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On Linear Arrangement Problems on
Multidimensional Torus Graphs

#4% %7 (Shuji Jimbo), /%0 B =B8R (Kosaburo Hashiguchi), E/# =2 (Hitoshi Muto)
LK% T8 (Faculty of Engineering, Okayama University)

Abstract

A linear layout of a graph G is a one-to-one mapping of the vertices of G into the
integers from 1 to the number of vertices of G. Since the range of a linear layout L
is regarded as the positions on the number line, the sum of |L(v) — L(w)| over all of
the edges vw is called the sum of edge length of L. For every pair of positive integers
n and m, the n-dimensional m-torus graph T is introduced. The vertex-set of T,
is the set of all Z,,-valued n-dimensional vectors, and the edge-set is the set of all
pairs of vertices v = (v1,vs,... ,vs) and w = (wy, Wy, ... ,wy,) such that they differ
at exactly one index, say j, and either v; = wj+1 (mod m) or w; = v;+1 (mod m)
holds. The natural layout of T; is the linear layout that arranges the vertices in
lexicographic order. It is proved that, for every positive integer n, the sum of edge
length of the natural layout is the minimum among the ones of all linear layouts of
T3. Furthermore, the set of linear layouts of T3’ whose sum of edge length is the
maximum is completely characterized.

- Keywords: graph theory, induced subgraph, hypercube, torus, linear layout.

1 - Introduction

A linear layout of a graph G = (V,E), where V' and E are vertex-set and edge-set,
respectively, is a one-to-one mapping L : V — {1,2,...,|V|}. If we regard the range of
L as the positions on a number line, then L places each vertex of G at the corresponding
position on the number line, and each edge of G on the interval between the points
corresponding to the end vertices of the edge. We call the value . |L(v) — L(w)| the
sum of edge length of L. Let Q, denote the n-dimensional hypercube, or n-cube. The
vertex-set of Q,, denoted V(Q,), is {0,1}", the set of all n-dimensional 0-1 vectors. The
edge-set of Q,, denoted E(Q,), is the set of all pairs of vertices v = (vy,vs,... ,v5) and
w = (wy,wy, ... ,w,) that differ at exactly one index. The natural layout N, of Q, is the
linear layout defined as

Nﬂ((zly Z2y.--, z1!)) =1+ E 2‘.—125-
i=1

In other words, the natural layout of Q, arranges the vertices in lexicographic order.
Nakano et al. showed that the sum of edge length of the natural layout of a hypercube is
always the minimum among the ones of all linear layouts of the hypercube[NCM*90]..
It is important to analyze topological properties of hypercubes for developing parallel
computation technology. Furthermore, when you attempt to encode the RGB data of a
picture into binary strings and to transmit them through a communication channel with
some transmission error, then you might need to examine the sum of edge length of the
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linear layout that corresponds to the encoding. The average change of the picture caused
by one bit error in the transmission is expected to be in proportion to the sum of edge
length. If we can use a larger alphabet than the binary one to encoding the RGB data,
then it is probably suitable for the transmission to examine the sum of edge length of the
torus graph that corresponds to the encoding.

For every pair of positive integers n and m, the n-dimensional m-torus graph T"
is defined as follows: The vertex-set of T, is the set of all Z,,-valued n-dmensmna.l
vectors, and the edge-set is the set of all of the pairs of vertices v = (vq,va,... ,v5)
and w = (wy,ws,...,w,) such that they differ at exactly one index, say j, and either
v; = wj + 1 (mod m) or w; = v; + 1 (mod m) holds. The phrase “torus graph” is the
general notation for m-torus graphs for all m. The natural layout of T}, is the linear
layout that arranges the vertices in lexicographic order. We shall prove that, for every
positive integer n, the sum of edge length of the natural layout is the minimum among
the ones of all linear layouts of T5. In the proof, we basically use the technique of Nakano
et al., and develop it into more elaborated one.

