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Hermitian canonical forms of integer matrices, and p-adic values

of a multidimensional continued fraction

Jun-ichi TAMURA (HH #-)
3-3-7-307 AZAMINO AOBA-KU YOKOHAMA 225-0011 JAPAN

ABSTRACT:  All the components of the first row of the hermitian canonical
form of the n-th power of the adjugate matrix of the companion matrix of a monic
polynomial f€Z [x] converge to numbers(#0) in the p-adic sense, as n tends to
infinity, for some prime numbers p under a minor condition on f, cf. Theorenm 1.
Using this fact, for any given monic polynomial f€Z [x] of degree s+1 (s21)
satisfying [£(0)|>1, and GCD(f(0),f (0))=1, we can construct a periodic
continued fraction of dinmension s that converges, with respect to the p-adic
topology for all the prime factors p of f(0), to a vector consisting of s

numbers belonging to a field Q (1,), where 1,€Z, is a root of f, cf. Theorem 2.

§0. Introduction. Throughout the paper, s denotes a fixed positive

integer, |*|,. the p-adic absolute value for prime p<{®, |*| the ordinal absolute

value |*|~. For a given monic polynomial

f:=x**! -C.X*— ' —C1X-Co€EZ [x],
we mean by C the matrix
TQ Co
CZC(f):= » 9=T(clv--':Cl)’
E. ¢ '

“T»

where E. is the sxs unit matrix, -indicates the transpose of a matrix. The
matrix C, the so called companion matrix of f, which is one of the matrices
having f as its characteristic polynomial. Let us suppose

d:=|col>1, GCD(co,cC1)=1. (1)
Then, Hensel’'s lemma, [1] tells us that there exists a unique p-adic integer
1,€Z , satisfying

f(2,)=0, [2,1,<l, pEPrime(d),

where Prime(d) denotes the set of the prime factors of d, see any standard text

for p-adic numbers. In what follows, we assume (1) unless otherwise mensioned.
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In Section 1, we give a theorem which disclose a link between the numbers i,
(p€Prime(d)) and the hermitian canonical forms of the powers of the adjugate
matrix

§:=(det c)c!
of the companion matrix C of f, cf..Theorem 1. We give some lemmas for the proof
of Theorem 1 in Section 2. In Sections 3, 4, we construct a continued fraction
of dimension s that converges in Q, with respect to the p-adic metric, for any
pePrime(d), to a vector consisting of s components belonging to the field
Q(1,)CQ,, cf. Theorem 2. We give some p-adic results related to a homogeneous
form coming Theorem 1 in connection with a certain partition of the lattice Z*
in Section 5.

In this report, we are not intending to give proofs of our theorems, and
lemmas. But we refer to some lemmas, since they seem to have their own interest.
Some of the results can be extended to matrices with entries in Z, by taking
f€Z ,[x] DZ [x], but we do not extend them, since we are mainly interested in

matrices with integer entries.

§1. Hermitian canonical forms We denote by M(s:Q) (resp. M(s;Z)) the

set of sXs matrices with rational entries (resp. integer entries), and by
Mo(s; Q) (resp. Mo(s;Z)) the set of matrices XeéM(s;Q) (resp. Xe€M(s;Z)) such
that det X#0. GL(s;Z) is the set of matrices XeéM(s;Z ) with |det X|=1, which
are the units of M(s;Z). For two matrices A, BEM(s+1;Q), we write |
A~B

iff there exists a matrix PEGL(s+1;Z ) such that A=PB. The relation ~ is an
equivalence relation on M(s+1;Q), in particular, so is on Me(s+1;Z ). For a
given matrix X€Mo(s+1;Z ), there exists a unique upper triangular matrix H(X)
satisfying

X ~ H(X)=(his)osi, 15:.€EMo(s+1;Z),

hoo>0, 0§h|;<h;, (0€i<jss), h,;=0 (0<j<iss).
H(X) is the so called hermitian canonical form of X, which can be obtained by
elementary transformations, i.e., it can be found by multiplying X by elementary
matrices€GL(s+1;Z ) from the left.

We denote by H.(X) the hermitian canonical form of X"
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Ha (X):=H(X")=H((det X-X"')"), XeMo(s+1:Z).

