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_ The Cauchy problem
for the nonlinear integro-partial differential equation
that describes the time evolution of sociodynamic quantities

MPERFTHHCAKFEE HMR (Minoru Tabata)
Department of Applied Mathematics, Faculty of Engineering, Kobe Univ.
RABRAFERERERE LHEMBHE (Nobuoki Eshima)
Department of Medical Information Analysis, Oita Medical Univ.

Abstract. The master equation is a nonlinear integro-partial differential equa-
tion, which describes the evolution of various quantities in quantitative so-
ciodynamics. For example, the master equation can describe interregional mi-
gration. The purpose of this paper is to obtain asymptotic estimates for solu-
tions to the Cauchy problem for the equation.

1. Introduction. Large free economic unions such as EU and NAFTA have
been established recently. In such free trade unions, goods are traded freely, but
interregional labor mobility is restricted at a certain level of rigidity. However,
there is now a move to abolish the restriction entirely. If no restriction is im-
posed on the regional labor mobility, and if there exists regional economic dis-
parity, then workers will move so as to achieve a higher income. This phe-
nomenon is called interregional migration motivated by regional economic
disparity, and it is known in [3-4] and [11-12] that the master equation can de-
scribe such a phenomenon (see, e.g., [1-2], [5], and [13-14] for the theory of
interregional migration). The equation plays very important roles in quantita-
tive sociodynamics (see, e.g., [4]). Furthermore, the master equation approach
is taken also in nonlinear evolutionary economics (see, e.g., [10]).

The master equation is a nonlinear integro-partial differential equation,
which has the form:

(L1) oviea)ior=—witxpen) + [ wexmenb,

where D is a bounded Lebesgue measurable set included in the 2-dimensional
Euclidean space. By v = v(t,x) we denote the unknown function which repre-
sents the density of population at time ¢ > 0 and at a point x € D. By W =

W(txly) we denote the transition rate at time ¢ > 0 and from a pointy € D to
apointx € D. The coefficient w = w(t,x) is defined from the transition rate as
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follows: w = w(t.x):= f eDW(t;lec)dy. The master equation has its origin in sta-
y

tistical physics, and has been fully studied in mathematical physics. However,
the transition rate of the master equation studied in quantitative sociodynamics
is completely different from that treated in statistical physics. Hence we cannot
apply various methods developed in statistical physics to the master equation
studied in quantitative sociodynamics. There have been few studies on the
master equation treated in quantitative sociodynamics except for [6-8]. There-
fore it is important to investigate the master equation treated in quantitative so-
ciodynamics (we simply call the master equation studied in quantitative so-
ciodynamics “the master equation”).

In the same way as [4, pp. 137-138] and [12, pp. 81-100], we will impose
the following assumption on the transition rate W = W(t;x|y) in this paper:

Assumption 1.1. The transition rate W = W(tx|y) has the following form:
W(ixly) = 0 (Dexp{U(tx) — Uy) — E(x,y)}, where 0=0 () denotes the
Sflexibility at time t > 0, U = U(t,x) is the utility at time ¢ > 0 and at a point x €
D, and E = E(x,y) denotes the effort from apointy € Dtoapointx € D.

See, e.g., [4, p. 137] for the sociodynamic definitions of flexibility, utility,
and effort. In the same way as [8], in this paper we make the following as-
sumption (see [8] for the reasons for making this assumption):

Assumption 1.2. The flexibility 0 =0 (¢) and the effort E = E(x,y) are iden-
tically equal to positive constants.

Let us discuss the utility. In a real world we often observe that the utility in-
creases with the population density. If such a phenomenon is observed, then we
say that imitative process works. In order to assume that imitative process
works in interregional migration, in [8] we impose the following assumption on
the utility (by this assumption, in [8] we fully investigate the asymptotic be-
havior of solutions to the Cauchy problem for the master equation):

Assumption 1.3. The utility U=U(zx) has the form U(tx)=c,,v(tx)+c,,,
where y = y(¢.x)=v(t,x)/||v(z,")|l L(D) (we denote the norm of L'(D) by ||| LY D))’
¢, Is a positive constant, and c, , is a real constant.