Furthermore, we shall completely characterize the set of linear layouts of 73 that have
the maximum sum of edge length, where n is an arbitrary positive integer. The necessary
and sufficient condition for a linear layout L of T3 to have the maximum sum of edge length
is that, for each triple of vertices of Tj that differ at exactly one position of components,
each of the three sets of vertices determined by L, A = {L~!(1),L7*(2),...,L71(3" 1)},
B={L'3"'+1),L'(3~'+2),...,L7}(2-3*"1)}, and C = {L71(2-3""1 +1), L7!(2-
3" +2),...,L71(3")} contains a vertex in the triple.

2 Preliminaries

The size of a finite set S, namely, the number of elements of S, is denoted by |S|. If G
is a simple undirected graph, then V(G) and E(G) denote the vertex-set and edge-set of
G, respectively. For a graph G and a subset S of V(G), G[S] denotes the subgraph of G
induced by S.

A linear layout of a graph G is a one-to-one mapping of the vertlces of G into
{1,2,...,|V(G)|}. Let L be a linear layout of a graph G of order n, where the order
of G is the number of the vertices of G. For each edge e = vw € E(G), L(e) denotes
the closed interval [min{L(v), L(w)}, max{L(v), L(w)}] on the number line. The sum
of edge length of L is 3, ,cp(q) |L(v) — L(w)|. We write the sum of edge length of L
as SEL(L). For an integer £ € {1,2,...,n — 1}, Ce(L, k) denotes the set of edges
{e € E(G) | [k,k + 1] C L(e)}. If the graph designated by the subscript G is clear in
context, then we may leave out the subscript G from the notation Cg(L, k). For an integer
k€ {1,2,...,n—1}, Hy(k) and Tr(k) denote the following two sets of vertices of G,
{L7Y(1),L7*(2),...,L~Y(k)} and {L7}(k+1), L7 (k+2),...,L7Y(|V(G)|)}, respectively.
By definition, CG(L k) is the set of all edges that connect a vertex in Hp(k) and one in
T1 (k). The sum of edge length of L of G is equal to 377 |Ca(L, )|, since each edge vw
contributes |L(v) — L(w)l to the sum 37" |Ca(L, ). Thus we conclude the following
proposition.



180

Proposition 1 Let L be a linear layout of a graph G. Then, the following equation holds:

SEL(L)= 3 L) - Lw) = 3 ICa(Li)l.
vweE(G) i=1

Let n be a positive integer. The n-dimensional hypercube, or n-cube, is an
undirected graph, denoted by Q,. The vertex-set and edge-set of Q, are {0,1}"
and {((21,%2,--- ,%n), W1,%2,--- »¥n)) | 2oy l@ — w| = 1}, respectively. Let z =
(z1,2,-.. ,Zn) be a vertex of Q,. The number of 1’s in the components of z, namely,
3o, T, is said to be the weight of z, denoted by w(z). The function that assigns the
value 14+ 37, 2-1z; to each z = (21,22, ... , Za) € V(Q,) is said to be the natural layout
of Q,, denoted by N,(z).

Let n be a positive integer and m an integer greater than 2. The n-dimensional m-
torus graph T is defined in the previous section. The weight of a torus graph is defined
in a similar manner to the case for hypercubes. Every element z € Z,, can be uniquely
represented by the sum of i unit elements, where i € {0,1,2,... ,m — 1}. Function
Pm : Lpn — Z i8 defined as

m(1+1+---+41) =1,

)

where i € {0,1,2,... ,m — 1}. Let £ = (21,Z2,...,%s) be a vertex of T;. The sum
3, Pm(z;) is said to be the weight of z, denoted by w(z). The function that assigns
the value 1+ 37, 3*'z; to each z = (21, %3, ... ,Zn) € V(T}) is said to be the natural
layout of T, denoted by N,(z). We may leave out subscript n from the notation N,(z),
if n is clear in context.

