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A CONTROL PROBLEM
FOR A THERMOELASTIC SYSTEM IN
SHAPE MEMORY MATERIALS

IRENA PAWLOWt ANTONI ZOCHOWSKIt

1Systems Research Institute of the Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warszawa, Poland,
e-mail: pawlow@ibspan.waw.pl, zochowsk@ibspan.waw.pl

Abstract

The control problem for a two— or three-dimensional model of the nonlinear
thermoelastic material is considered. The Fréchet differentiability of the general
goal functional with respect to the mechanical and thermal controls is proved.
The mathematical description may represent, among others, the shape memory
materials.

1 Introduction

The main objective of the paper consists in proving the existence and characterizing the
control laws for optimization problems concerning fairly general nonlinear thermoelastic
evolution systems. The main representative of such systems describes the behaviour of
shape memory materials (SMM) and its study was the primary motivation of this work.

The shape memory materials have a peculiar property that their free energy functions
posess, depending on temperature, variable number of stable minima in terms of strain.
Above certain temperature there is only one minimum, corresponding to the strain—free
state, and below it the minima occur also for several nonzero strains.

Thus, at a temperature below critical, an external force may cause shift of the state
from the strain—free configuration to another stable shape, and the subsequent heating
causes the appearence of elastic forces striving to restore the initial configuration. This
property, known as shape memory effect, is a consequence of structural phase transitions
between low—temperature martensitic phases and high-temperature austenitic phase. It
is used in many applications, see e.g. [4],[8].



As we see, the choice of control variables is natural, namely the intensity and location
of external heat sources and forces. The goal functional should refer to a desired evolution
of a structure made of SMM. Therefore it can depend in particular on the variable
configuration (displacement) and strain, which in turn is related to the material phases,
as well as temperature distribution.

The generality of the problem statement is due to the fact that the system expresses
balance laws of linear momentum and energy with constitutive relations characteristic
for a broad class of materials. In particular, we admit governing free energy function
corresponding to several types of SMM models, like those proposed in [3],[17).

.The thermodynamical background of such thermoelastic systems, the existence and
uniqueness of solutions as well as their stability with respect to data have been addressed
in the previous papers [11],[12],[13],[14]. Here we study the differentiability properties
of these solutions with respect to control variables. Furthermore, we prove an existence
result for optimal control problem and formulate the neccessary optimality conditions.
We note that our analysis of the differentiability properties is based on the technique
developed in [13] for the global in time existence.

Similar control problems, but for special kinds of 2-D systems, have been treated in
[5],[6],[17].

2 State equations

Let § c R", n = 2 or 3, be a bounded domain with a smooth boundary Q2 occupied
by an elastic body in a reference configuration. Let also I = (0,T), @Q: = (0,t) x Q,
Q= {t} xQ, Sy =(0,t) x Q, and n stands for the unit outward normal to 9.
Let u : Qr — IR™ be the displacement vector, and 8 : Qr — IR the absolute tempera-
ture.
We denote by € = (e;;), with €;;(u) = 1(ui/; + uj/i), the linearized strain tensor, and by
€; = €(u;) the strain rate tensor.
Throughout the paper we use the notation f; = 8f/0z;, f, = 0f/0t.

The state equations to be considered express balances of linear momentum and energy
which, under simplifying assumption of constant material density p = 1, are given by

uy — vQu, + gQQu = V- Fl(e,0) +b, (2.1)
C(G, 0)0t — kA6 = OF/ge(E, 0) P €+ V(Aﬁt) €+ g in QT, (22)
with initial

u(0,x) = up(x), u(0,x) = u(x), (2.3)
6(0,x) = 6p(x) in 9, (2.4)

and boundary conditions
u=0, Qu=0, (2.5)
V6-n=0 on Sr, (2.6)

where

C(G, 9) =Cy — 0F/gg(€, 0) (27)
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We shall refer to (2.1)—(2.7) as problem (P).
The quantities in (P) have the following meaning: F'(e, §) - elastic energy, c(e, §) - specific
heat coefficient: The positive constants ¢,, k, v and « correspond to thermal specific heat,
heat conductivity, viscosity and interface energy.
The vector b is a distributed external force and g is a distributed heat source which
represent possible mechanical and thermal controls.
The linear map

u > Ae(u) = Atracee(u) I + 2ue(u), (2.8)

where A, u > 0 are Lamé constants and I = (J;;) is the unit matrix, represents Hooke’s
law for the homogeneous isotropic material. Here A = (Aijri) with

Aijrt = M0kt + p(0idjt + udjx),

is the fourth order elasticity tensor.
The second order differential operator Q defined by

u— Qu=V-(Ae(u)), (2.9)
is known as operator of linearized elasticity. By (2.8) it admits the representation
Qu = pAu+ (A +p)V(V - u). (2.10)
In the divergence V- we use the convention of the contraction over the last index, i.e.
V- (Ae(n)) = 8 Ayuen(u) ) = Ayjudien(u) = AVe(u).

Moreover, the summation convention is used, and the following notation: for vectors
a = (a;), b = (b;) and tensors B = (B;;), C = (Ci;), A = (Aijii) we write a-b = a;b;,
B:C= B.'J'C,'j, aB = a;B;j, Ba = B.-jaj, BA = B,'jA,'jkz, etc.