Theorem 1. Let f:=x"*'-c.x"-----CciXx-Co€Z [x] be a polynomial satisfying
(1), and let C=C(f) be its companion matrix. Let e(p) be numbers determined by

d:=lcol= 1 p2®) e(p)21 (pePrime(d)),

PEPrime (d) .

and A,€Z , the number satisfying
f(2.)=0, |1,],<1 (p€Prime(d))
Then the following statements (i, &) hold.

(i)  The hermitian canonical forms H.(C) are of the shape

1 Thn
Ha (€)= EMo(s;Z), ha="(ha"’,...,ha‘"?), O%h, $’<d"
0 d°E

for all n21, 1&j¢s.

(i) 107 ~xa @€ p7o ™ holds for all n21, 1¢j¢s, pEPrime(d).

We denote by ao.aiaz - - (p) the p-adic expansion of a number in Z, with

canonical representatives:
ap.a,az- - - (p):= =3 @P", a.€{0,1,...,p-1}.

Remark 1.  When |f(0)|=d=p® (p: prime, e21), then h. ‘i’ coincides with an
integer coming from the truncation of the p-adic expansion of L7, i.e., :
Ap'=20.2182...80a-1... (P) implies h. ‘“’=a;.a,a;...8..-,(p), and vice versa. Note
that a,=0 since [1,],<1. In particular, if 2,7¢Z,,, then a.#0 for infinitely
many n2l, so that in the statement (i), the equality holds infinitely often. In

this sense, the approximation (i) is best possible.

Remark 2.  Since f€Z [x] is monic, 1,¢Z implies 1,¢Q, so that the p-adic
expansion of X,°¢Z can not be periodic, and in particular, the expansion
diverges with respect to the archimedian norm |#|.. Hence, the sequence
{ho ©?}.-1.2.... is unbounded for all 1<j<¢s (with respect to the usual topology)
if there exists a prime p€Prime(d) such that A,¢Z . (Nofe that the converse is
not valid.) In particular, if f has no linear factors in Z [x], then

tha ‘2 }a-1.2.... is unbounded; if f is irreducible over Q [x], then
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{ha ‘2 }aa1.2.... is unbounded for all 1&j¢s.

Remark 3. In general, the minimal polynomial f, in Z [x] of i, depends on
p. If feZ [x] is irreducible over Q[x], and $Prime(d)>1 then the assertion (i)
with j=1 gives simultaneous diophantine approximations by a rational integer

Xa (1 for roots A, (p€Prime(d)) having an identical minimal polynomial.

Remark 4. (cf. the Chinese remainder theorem) Let f(0) be an integer having

s+l distinct prime factors, and let

f = 1 (x-p° ).
p€Prime(f(0))
Then GCD(f(0),f (0))=1, i.e., (1) is valid. In this case, i,=p*‘*’ holds, and

Theorem 1 implies

Xa () zp*®)4 (mod p*¢*’") for all n21, 1&j¢s, p€EPrime(f(0)).

Remark 5. In general, the assertion (i) does not holds even for the case
where f is irreducible over Q[x] if the condition (1) does not hold. For
instance, take an irreducible polynomial f=x5;13x‘—7x°+5x2—3x-3 with its
companion matrix C. Then the (2,4)-entry of H.(C)=54#0, and the (1,2)-entry of
H.(C) is identically zero for 1¢n¢l6. Consequently, the assertions (i) is not

valid.

§2. Lemmas for Theorem 1. We can prove the following assertion (i)*:

Lemma 1. For C=C(f) satisfying (1),

(i)* H.(C) = EM(s+1;Z), ha="(h.,...,h, )
0 d°E.

with 0¢h, ¥?<d", h.‘’€d‘Z (15j¢s) holds for all n2l.

It is clear that Lemma 1 implies Theorem 1, (i). Notice that (i) and (i) in
Theorem 1 imply (i)*. We need the following Lemmas 2-4 for the proof of Theore
(i). We denote by e; (1¢j¢s) the j-th fundamental vector
(0,...,0,1,0,...,0)EZ". ' '

Lemma 2. For 1&j¢s
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hasy ¢ (hasy ©2-h, 497)/d"
d~"H.(C) = €EZ 1.
€ ‘ —€; »
Lemma 3.
1 Thn -C CoE. hn+l €5
Zs+l 3 d—n
0 d"E. 1 70 -€;
-d. Co Cohn“) Cohn(Z) Cohn(s—l)
=d | -c.d"”
: g Ccod"E._,
—-C.d"
dn TQ

for all n21, 1¢{j¢s, where d. is the integer (2).