3 The Minimality of the Sum of Edge Length of the
Natural Layouts of Hypercubes

We shall review the point of the proof of the result of Nakano et al., which asserts the
minimality of the sum of edge length of the natural layouts of hypercubes. We believe
that there are two points in the proof. The first point is that they estimated the sum
of edge length of L of Q, by using the size of the subgraphs Q, induce by H(:) for
i € {1,2,...,2" — 1}. The second point is that the induction hypothesis that they
employed is sufficiently strong. It was proved by induction on i that the size of the
subgraph induced by Hy(i) is maximum among the subgraphs induced by i vertices of
@n-

It is sufficient to prove the minimality of the sum of edge length of the natural layout
N of Q,, that, for each i € 1,2,...,2" — 1, the subgraph of Q, induced by the vertices
Hy(i) = {N-}(1),N1(2),...,N7(i)} is maximum among the subgraphs of Q. that
consist of i vertices. From Proposition 1 in the previous section, the sum of edge length
of a linear layout L of Q,, namely .z |L(v) — L(w)), is equal to L |Ca. (L, )]
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Since Q,, is an n-regular graph, the sum of degrees of all vertices in H, L(z) does not depend
on L. We, therefore, have

(Can (L 6)| =i — 2 E(QuIHLG)]-

Thus, it holds that if, for each i € {1,2,...,2" — 1}, |E(Qn[Hn(?)])| is the maximum
size of a subgraph of Q, induced by i vertices, then the sum of edge length of N is the
maximum of the sum of edge length of a linear layout of Q,,.

Let f.(k) denote the number of edges of the subgraph of @, induced by Hy(k), namely
fn(k) = |E(Qa[Hn(K)])|- Since the following proposition holds, we shall therefore leave
out the subscript n from f,.

Proposition 2 For any positive integers ny, n,, and k with 1 < k < 2™ and n; < ny,
Qn,[Hn (k)] is isomorphic to Qn,[Hn(k)].

We have two recursive definition of f(k). In one definition, a subgraph of Q, is
decomposed according to the first components of the vertices of the subgraph. We call
such decomposition “the first index decomposition.” In the other definition, a subgraph
of Q, is decomposed according to the j-th components of vertices of the subgraph, where
J is the maximum integer such that there are two distinct j-th components of the vertices
of the subgraph. We call such decomposition “the largest index decomposition.” The
recursive step of the former definition of f(k) is

f(k) = £(Lk/2]) + F(L(k +1)/2]) + [k/2], 1)
and the recursive step of the latter one is
f(k) = f(losak/2y 1 f£(k — 2D°sz(k/2)]) + k — 2Moga(k/2)] (2)
Both of the bases of the two definition are the same as

f(0)=f(1)=0. @)
The following proposition ensure that the expressions above define f (k) correctly.

Proposition 3 Let n, j, and k be positive integers with j < n and k < 2". Let Sy and
S, denote {(1,%3,... ,2,) € Hy(k) | z; = 0} and {(z1,2,... ,2,) € Hn(k) | z; = 1},
respectively. Then, induced subgraphs Qn[So] and Q,[S1] are isomorphic to Qu[Hn(|So|)]
and Qn[HN(|S1])], respectively.

Let g(k) denote the function from non-negative integers to non-negative integers re-
cursively defined by

9(0) = g(1) =
and

g(k) = max {g(i) +g(n -1 +i}.
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Then, it follows from the definitions of g that, for all k € {0,1,...,2"}, the size of every
subgraph of Q, whose order is k is not greater than g(k). The reason is as follows.
Every non-null subgraph G of @, induced by S can be decomposed into three parts by
partitioning S into Sp and S;. Two of the three parts are subgraphs induced by Sp and
S,, respectively, and the other part is the set of edges that connect a vertex in Sy and one
in S;. The partition of S into Sy and S, is performed according to the j-th components
of the vertices, where j is determined by a particular edge e = vw of G. By definition,
v and w have only one position j at which the components of v and w are different. We
partition S into Sy and S, so that the j-th component of each vertex in S; is ¢ for both
i € {0,1}. Then, the number of edges that connect a vertex in Sy and one in S; is the
size of the smaller one in Sy and S;.