It is plausible to assume that imitative process works at a certain degree.
However, in a real world, we observe that if the density of population is suffi-
ciently large, then the utility does not increases with the population density, and
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moreover we find that over population makes the utility decrease. If such a
phenomenon is observed, then we say that avoidance process works. In [8] we
assume that only imitative process works, but in this paper we take not only
imitative process but also avoidance process into account. Hence, for example,
we need to assume that the utility U=U(t,x) is a strictly concave function of
v=y(t,x) which monotonously increases (decreases, respectively) with y €[0,k)
(¥ € (k,+0), respectively), where £ is a positive constant. Therefore in the pre-
sent paper we will make the following assumption in place of Assumption 1.3:

Assumption 1.4. The utility has the form U(tx)= —(a y(tx)-a)+a,,
where a and @, are positive constants, and «, is a real constant.

We will impose Assumptions 1.1-2 and Assumption 1.4 on this paper. In
the same way as [6-8], we can prove that the Cauchy problem for the master
equation has a unique positive-valued local solution (Proposition 2.1). Com-
bining this result and a priori estimates for solutions (Lemma 4.1), we can de-
monstrate that the Cauchy problem has a unique positive-valued global solution
(Theorem 4.2). The purpose of this paper is to prove that if certain assumptions
are made, then each global solution to the Cauchy problem converges to a sta-
tionary solution (Theorem 4.3). This paper has 6 sections in addition to this
section. In Section 2 we give preliminaries. In Section 3 we obtain all the sta-
tionary solutions of the master equation. In Section 4 we present the main result,
which will be proved in Sections 5-7.

Remark 1.5. (i) In [12, pp. 92-96] Assumption 1.4 is proved in the sociody-
namic level of rigor. See [12, (4.15-19)].

(ii) We can apply the results of this paper and [8] to economics. This sub-
ject will be discussed in [9].

2. Preliminaries. Integrating both sides of (1.1) with respect to x €D, in the
same way as [6-8] we obtain the conservation law of total population,
R LI(D)=||V(O,')” L\(D) for each £0. Hence, y(¢x)=v(z.x)/||v(0,")|| (D) (see
Assumption 1.3 for ||-|| LY(D) and y=y(1,x)). Assumptions 1.1-2 and Assumption

1.4 give
2.1) Wixly) = aexp{—(ap(tx)-a)+(apty)»-a)y,

where @, is a positive constant. Let us rewrite (1.1) with (2.1) by introducing
the new unknown function w=u(t,x):= & ,W(¢/ & ,|D|,|D|"*%) in place of v=v(zx),
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where we denote the Lebesgue measure of a subset d & R XR by |d]. In ex-

actly the same way as [8, p. 82], we obtain the new integro-partial differential
equation, '

22)  Ou(tx)/or=—a(u(t, Nu(tx)e® D + bu(r,))e @Y,

where a(u(t,-)):=_[ e g, bu(t,)):= _f u(ty)e™ Vg and Q =
YENQ yEQ
{x = |D["?z; z€ D}. Hence,

(23) IQ=1.

We denote the norm of LY(Q) by || - ||,.

By (CP) we denote the Cauchy problem for (2.2) with the initial condition,
u(0,x) = u,(x), where u, = u,(x) is a Lebesgue-measurable given function of x €
Q such that 0 < u,_ = ess inf, e quy(x), Uy, := €8S Sup,eqite(x) < +oo. In the same
way as [6-8], we can define a solution to (CP) as follows: if ¥ = u(tx) €
L*([0,T],XQ,), if u = u(t x) satisfies (2.2) almost everywhere in [0,7],XQ,, and
if u = u(t,x) satisfies the above initial condition, then we say that ¥ = »(¢,x) is a
solution to (CP) in [0,7], where T is a positive constant. In the same way as [8,
Proposition 2.7], we can prove the following proposition:

PRrOPOSITION 2.1. The Cauchy problem (CP) has a unique solution u = u(t x)
in [0,R], where R is a positive constant dependent on u,, and u,_. If u = u(tx) is
a solution to (CP) in [0,T] for some T>0, then the following (i-iv) hold.