Lemna 4. [As-h|,=|f(h)|, for any h€pZ .. p€Prime(f(0)).

§3. A continued fraction of dimension s. Let K be any field. By K (x)

we denotes the field of rational functions of s variables x:=7(x,

K, and by T(x) the s-tuple of rational functions defined by
T(x):="(1/%., X1 /Xa, ..., Xs-1/%.)EK (x)*.

We write

Xo_l

X

Then, we can consider an s-tuple of rational functions

(XO(D) )—l

= %o 'T(X)EK (x0,%)*=K (x), x="(Xo,...,Xa).

(X‘ (o) )—l

(Xz (0) )-152 + .

(xn—l (0) )—l

(Xa ()" 1x,
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€K (Xo, .-, Xa)", Xa= (X", .., %Xa ), Xa="(xa®?, ..., xa ")) (0¢mén).

If the denominators of ¢; do not vanish at Xo=Co, ..., Xa=Ca€K*®*!, then we
can consider the value = (Co,...,Ca)EK*®. In such a case, we say that the
continued fraction = (Co,...,Cn) is well-defined. Setting K=Q,, we may
consider an infinite continued fraction Z (Co,...,Cn,...), which is defined to
be the limit of n-th convergent = (Co.....c.) with respect the p-adic topology
provided that = (Co,...,Ca) is well-defined for all n, and the limit exists. In
particular, if ca‘®’=1 for all m, then the continued fraction Z(co,...,Cn,...)
turns out to be of the form coming from the Jacobi-Perron algorithm (possibly

non-admissible), which is denoted by

[ Co; Ci, C2, Ca, el =

— pa—
co(l); Cl(l), Cz(”, Ca“),
Co(z); cl(z)’ 02(2). cs(?.)

Co(-); Cl('). Cz('), Cs('),

L |
ca=T(ca ', ca®®, ..., Ca®), n20.
If we take s=1, then ' .
E(co,.-1Cns.n.)
(CO(O))—I

e (0)Y=1p. (1)
(co )" 'co +
, (c, ())-1

(c, (@ )-tc, () +

(c (o))_l
(cz® ) tep (1) + :

(0)Y-1,_ C1)y .
(cs )" 'cs +

so that

Cllﬂ)
CoE(Co,...)Cay...)=Co ) +

cz(O)
cl(l) +

Ca(ﬂ)
Cz(l) +

Ca(l)+ .

Theorem 2. Let f:=x**'-c.x"---—Ci1X—Co€Z [x], 2,€Z,, e(p) (p€Prime(d)) b



as in Theorem 1. Let © .=T(8. ", ...

of the following periodic continued fraction:

Co *
Co °
—Co "C.*+
—Co~*C2*+
Co "
+
Co *
_Co-lgs-l*+
_Co—lc*+
Co ®
+
“Co_'C*+
where
Ca*:=7(0,...0,Co™ 'Cm.Co™ %Cn-1, ..., CoC2,C1)EZ* (1&mss),
c*:i=c.*.

Let ra.

where

Then
(i)
and

(i)

=T (ra ¢, ..., ra‘*’)EZ*® be the final column vector of a matrix JoJ,:--

Jm 3= - (0¢mss), Ja:=J. (mDs),

co®:=7(0,...0)EZ".
B2 =r, /1., 020, 1$jSs,

802 -Co ihp?|psp ™ "*i n20, 1¢j¢s, and pEPrime(d).

are valid. In particular, the p-adic value of the continued fraction ©.

converges to

©:=T(co ™ "hs, Co %52, ..., Co A" )EZ,.

Corollary 1. A periodic continued fraction

*
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,0.¢*)eQ*(C Q,.*) be the n—th convergent

'Jn

*
[0;2:1,82,...,84-1,84,8s+1,...,32:] has the same convergents as that in Theorem

2, so that it converges to ©, where a.,a.+.,.