In fact, the function f(k) coincides with g(k) for every non-negative integer k. Nakano
et al. proved the fact by induction on k, where the induction hypothesis is f(k) > g(k).
Notice that f(k) > g(k) is equivalent to f(k) = g(k) by definition. It holds that the size
of any subgraph H of @, is not greater than f(|V(H)|). This statement seems to be too
weak for the induction hypothesis, although it is directly necessary for the proof.

Nakano et al. decomposed Q,.[Hn (k)] by the first index decomposition, and employed
expression (1) in the definition of f(k). However, their selection of the decomposition
method seems not to be essential to the proof, since we can complete the proof by em-
ploying the largest index decomposition[Mou96, HMJ99]. We omit the detailed story
reluctantly.

4 The Minimality of the Sum of Edge Length of the
Natural Layouts of Torus Graphs

In this section, we shall show briefly that the sum of edge length of the natural layout of
a 3-torus graph is the maximum of the sum of edge length of all of the linear layouts of
the 3-torus graph.

Theorem 4 Let n be an integer greater than or equal to 2. Then, the following egquation
holds:

SEL(N,) = min SEL(L),

where N, denotes the natural layout of T3 and L,, denotes the set of all linear layouts of
T3.

The outline of the proof of Theorem 4 advances in almost parallel with the proof for
hypercubes. '

By an argument similar to the corresponding one in the previous section, in which
Proposition 1 and the fact that T3 is 2n-regular graph are used, we have that the following
lemma is sufficient to prove Theorem 4. Notice that Hy (i) = {N~1(1), N-1(2),... ,N~1(3)}
is defined in Section 2.
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Lemma 5 For eachi €1,2,... 3" -1,
|E(T3'[Hn ()] = max | E(T3[H])l,

where H in the right-hand side of the equation above ranges over all of the subsets of
V(T3) = Z3 whose size is i. :

The following lemmas can be proved easily. We omit the proofs reluctantly.

Lemma 6 For any positive integers ny, ny, and k with 1 < k < 3™ and n; < ny,
T3 [Hn (k)] is isomorphic to T3?[Hn(k))-

Lemma 7 Let n be a positive integer. Let j be a positive integer less than or equal to
n, and k a positive integer less than 3". Let So, S1, and S, denote {(z1,z,,... ,Z,) €
Hy(k) | zj = 0}, {(z1, %2, ... ,Za) € Hn(K) | z; =1}, and {(z1, 22, - .. ,Zs) € Hy(k) | z; =
2}, respectively. Then, induced subgraphs T3[So], T3[S:1], and T"[Sz] are isomorphic to
T3 [HN(IS0])], T3 [HN(1S1])], and T3 [Hn(|S2)], respectively.

Let f(k) denote |E(T3[Hn(k)])| for arbitrary n greater than 1. By Lemma 6, the
value |E(T3'[Hn(k)])| does not depend on n. By observing that, for any distinct  and j,
any two edges e, and e; of T3 that connect a vertex in Hy(}S;|) and one in Hy(|S;|)] are
not adjacent, we have a recursive definition of f(k) as follows:

£0)=F(1) =0, f(2) = 1, (4)

=1 ([s]) < ([557]) o (52]) w2 [5+[52) o

The following lemma can be proved easily. We omit the proof.

and

Lemma 8 Let a, b, ¢, and k be non-negative integers. Then,
a=|k/3], b=|[(k+1)/3], and c=|(k+2)/3],
if and only if
k=a+b+c and a<b<c<a+1.

Let g(k) denote the function from non-negative integers to non-negative integers re-
cursively defined by

9(0) = g(l) =0, 9(2) =1, (6)
and

g(k) = r;gg;.c{g(h) + 9(3) + g(4) + 2h + ¢}, (7

where h, ¢, and j range over the integers with0 < h<i<j<k—landh+i+j=k.
By an argument similar to the corresponding one in the previous section, we have that,
for all k € {1, 2,...,3"}, the size of every subgraph of T3 whose order is k is not greater
than g(k).