(i) ou(tx)or€ L*([0,T}1XQ), and u = u(t,x) is absolutely continuous with
respect to t€[0,T] for a.e. x€Q.

(i) 0 < ess inf,,ye o nxat(tX), €SS SUP(,e o xak(lX) < +oo.

(iii) |lu(z,)||, = o /|D| for each t < [0,T].

(iv) If u(tx,) = u(tx,) for some t<[0,T] and for some x,€Q, j = 1,2, then
u(tx,) = u(tx,) for each t<[0,T). If u(tx,) < u(tx,) for some tE[0,T] and for
some x,€Q, j = 1,2, then u(t,x,) < u(tx,) for each t € [0,T].

Remark 2.2. 1t will be shown that the constant @ ,/|D| strongly governs the
asymptotic behavior of solutions to the Cauchy problem. We define 4:= « ,/|D|.

3. Stationary solutions. Let us rewrite the equation (2.2) as follows:

B.1)  Ou(tx)/or= a(u(t,))g o (u(tx){-fo(u(tx)y+bu(,))a(u, )},
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where £, =f,(2):=2¢"" " and g, =g,(z):=e ¢ . See Assumption 1.4 for
a. Noting that a(u(t,"))g ,(u(t,x)) > 0, we see that the following equation is a

sufficient and necessary condition for ¥ = u(x) to be a stationary solution of
(2.2):

(3.2) So(u)) = b(u(:))a(u()).
We can easily prove the following lemma (hence we omit the proof):

LemMA 3.1. (1) f,(0) =0, f,(2) > 0 for eachz> 0, lim,_, . f,(2) = +o.

(ii) If 0< a <1, then f,=f,(2) is a strictly monotonously increasing function
of z=> 0. If a> 1, then f, = f,(2) strictly monotonously increases (decreases,
respectively) when 0 <z<fB,or f3,<z<-+ow (when B ,<z<f,, respectively),
where B,={a~a>-1D)"}2and B;={a+(a>-1)"?}/2.

By this lemma we can define positive constants 3,, 3, 7, and 7, as

follows: B,# B, andfo(B)) =fu(Bj=12,a0d 7,:=F4(B,)=/a(B ),

j=1,2. By Lemma 3.1 we can easily obtain the following lemma:
LEMMA 32.0<7,<7,0<B,<B,<B;<B, a—B3'> 0.

The right-hand side of (3.2) is a positive constant. Hence we consider the
equation,

(3.3) f) =71,

where z is an unknown value, and 7 is a positive-valued parameter. It follows
from Lemma 3.1 that if 0< @ <1, then (3.3) has only one real solution. Let ¢> 1.
By Lemmas 3.1-2, we deduce that if 0 <y <7, or 7,<7, then (3.3) has only
one real solution. Taking multiplicity into account, in the same way we see that
if 7v,<7<7,, then (3.3) has only three real solutions. We denote them by
z=z(7), J = 1,2,3, 2)(7)<2( 7 )<z5( 7). Lemmas 3.1-2 give the following
lemma:

LEmMMA 3.3. If a> 1, then the following (i-ii) hold:
(l) If Tl<’r<72’ then Bj<zj(T)<Bj+l’j = 192:3° ZI(TI) = Bla ZZ(TI) =
(7 ) =B, 2(7) =27 ) =By andz(7,)= B,
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(ii) z; = z(7), j = 1,3, are strictly monotonously increasing continuous
Sunctions of v €[7,,7,), and z, = z,( 1) is a strictly monotonously decreas-
ing continuous functionof v €[7,,7 .}

Let v €[7,, 7,] Replace z by u = u(x) in (3.3). We easily see that each
solution of the equation thus obtained has the form: u(x) = U(7,Y,,Y,,Y;x),
where

(3.4) U=U(T Y, Yo Ysx)=z(7) ifx€Y,j=123.

Here Y, j = 1,2,3, are disjoint subsets of Q such that Q = Y,UY,UY,. For each
T €[71, 7] by Z=Z(7) we denote the set of all (¥,,Y,,Y;) such that Y, j =
1,2,3, are disjoint subsets of Q which satisfy the following equalities:

(3.5) V)| |+ (V5= 1, z,(7)IY| +2,(7)Y +23(7) Y5 =4.
See Section 2 for | - | and 4.

