

Lemma 3.2 If C is a right (left) linear code of length n over R, then
Soc(C) = Soc(I(C)).
The following result is a generalization of Proposition 2.1 with respect to GHWR.
Theorem 3.3 Let C be a right linear code C of length n over R. Then
d(C) = dr(Soc(C)) = d,(1(C)),
for any r, 1 <r < rank(C).

Remark 3.4 The above theorem also claims that all free R-submodules of R® which
contain C and have the same rank as C have the same weight hierarchy as C.

Using the above theorem, we have the following results from Theorem 1 and Corollary
1 in [10].

Corollary 3.5 For a right linear code C of length n over R with rank(C) =k >0,
1<di(C) <da(C) <+ < die(C) <.
Corollary 3.6 For a right linear code C of length n over R and any 7, 1 < r < rank(C),

d.(C) <n —rank(C) + .
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If C meets the above bound, i.e., d,(C) = n — rank(C) + r, then C is called an rth
MDS code over R. In [2] and [7], the first MDS codes over the finite rings (simply called
MDR. or MDS codes in these papers) are studied.

For a right linear code C of length n and M C N := {1,2,...,n}, we set

R*(M) := {x € R"|supp(x) C M}
C(M) = CNRYM)={x € C |supp(xz) C M}.

Clearly, R*(M) is a free R-module of rank |M| and C(M) is also a right linear code of
length n over R. And for right linear codes C and D over R and a linear map ¢ : C — D,
we define

C* := Homg(C,R)
vt . D*->C*
g gy.
Moreover, there is the following isomorphism as left R-modules:
f: R*—>(RY)"
x - (f(x) : y — (2, 9)).
Then the following proposition is essential.
Proposition 3.7 ([6]) Let C be a right linear code of length n over R. Then the sequence
0 — 10N - M) =S BM (N - M) Lo = oM — 0

is exact as left R-modules for any M C N, where the maps inc, res denote the inclusion
map, the restriction map, respectively.

In [6], they proved the Singleton type bound for codes over finite quasi-Frobenius
rings by using this proposition. In this paper, we prove a duality for GHWR of codes
over finite chain rings using this proposition.

Lemma 3.8 Let C be a right linear code of length n over R. Then
d.(C) = min{|M| : rank(C(M))=r, M C N},
for allr, 1 <7 < rank(C).

A duality for GHW of codes over finite fields is proved in [10] and similarly, a duality
for GHWO of codes over Galois rings is proved in [1]. As in these case, we have a similar
duality relation for GHWR of codes over finite chain rings as follows:
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Theorem 3.9 Let C be a right linear code of length n over R with rank(C) = k. Then
{d.(C): 1<r<k}={1,2,....n}\{n+1-d.(F(*C)): 1<r<n- k}.

Though we have many possibilities of taking F(C) for a right linear code C, the
following result follows from the above theorem.

Corollary 3.10 If C is a right linear code of length n over R with f-rank(C) = ko, then
all right free R-submodules of C with rank ko have the same weight hierarchy determined
by that of +C.

Now we introduce a weight for a vector in R™ which is a generalization of the Lee
weight for a vector in Zj. For an element (0 #) z € R, we define the socle weight s(z) of
(0 #)x € R as follows: ”

(z € Soc(R)) ’

and set s(0) = 0. For example, if R = Zy7 = {0, 1,2,...,26}, then s(z) = 2forz # 0,9, 18
and s(z) = 3 for z = 9,18. For a vector € = (z1,...,z,) € R", the socle weight ws(x) of
x is defined by

(@) ={ ¢—1 (z &Soc(R))

n

’ws((B = Z

For a right linear code C of length n over R the minimum socle weight ds(C) of C is
defined as follows:

ds(C) := min{wg(x) | (0 #) x € C}.

Lemma 3.11 Let C be a right linear code of length n and of rank k over R and let
A be the |C| x n array of all codewords in C. Then each column of A corresponds
to the following case: the column contains all elements of RO* equally often for any
i€{0,1,...,m—1}. ' ’

Then we have the following theorem. A similar result for Lee weights of codes over Z,4
can be found in [12] and corresponds to the special case R = Z; in the following result.

Theorem 3.12 Let C be a right linear code of length n over R. Then we have

1
=D 2, s@

el

[Supp(C)| =
Corollary 3.13 If C be a right linear code of length n over R, then the rth GHWR of
C, 1 <r <rank(C), satisfies

(¢" — 1)ds(c)‘l
g(g—1) |’

where [a] denotes the smallest integer greater than or equal to a.

4:(C) > [
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