The following lemma is the core of the proof of Theorem 4.
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Lemma 9 Let k be a positive integer. Let hy, hy, hs, i, 11, %2, jo, j1, and j, be non-
negative integers. If '

ho<hi<hy<ho+1, <4 <<ip+1, jo<n<j<jo+1,

ho+hy+hy o +is+ia S Jo+ s +2 <k,
and
ho + hy + ha + 39 + 41 + 2+ Jo + 51 + J2 = K,
then there exist nine integers hg, h, h3, iy, 1}, i3, jo, j1, and j5 such that

(h:')rh;,rh’zyi:)’ 1,172’2:.7(')’.7;’.75) isa pemutation Of (hO, hl; hz,io,il,ig,jo,j1,j2),
ho<ip<jo, M<#H<ji, hy<i<3,

ho + g + 5o < By + 4 + 51 S By +1i5 + 5 < hg + g + Go + 1,
and
4ho + 3hy + 2hg + 3ig + 2i; + 42 + 2jo + j1 < 4hy + 3hy + 2k + 3ig + 23] + iy + 255 + 7).

Proof. Assume that the nine components satisfy the premise of the lemma. If by +
hy + ha = ig+14; +1i3 = jo+ j1 + j2 holds, then set the nine variables with a prime mark as
h:) = ’_l°1 26 = hl: j(’) = h2) hll = iO; zi = ila .7;, = i?v h,2 = j07 i,2 = jl;and Jé =
Jja. Then, the conclusion of the lemma holds. In what follows, we, therefore, assume that

ho+ hy + hy # i + i1 +1i2 or g+ +1z # jo + j1 + J2 (8)

holds.
Given a 3 x 3 matrix A, we define four positive integers z¢(A), z1(A), yo(A), and y,(A)
as follows:

3 3
2o(4) = max{i € {1,2,3} | ) A(i,5) = min{) _ A(k,5) | k € {1,2,3}},

j=1 j=1

2:1(A) = min{i € {1,2,3} | ) A(,j) = max{)_ A(k,j) | k € {1,2,3}},

y1(A4) = max{j € {1,2,3} | A(zo(A),5) < A(z1(4),5)}, and

v0(4) = min{j € {1,2,3} | A(z1(4), ) = A(z1(4),11(A))}-
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Moreover, for two pairs of integers (%, j) and (¢, j') whose components are all belong to
{1,2,3}, let A[(%,7), (¢,7")] denote the 3 x 3 matrix obtained by swapping the (%, j) and
(¢, 5') components of A, that is,

Al ), (7,56, 5) = A(@, 1), AlG, 5), (¢, (', 5') = AG, 5),
and if (z,3) # (i,5) and (z,9) # (¢, ') then
Al(3,5), (@, 7))z, y) = Alz,v)-
Furthermore, P(A) denote the following property of 3 x 3 matrix A:
A(3,1) < A(,2) < A(i,3) for eachic {1,2,3} and

AL, 1)+ A(1,2) + A(1,3) < A(2,1) + A(2,2) + A(2,3) < A(3,1) + A(3,2) + A(3,3).
We define functions A and p both defined on 3 x 3 matrices as
MA) = A(3,1) + A(3,2) + A(3,3) — A(1,1) — A(1,2) — A(1,3)
and
p(A) = 4A(1,1) + 3(A(1,2) + A(2,1)) + 2(A(1, 3) + A(2,2) + A(3,1)) + A(2,3) + A(3,2).
Let M denote the 3 x 3 matrix defined by
M(1,1) =hy, M(1,2)=14dy, M(1,3)=jo, M(2,1)=h;, M(2,2) =1,

M(2,3) =75, M(3,1)=h;, M(3,2)=1;, and M(3,3)=7j,.