ProrosiTiON 3.4. (i) If 0<a <l and A>0, then the equation (2.2) has a
unique stationary solution u = u(x) such that u(x) =A for a.e. x €.

(ii) Leta> 1. If 0 <A < B,or B, <A, then the equation (2.2) has a unique
stationary solution u = u(x) such that u(x) =A for a.e. x €Q.

(iii) Leta> 1. If B, <A <B,(B,54 <B,, B; <A<PB, respectively), then
the set of all stationary solutions of (2.2) is equal to the set of all functions of
the form (3.4) where (Y, Y,,Y;) €Z(v) and v €E(7 /o] (T €E[7 1T 2L T
€[f,(4), 1 ,), respectively).

Proof. As already mentioned above, we easily see that each stationary solu-
tion of (2.2) has the form (3.4). We easily see that each step function of the
form (3.4) satisfies (3.2). By (2.3) we see that the first equality of (3.5) is
equivalent to the condition that Y, j = 1,2,3, are disjoint subsets such that Q =
Y,UY,UY,. We see that the second equality of (3.5) is equivalent to the equal-
ity |{U(7,Y,,Y,,Y3;)|l; = 4 (see Remark 2.2 and Proposition 2.1, (iii)). Assume
that 8 ; <A< ,. By Lemmas 3.1-3 we see that if ¥ €(7 ,f,(4)], then Z(7°) is
not empty, and that if Z( 7) is not empty, thenr €(7 ,f,(4)]. Therefore we
obtain (iii) when B ,<4<p,. (i-ii) and (iii) with 8 ,S4<f, can be proved in
the same way. 0O

4. The main result. Let us prove a priori estimates for solutions of (CP).
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LemMa 4.1. If (CP) has a solution u = u(t,x) in [0,T], where T is a positive
constant, then the solution satisfies the following (i-ii):

(1) If 0 < <1, then u,_ <ess inf e o nxak(tX), €58 SUP (1)< fo,1yx al(1:X)Stho -

(ii) If a>1, then min{u,_, B |} < ess inf, ;) o nxa™(t:X),
€ss SuP(r,x)emJ)xnu(t,x) <max{u,, B4}

Proof. See Assumption 1.4 and Sections 2-3 for @, %, and B,j=14.
We will prove only the second inequality of (ii), since the other inequalities can
be demonstrated in the same way. It follows from Proposition 2.1 that R =
R(t):= b(u(t,"))/a(u(t,)) is a continuous function of 1E€[0,7] (see (2.2) for a(*)
and b(-)). We easily obtain

4.1 [ (u(t,x)) < ess sup,eqf,(u(tx)), for each £0.

See Section 3 for £,(-). Multiply both sides of this inequality by G, =
G,@tx) = ga(u(t,x))/jyeﬂga(u(t,y))ay See Section 3 for g,(-). Integrate both

sides of the inequality thus obtained with respect to x €Q. Noting that
(42) J, oGttty =1,

and recalling the definitions of a(-) and b(-), we see that
4.3) R(f) < ess sup,enfo(#(tx)), for each £0.

Suppose that the equal sign of (4.3) holds at some ¢ = k€ [0,7]. We easily
deduce that the equal sign of (4.1) holds for a.e. x€Q at ¢ = k. From this equal-
ity, in the same way as Proof of Proposition 3.4, we see that u = u(kx) is a sta-
tionary solution of (2.2), i.e., that the solution u = u(#,x) is stationary. Hence, by
Proposition 3.4, we obtain the second inequality of (ii). Assume that the equal
sign of (4.3) does not hold for each 1€ [0,7]. Applying this inequality to (3.1),
and making use of Lemma 3.1 and Proposition 2.1, (iv), we can deduce that if
ess sup,cqu(t,x)> B ,, then ess sup,equ(tx) decreases monotonously with €
[0,7]. Hence we obtain the second inequality of (ii). O

TuEOREM 4.2. The Cauchy problem (CP) has a unique global solution,
which satisfies the inequalities of (i-ii) of Lemma 4.1 with T = +co.
Proof. By Lemma 4.1 and Proposition 2.1, we obtain the theorem. [
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Decompose  into 3 disjoint subsets as follows for a positive-valued func-
tion p = p(x): Q=Q,UQ,UQ,, where Q, = Q,(p("))= {xEQ; p(x)<B,}, Q, =
QP()= {x€Q; B,< p(x) <B 3}, and Q, = Qy(p(")):= {x€Q; B ;< p(x)}.