..,az2, is a period, 0€Z*, and



a =T( 0 , 0 » 0 ’ . 0 ’ 0 ’ -Ci),
az. =T(0 . 0 , 0 ., 0 ~CoCis, -Ci)
as ="(0 , 0 , 0 , , —Co’cCa, -CoCz, -C1),
Q.-2 =T( 0 , 0 ,"Co* " %Ca-2, ..., -Co?cCa, —CoCz2, -Ci1),
a.-1 =7( 0 ,=Co""2Ca-1,7Co"*"%Ca-2, ..., —Colcs, ~CoCz, -C1),
a. =T(-co* " 'Cs,"Co" %Cs-1,"Co* " *Cu-2, ..., —CoZCa, -CoCz, -Ci1),
ass1 =7( ~Co™'Cs,~C0""2Ca-1,"Co* " *Ca-2, ..., -Co®Ca, —CoCe, -C1),
Qe+2 =T( -Co~'Ce, =C0™2Cu4-1,"C0" 3Cua-3, ..., -CoZcCa, —CoCa2, -Cc.),
az.-2="( -Co™'Ca, —Co"%Ca-1, —Co"%Ca-2, ...,~Co""*2Cs, -CoCaz, -C1),
@2:-1="( —Co”'Cs, ~Co"?Cs-1, —Co™%Ca-2z, ...,~Co~"*%C3,~Co™"*'Co, -C1),

azs ="( —Co™'Cs, =Co7%Cs-1, —Co™%Ca-2, ...,~Co **2C3,~Co~**!'Cz,-Co~"Ci).
Remark 6. Lemma 9, (i) given below implies that q. ‘®’#0 for all n20, so
that any convergent ®. (n20) of the continued fraction given in Theorem 2 is
well-defined.
Remark 7. In general, the continued fractions in Theorem 2, and Corollary 1
do not converge in R with respect to the metric coming from |#*|=|#|.. These

continued fractions always doverge when f€Z [x] is of totally imaginary.

§4. Lemmas for Theorem 2, and Corollary 1. We can prove Lemmas 5-11 for

the proof of Theorem 2, and its Corollary.

Let A€(aii)osiss.0sss+€EMo(s+1;K). Then A defines a linear map on K **!,
which will be also denoted by A. For elements v, weK**'\{0}, iff there exists ¢
€K such that cy=w, we write v « w, which defines an equivalence relation on
K**'\{0}. We denote by « the map |

£ K**' — — P*(K):=(K**'\{0})/,

e(y):=(weK **'\{Q); w = v} (v40),
where the broken arrow — — indicates a “map” with some exceptional elements
for which the the map is not defined. Since r(v)=x(w) implies tAv=rAw, so that
the linear map A induces a map As«: P*(K) — P*(K). We define a projection 1,

and an injection t¢ by



t: P*(K) — - K*,
t(x(¥)):=(vi/vo.va/vo

..... V./vo), ¥=T(vo, Vi, ..., V.)EK**;
1: K* —— P*(K),
L(v):=x(1,vi,ve, ..., Ve), V=T(Vi,Va, ..., V. )EK ",

We set Ay=x° Ax° 1. Then, Lemma 5 given below can be easily seen.

Lemma 5. The following diagram is commutative:

K

K**' — —» P (K)T—_.— K°*
l

A Ax As
' X

K**' — — P*(K) T _— K-*

Using Lemma 5, we get the following

Lemma 6. Let X» be a matrix with s+l variables xa="(xa ‘°’, JXm (*))
TO xm(D)
Xe := B y Xmi=T (X P, L, xm ), 0¢mén.
E. Xa
and let p: “*’ be polynomials
Pi “7=pi 0 (Xo,...,Xa)"€Z [Xo,...,Xa] (-s-1%i¢n, 0<j<s)
defined by s+l recurrences
pm(.i)_-:xm(l'i)pm___l (J)"me(l)pn .(i)+ +xm(=)pn—l (i) ~(0§m$n, Ongs)
with an initial condition
P_1=E..q,
where
Pu:=(Pm-a+i "’ )osiss. 05iss
Then the following formulae are valid for all 0¢m¢n.
(i) Pu=XoXi:: Xa€M(s+1;Z [Xo,...,Xn]).
(i) E(Xo.....x)=(Pa )" T(pa‘,....Pa*?)EQ (Xo..... Xn)®.
Remark 8.  In general, the formula (i) holds for Xo,...,x-€K**' for ar

field K even for the case of char(K )#0 provided that pm‘°’(§o,....§,) dif
from 0 as an element of K.
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In what follows, we mean by H.=H.(C) and J. be matrices as in Theorem 1.

Recall that we are assuming (1).