Notice that the premise of the lemma implies that P(M) holds. :

At this point, we are ready to describe the permutation of the components of
M that brings values assigned to the nine variables with a prime mark. We de-
fine matrix M’ as follows. If A(M) < 1, then M’ = M. Otherwise, let M,
denote M|(zo(M),y1(M)),(z1(M),y(M))]. If A(M) = 2, then M’ = M,;. Oth-
erwise, ie. AM) = 3, then, M’ = M[(zo(M),11(M1)), (z1(M1),%0(M1))]. In
general, for any 3 x 3 matrix A with P(A) and A(A) > 2, we observe that
P(A(zo(4), 12(A)), (z1(A), 9o(A)]), MAl(zo(A), 32(A)), (z:(4), o(A))]) < A(4)—1, and
p(A[(zo(A),y1(A)), (z1(A), ¥o(A))]) > p(A) hold. Thus, we have P(M’), A(M') <1, and
p(M) < p(M’) in any case. The following setting of the nine variables with a prime mark
satisfies the conclusion of the lemma:

W= M'(1,1), i=M(1,2), f=M(Q,3), K=M@21), #=M22),

=M'(2,3),hy = M'(3,1), i,=M'(3,2), and j;=M(3,3).

We have thus proved the lemma.
a

The following lemma is sufficient to prove Lemma 5. Thus, we conclude that Theorem 4
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Lemma 10 For every k, f(k) = g(k).

Proof. We prove the lemma by induction on k. The base clearly holds. Let k be an
integer greater than 2. Assume that f(I) = g(l) holds for all non-negative integers [ less
than k. Let h, 7, and j be integers such that 0 < h<i<j<k-1,h+i+j=k, and
g(k) = g(h) + g(3) + g(§) + 2h + i = f(h) + f(?) + f(j) + 2h +i. For l € {0,1,2}, let
hi, 41, and j; denote integers |[(h +1)/3], (i +1)/3], and |(j + 1)/3], respectively. Then,
we have the following sequence of equations by the definitions of f and g, the induction
hypothesis, and Lemma 9.

g(k) = f(ho)+ f(%0) + f(jo) + 2ho + 30 + f(h1) + f(i) + f(jr) + 21 + 14

+ f(he) + f(i2) + f(j2) + 2ha + iz + 2hg + 2ig + 250 + hy + 41 + Ja

= g(ho) + g(io) + g(do) + g(h1) + 9(31) + 9(51) + g(h2) + g(i2) + 9(52)
+ 4ho + 3hy + 2hg + 3ig + 24y + 43 + 2jo + 1

< g(ho) + 9(ip) + 9(do) + (k) + 9(#1) + 9(41) + 9(h3) + 9(32) + 9(43)
+ 4hg + 3hy + 2k + 3ig + 247 + 15 + 255 + 57

< g(ho + g + jo) + g(hy + 4, + 51) + g(hy + i + 52)
+ 2(hy + 45 + o) + hy + 4 + 51

= f(ho+1ip+Jo) + f(hy + 41 +37)
+ f(hy + 15 + ) + 2(hg + % + Jo) + hy + 41 + j)

= f(ho+1g+jo + by + 4y + 41 + hy + iy + 53) = f(k).

We have thus proved the lemma. O

5 Linear Layouts of Torus Graphs that Maximize the
Sum of Edge Length

For a vertex z = (z1,%2,...,Z,) of T3 and an integer j € {1,2,...,n}, A(z,j) de-

notes the triangle subgraph of T3 induced by {(y1,¥2,-.-,¥) € Z3 | 1h = Z1,3% =
Z2,... ,¥j=1 = Tj-1,Yj+1 = Tj41,--- ,Yn = Tn}. Notice that the edge-set of T3 can be

partitioned into n3™~! such triangles.