TreoreM 4.3. (i) If 0< @ <1 and A>0, if ®>1 and 0<A<,, or ifa>1 and
B ,<A, then the Cauchy problem (CP) has a unique global solution u = u(t,x),
which converges to A as follows: |{x€Q; |u(tx) -A| =6} — 0 as t—+o for
each 0> 0 (see Section 2 for |*|).

(i) If a>1, B, <4A<B,, and u, = u,(x) satisfies that

(4.4) Bi<ux)<B, forae x€Q,

(4.5) [{x € Qy(u(")); usx) =7 }|=0 foreach 7>0,
(4.6) A > B|Qy(u(NIF B 312 NIH (146D,
4.7) 0<1Q,(us("))l<C4 s,

where c,, is a sufficiently small positive constant, then the Cauchy problem
(CP) has a unique global solution u = u(t,x), which satisfies the following:

4.8 B <u(ltx)<B, fora.e xEQ andeach >0,

(4.9)  Q(u(t,,")SQut,,)),j=1,3, Qy(u(t,,)) 2Q,(u(t,,")), if 0<t,<t,,

(4.10) lim ., JQ,(u(,))| = 0,

4.11) lim ., |{x€Q; |u(tx)—u,(x)|=0 }| =0 foreach 6> 0,

where u,, = u.(x) is a stationary solution of (2.2) such that

(4.12) 4 ()= UResQer D 5 0%),  (Qys §,2,) EZ(R,).

Here we define Q,.;= U »,Q(u(t,)),j = 1,3, and R, E(7 1,f4(4)] is a constant

such that R,: =lim ., b(u(t,"))/a(u(t,")).
(iii) If a>1, B, <A<PB,, and u, = uy(x) satisfies (4.4-7) and
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(4.13) B (11 (NIHQ (e ( DD B Q1o ))>4,

then (CP) has a unique global solution u = u(t,x), which satisfies (4.8-12) and
(4.14) R E(7 1,72

(iv) If a>1,B,;<4<B, and u, = uyx) satisfies (4.4-5), (4.7), and (4.13),
then (CP) has a unique global solution u = u(t,x), which satisfies (4.8-12) and
Roo = [fa(A)» T 2)‘

Remark 4.4. (i) Applying (4.4) and Theorem 4.2 (see Lemma 4.1), we eas-
ily obtain (4.8).

(ii) From (4.5) we see that €,(%,(:)) is empty or that %, = #,(x) is not con-
stant in €2,(u(")).

(iii) It follows from (4.7) that Q (uo( ) is empty or sufficiently small. We
employ (4.7) in order to prove (7.9).

(iv) By Lemma 3.2 we deduce that if |Q,(%,(+))]| is so small that

QNN < {(B =B I NI + (B~ B 3)|Qs(uo(°))|}/( B3—B)),

then (the left-hand side of (4.13)) > (the right-hand side of (4.6)), i.e., there ex-
ists A which satisfies both (4.6) and (4.13). We easily see that there exists an in-
finite number of «, 4, and u, which satisfy (4.4-7) and (4.13). We can say that
(4.7) restricts the value of |Q,(u,(*))|, and that (4.5) restricts the behavior of the
initial function u, = #,(x) in Q,(%,(+)).

(v) Performing calculations similar to those done in showing Theorem 4.3,
(iii), we can prove Theorem 4.3, (i), (ii), (iv). Hence we will demonstrate only
Theorem 4.3, (iii). In what follows throughout the paper, we will assume the
conditions of Theorem 4.3, (ii1).
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