We put
dn _Th" TQ CO.
Ka := , J = J. =
0 E E. -c*
c*="(co* " 'Cs,C0" 2Cs-1,...,C0Cz,C1),
where h,€Z * is a vector in Theorem 1, (i). We define integers q. ‘-’ by
Q" =: (qn" " )osiss.0s5ss (n20),
where
-C CoE,
Q :=
1 70
Note that

Q=coC'=(-1)*C, C=C(f).
We mean by Xz=Y (mod m) that all the entries of X-Y are divisible by m€Z .

Lemma 7. qa‘% ’h,=q, " (mod d*) for all 0¢ifs, 1£j¢s, n20.

We set

Q. := (Qa-.+s("°))osis-.os:s. (n;s).
Lemma 8. Q.=Q.J""* for all n2s.

Lemma 9. (i) q.‘®’z(-c,)"* (mod d),

86

(15)

(i) |ha 9 -q. 9 /q,°- 2|, ¢p ¢ for all n20, 1$j¢s, and pEPrime(d).

Let Ju, be as in Theorem 2. We denote by O... the zero matrix of size txu,

by 0. the matrix Oa,:, and by D(ao,a:,...,a.) the diagonal matrix with

ao0,82,...,3. as its diagonal components. For m20, we put
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th = GJoJx"'J-, (21)
Gusr := D(Co-",Co_'"lv....,Co-'.l),
G = Gl+1,
qo(o) ql(o) e qm(o)
ql(l) P Qu(l)
A-+l = »
C) qm(m)
where
q“(i) .= q“(i.o) (0§i§S, DZO)
with q. ¢+ ° defined by (15). We put
ga:="(q. ", ..., Q. *?)EZ ="' (n20).
Lemma 10.
(i) go="(1,0,...,0),
gn:T(_CIQn—l(0);CZQn—l(l)----—qun-;(n—l)a
= (22)

Coqn-x(O),COQn—l(l).---, Can—n("_l).TQa—n) (I§D§S).

— J—

0n+l.|—n An+l
(i) Q.* = (0¢n<s), Q.*=Q..
D;-n 0--n.n+l

Using Lemmas 1-10, we can show Theorem 1. We denote by |r| (réR, [®]:=w) the
largest integer not exceeding r. We put
t(n):=[n/(s+1)], r(n):=n-(s+1)t(n) (n€Z).

It is clear that n=(s+1)t(n)+r(n), 0¢r(n)$¢s holds. We can show‘the follpwing

Lemma 11. Let Xa€M(s+1;Z [Xa]), Xa="(xa ®?,%Xa ‘", ..., xa‘*?), 0¢m¢n be as in

Lemma 6. Let

*
|

= XoXa-s-1Xm-2(s+1) " "Xr (m) (Ogmgn), Xm’:?l (m<0);

T{xa®* (), x* 1, . ,.Xa*()

*
I

(Xa¥*) "' T (Xm-a® Xo ", Xmcas 1 Xm 20, ..., Xmo 1 F o Xa (),

where Xn.=Xa ‘°’. Then the folowing formula holds:



88

(XO(O) )-l

(X0 ) 'x0 +
(xl(o))-l
(xl (D))-l)_(l +

(xz(O))-IKZ + -
(xn_z(o))—l
-+

(Xm—1 7))
(x;~l(°))—l¥n +

(Xm ©7 )~ ' Xn

= [xo*:x:1%, . ... Xa"] €(Q[Xo0,X1,...,%Xa])", 0Smén.

In view of Lemma 11, we get Corollary 1 from Theorem 1.

§5. A form YT (x:f) We denote by Q*'*CC (resp. Q,*'*CQ,) the

algebraic closure of Q (resp. Q,). Let feZ [x] be a monic polynomial of degree
s+l, C=C(f)EMoi(s+l;Z) the companion matrix of f, e(p) (p€Prime(|f(0)|) the
number as in Section 0. We denote by |

& (x;A) the characteristic polynomial of a matrix Ae€M(s+1;Q).