Theorem 11 Let n be a positive integer. A linear layout L of T3 mazimizes the sum of
edge length if and only if, for allz € V(T}) and all j € {1,2,... ,n},

V(A(z,5)) N{L7(1),L7}(2),-.. , LT3 )} #0, (9)

V(A(z, 7)) N{L(3* ! +1), L3 +2),... ,L7}(2-3* 1)} #0, (10)
and

V(Az, i) N{L(2-3"1+1),L7(2-3"1+2),...,L7(3")} #0. (11)
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Proof. Let X, Yz, and Z; denote {L7*(1),L7(2),...,L7(3" 1)}, {L7'(3*! +
1), L7Y(3"1+2),...,L7}(2-3* 1)}, and {L7}(2-3""1+1),L7}(2-3*"1+2),... ,L7}(3")},
respectively. We show that L maximizes |C(L, k)| for all k € {1,2,...,3"—1} if and only
if each of X, Yz, and Z intersects all of the triangles. ' '

Let k be an integer in {1,2,...,3"'}. We readily have that |C(L, k)| is not greater
than the sum of degree of the vertices in {L~1(1),L71(2),...,L~'(k)}. We also have
that all of the edges incident to a vertex in {L~*(1), L7!(2),...,L~!(k)} contribute 1 to
|C(L, k)| if and only if, for every triangle A, X contains exactly one vertex of A. We
therefore have that L maximizes |C(L,k)| for all k in {1,2,...,3"'} if and only if, for
every triangle A, X contains exactly one vertex of A. In a symmetric manner, we also
have that L maximizes |C(L,k)| for all k in {2-3""1,2-3""1+1,2.3"1+2,...,3" -1}
if and only if, for every triangle A, Z; contains exactly one vertex of A. ’

We readily have that any triangle contributes at most 2 to |C(L, k)|. We also have
that a triangle contributes 2 to |C(L, k)| for every k € Y, if the triangle intersects both
of XL and ZL. '

Thus, we conclude that the lemma holds. O

For example, the three conditions below imply conditions (9), (10), and (11):

(Vz € X1)(Vy € X1)(w(z) = w(y) (mod 3)), (12)

(Vo € ¥i)(Vy € Yo)(w(z) = u(y) (mod 3)), W)
and

(Vz € Z1)(Vy € Z)(w(z) = w(y) (mod 3)). - (14)

However, we can find a large number of linear layouts that maximizes the sum of edge
length and that does not satisfy the three conditions above, since if L maximizes the
sum of edge length, then L o p;[a, b] also maximizes the sum of edge length for every j €
{1,2,... ,n} and for every a and b in Z3 with a # b, where L o p;[a, b](v) = L(pj[a,b](v))
and function ¢;[a, b] is defined as follows: for £ = (21, %3,... ,Ta) € Z3,

vila,bl(z) = (1, ... ,Tj—1,0,Tj41,.-. ,ZTa) if T =4,
<p_,-[a, b](:t) = (171, cee ,:z:j_l,a, $j+1, e ,Z,.) lf $j = b,

and ¢j[a,bl(z) =z otherwise.
For example, let L denote the linear layout of 77 defined by

L((0,0)) =2, L((1,0)) =4, L((2,0))=9, L((0,1))=5, L((1,1)) =38,
L((2,1)) =1, L((0,2)) =7, L((1,2))=3, L((2,2))=6.
Then, L' = L o 5[0, 2] is described by
L,((O’ 0)) =1, L’((]-’ 0)) =3, L’((27 0)) =6, L’((Or 1)) =5, L’((l’ 1)) =38,
L'((2,1)=1, L'((0,2)) =2, L'((1,2)) =4, L'((2,2))=9.
Linear layout L maximizes the sum of edge length, since L satisfies the three condi-

tions (12), (13), and (14). Furthermore, linear layout L' also maximize the sum of edge
length, although L’ satisfies none of the conditions (12), (13), and (14).
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6 Concluding Remarks

Let G denote the subgraph of T? induced by {(0,0),(1,0),(1,1),(0,1)}. Since
\E(T2[Hn(4)])] = |B(T{(0,0), (1,0), (2,0), (3,0)}])| = 3 and |E(T2[G])| = 4, we cannot
replace 3's in Lemma 5 with 5’s. However, we conjecture that the 3’s in Lemma 5 can be
replaced with 4’s. "
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