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The Picard group, the figure-eight knot group and

Jdrgensen groups

Hiroki Sato
il N
Department of Mathematics, Faculty of Science

Shizuoka University

0. Introduction.

In this paper we will state that the Picard group Gp and the figure-eight knot
group G are two-generator groups and Jgrgensen groups. Furthermore we will

describe a complete set of relations for Gp as a two-generator group. The detail will

appear elsewhere.

1. The Picard group.

DEFINITION 1.1. The group

P::{az+b

g a,b,c,dEZ-I—zZ,ad—bc:l}

is the Picard group.
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THEOREM A (Magnus [7]) The Picard group Gp is generated by the following

four Mébius transformations Sy, T, Uy and V,, with corresponding matrices

THEOREM B (Johnson-Weiss [3]) The Picard group Gp is generated by the fol-

lowing three matrices:

10 10 1 1
11 i 1 10

See Johnson-Kellerhals-Ratcliffe-Tschantz [1] and Johnson-Weiss [2] for more infor-
mations about the Picard group and Coxeter groups.

2. Jgrgensen groups.

THEOREM C (Jgrgensen [4]). If (A, B) is a non-elementary discrete subgroup of
Mob, then
J(A, B) := |tr*(A) — 4| + |tr(ABA™'B™!) - 2| > 1.

The lower bound 1 is best possible.

DEFINITION 2.1. Let A and B be Mobius transformations. The Jgrgensen

number J(A, B) is

J(A, B) = |tr*(A) — 4| + [tr(ABA™'B!) — 2|.

DEFINITION 2.2. A non-elementary two-generator discrete subgroup G of Mob

is a Jorgensen group if G has generators A and B with J(A, B) = 1.

THEOREM D (Jgrgensen-Kiikka [5]). Let (A, B) be a non-elementary discrete
group with J(A, B) = 1, that is, a Jorgensen group. Then A is elliptic of order at

least seven or A is parabolic.
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Here we only consider the case where A is parabolic, that is, Jergensen groups
of parabolic type. Namely, we consider two-generator groups Gis = (A4, Bik,o)

generated by

11 tko —k?c—1/o
A= and Bik,,a = ’
01 o iko

where k € R and 0 € C )\ {0}.
Let C be the following cylinder: C = {(o,ik) | o] =1, k € R}.

THEOREM E (Sato [9]). Every Jgrgensen group of type Giro lies on the cylinder
C.

By Theorem E we consider two-generator groups G,, = (A,B,q) with p =
ik (k € R) and 0 = —ie? (0 < 6 < 2m). For simplicity we set Big := By, and
Gip = (A, By o) for o = —ie®.

We can see that it suffices to consider the case of (0 < 6 < n/2) and k > 0.

THEOREM F (Jgrgensen-Lascurain-Pignataro [6], Sato [9], Sato-Yamada [12]).
Let

11 ke® ie ¥(k%e* — 1)
A= and Bk’o =
01 —ie®? ke

and let Grg = (A, Big) be the group generated by A and Byp, where k € R and
o € C\ {0}. Then

(i) Gij2/2 s a Jorgensen group.

i) G is a Jogrgensen group.
Vv3/2,%/6

See Sato [9,10] for Jgrgensen groups of parabolic type.
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3. Theorems.

In this section we will state main theorems. We can prove the theorems by using

Poincaré’s polyhedron theorem (cf. Maskit [8]).

THEOREM 1 (Sato [9,11]) (i) The Picard group Gp is conjugate to Gy/sx/2, that
i3, Gp = RG1/3z/2R™*, where

1 i/2
0 1

(ii) The following relations form a complete set of relations for Gp :

(B"'ABA’BAB'A’B'ABA’BAB'AB)? =1
(BABA’BAB'A’B™'ABA)? =1
(AB'ABA’BAB'A’B'ABA’BAB'AB) =1
(AB'ABA’BAB™'A’B'ABA)’ =1
(B'ABAR =1
(AB'ABA)? =1
(AB'ABA’B'ABA’BAB 'A’B'ABA’BAB 'AB)? =1
(AB'ABA’B'ABA’BAB™'A’B 'ABA)® =1,

where B = RBy /3 x/2R7".
COROLLARY. The Picard group is a two-generator group and a Jgrgensen group.

THEOREM 2 (Sato [9,11]). The figure-eight knot group Gp is conjugate to

G /3j2x/6) that is, G = RG /3,5 s R™", where
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1 1/2
R= /
0 1

(ii)) The following relation forms a complete set of relations for G :
ABA™'B™'A = BA !B 1ABA,
where B = RB /3, . /6R™"-

COROLLARY. The figure-eight knot group is a two-generator group and a Jgrgensen

group.
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