We define a form ¥ (x;f) with s+l indeterminates by

T (x;F)=T (X0, X1, ..., %3 ) := det( ZS x;C(f)!).
0¢4¢

We remark that

T(E;f) f(a)=01-(-£€Q"') (05125. a’x’)

j .
f(a)=01(—£er...) (Ds%. a X,)

holds, where the former (reép. the latter) product is taken over all the roots «
of f in the field Q*'* (resp. Q,*'®) with their multiplicity. For f being
irreducible over Z [x], ’T‘(x: f) becomes a norn form in the usual sense.
For a given matr1x AEMo(s+1;Z ), we write A€(Bdd) 1f A satisfies the
followmg cond1t1on (Bdd) :
(de) ' The set {n20; A-" xEZ'”} is bounded for any x€Z **'\{0}.
We can show that if A€(Bdd), then AEM(s+l Z ) has no units (EQ"‘) as its

elgenvalues in Q*'*; and if

| A, sk ' A, O
A=U""Y U (or ‘U-! | U), UEGL(s+1:;Z)
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such that |det A.|>1, and ® (x;A«) is irreducible over Z [x] for all 1¢k¢t, th
C(f)e(Bdd). In particular, if f€Z [x] is irreducible over Z [x], and |f(0)ID1,
then C(f)€(Bdd), cf. Theorem 2 in [3], see also [2].
Let us suppose A€(Bdd), and consider a map inda defined by
inda: Z**' — N U {=}
inda (x) :=max{n20: A""X€Z **'} (x#0). ind.(Q):=w,
where N :={0,1,2,...}. We remark that there exists a unique partition

L) AT =Z**'\{0} (disjoint)

0si<c

of the set Z**'\{0} into ¢ (2¢c<w) parts iff A€(Bdd), and
I ={x€Z **'\{0}: inda(x)z0 (mod c)} (c#m),
I ={x€Z **'\{0}; inda(x)=0} (c=w)
holds, cf. Theorem 1 in [3].
We mean by v,=ord, the p-adic valuation, i.e., the additive version of |#]|,

Then Theorem 1 implies the following:

Corollary 2. Let f€Z [x] be a monic polynomial satisfying (1) such that
C(f)e(Bdd). Let A,€Z, (p€Prime(f(0)) be as in Theorem 1. Then

indery(x) = _  min o0 (lve ([ = 47%5))/ve (£(0))])
holds for all x="(Xo,X1,...,Xs)EZ*"".
Recalling
T(x;f) = TI =, a'x;),
= f(a)=0 (e€Q,*'") Loz, )

we see that Corollary 2 immediately implies the following

Corollary 3. Let f be as in Corollary 2. Then

IA

min
pEPrime (| f (0)1)

(Lva (T (£ /va (B0 ) € indecor (x), XEZ 1.

In particular, the equality holds if x;#0 (mod p) for exactly one 0%j$s.

Corollary 3 is of somewhat trivial, but it may be of interest by two reason
first, the assertion is stated within the set Z ; secondly, the form T(é;f) i
not so simple when s is large. We give some examples, using a, b, ¢, d (resp. -

y, z, w) instead of co, Ci, Cz, Cs (resp. Xo, X1, Xz, X3):
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(i) s=1, f=x%-bx-a,

T (x,y; f)=x2+bxy-ay?2.

(i) s=2, f=x®-cx?-bx-a,
T (x,y.2:f)=x3+cx?y+(2b+c? ) x2z-bxy? - (3a+bc) xyz+ (b?-2ac) xz? +ay *+acy *z-abyz*
+a?z?®

(#) s=3, f=x*-dx*-cx?-bx-a,
T (x,y,z,w; f)=x*+dx?y+(2c+d? )x3z+(3b+3cd+d® ) x*w-cx?y ?-(3b+cd)x*yz
- (4a+bd+2c?+cd? ) x2yw- (2a+2bd-c?)x?z%~-(5ad-bc+2bd*-c?d)x*zw
- (3ac+3ad?-3b%-3bcd+c? )x2w2+bxy+(4a+bd)xy>z+(ad+bd*+2bc) xy *w+(3ad-bc) xyz*
+(4ac+3ad®-3b*-bcd )xyzw- (5ab+acd+2b*d-bc? )xyw?-(2ac-b*)xz°+(ab-2acd+b*d)xz*w
+(4a2+2ac?+abd-b?c)xzw?+(3a?d-3abc+b?®)xw®-ay*-ady *z- (2ac+ad?)y’wtacy *z*
+(3ab+acd)y?zw+(2a?+2abd-ac? )y?w?-abyz* - (4a®+abd )yz*w- (3a*d-abc)yzw*

+(2a%c-ab?)yw®+a’z*+a’dz’w-aZcz*w?+a’bzw’-a’w*

In general, T (Xo,Xi,...,X.;f) consists of (2s+1)!1/((s+1)!s!) terms as a

polynomial in Xo, Xi, ....Xs.
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