To problem (P) corresponds the free energy functional of the Ginzburg-Landau form

(€, Ve, 0) = —c,010g8 + F(e(u), 6) + g | Qu |? (2.11)

with the subsequent terms representing thermal energy, elastic energy and interfacial
energy.
The main characteristic feature of (2.11) as a model of shape memory materials is the
nonlinearity in €: F(e,0) is a multiple-well in € with the shape changing qualitatively
with 6. The second characteristic feature is the presence of higher order term with
coeflicient k which accounts for interaction effects on phase interfaces. Terms of this type
are known in the so called multiscale approach to modelling of phase transitions. The
particular form of k—term in (2.11) can be interpreted as a resultant of mechanical forces
acting on a layer element of interface.

A typical example of the elastic energy is the Falk-Konopka model 3] in the form of
sixth order polynomial in terms of ¢;;:

3 5 2
F(e,0) =} _F(6)Ji(e) + Y _Fi(0)Ji(e) + D F(6)J (), (2.12)

i=1 i=1
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where J¥(e), i = 1,...,i*, are k-th order crystallographical invariants, that is appro-
priate combinations of the strain tensor components ¢;;, and F¥(6) are correspondmg
temperature-dependent coefficients.

The form (2.12) represents a generalization of the well known 1-D Landau—Devonshlre
energy proposed for shape memory alloys by Falk [2],

F(e,0) = a1 (0 — 6.)€® — aze* + aze’, (2.13)

where o; > 0 are constant parameters, and §, > 0 is a critical temperature.

Our formulation (2.1)—(2.7) constitutes an analog of the 1-D dynamical Falk’s model [2].
The problem (P) is studied under several conditions concerning data and constitutive

functions. We assume that

(D) the boundary 0 is of class C2.

Further assumptions concern the elastic energy:

(FE-1) Structure: F(e,8) is of class C? on S? x [0, 00), where S? denotes the set of
symmetric tensors of second order in IR". We assume the splitting

F(e,0) = Fi(e,0) + Fy(e),

where Fi(e, 6) is linear in 6 over certain interval [0, 6;) and satisfies (FE-2) for large
values of 6.

(FE-2) Growth conditions: Let ¢; and 6, be certain constants. There exists a constant
A such that for |€| > ¢; and 6 > 6, the following conditions are satisfied:

|F1/ee(€,0)| < A+ Ab|e|*, |Fy/ee(€)] < A+ Alel™,
|F1/59(€, )| <A+ A0"1|e|", IFl/ag(E, 0| <A+ AO"zle]‘”’l,
where 5 )
o<r<—, 1<q§qn(———£), 1<@S23,
Dn ' Dn 2 Dn

pn =n+2, and g, is the Sobolev exponent for which the imbedding of W3 (Q) into
Ly, () is continuous, that is ¢, = 2n/(n — 2) for n > 3 and ¢, is any finite number
for n = 2.

We note that the above conditions imply the following growth of F(e, 0):
|Fi(e,0)| < A+ A0 ||, |Fy(€)| < A+ Ale™t.
(FE-3) Concavity with respect to 6 (thermal stability):
Fi/99(€,0) <0 for (e,0) € 5% x [0, 00).
This implies the lower bound for the specific heat coefficient

0 < ¢y, < c(e,0) for (e6) € S? x [0,00).
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(FE—4) Lower bound for the internal energy:
—A < (Fi(€,0) — 0Fy/4(€,0)) + Fa(e) for (e,0) € S* x [0,00).

The most restrictive is the assumption on §—-growth exponent r < 1/2 and the assumption
on e-growth exponent § < 6/5 in 3-D case.

In 2-D case the latter is not active, since ¢ and 7 are then any large numbers. Hence
our assumptions admit the form of sixth order polynomial (2.12) only in 2-D case. In
3-D case they require the growth with respect to € close to quadratic. The temperature
dependence is restricted to quadratic terms F?(6) (as in 1-D model (2.13)).

The growth condition on r is needed both in 2- and 3-D case.

We are looking for the solution in the anisotropic Sobolev space

V(p) = { (u,6) € Wy(Qr) x W' (Qr) },

with a parameter p related to the Ly-integrability. The assumptions on the initial data
and the source terms correspond to this space.

(BV-p) Let6>0,p>1, ;m = p + 4. The initial conditions satisfy the inclusions
uo € WE2P(Q), u, € W22P(0),

0 < 8 € W22 (Q),
and the compatibility relations. The source terms satisfy

b€ L,(Qr), 9€Ly,(Qr), 920 ae.

Further on A denotes a generic constant, depending in general on the data of the problem,
domain  and the time horizon T'.
In [13] there has been proved the existence result:

Theorem 2.1 Exzistence.
Under assumptions (D), (FE-1) - (FE-4), (BV-p) and 0 < \/k < v there ezists for
P2DPn

a solution (u,) € V(p) to problem (P) for any T > 0. Moreover, the following a prior:
estimates hold,

| u ||w,f.»’(qp,-)S A, e ||w,,"1(QT)5 A, (2.14)
with a constant A dependent on the data of the problem, Q and time T.

The condition between x and v is needed for parabolic decomposition of elasticity equa-
tion (2.1).
This theorem has several consequences concerning regularity of the solution:

Corollary 2.1 For a solution to problem (P) the following holds: the functions u, Vu,
VZu, w, 0 are continuous in Qr, and

lul, |Vu], |V2u], [u| <A, 0<8<LA in Qr,

| V3u ll,@r) 1| VUt iy | VO llLyen < A for pa < p < oo,
¢y < c(€,0) < Cmaz = Cmaz(A)-
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The proof of the solution uniqueness requires an additional regularity which holds pro-
vided p > p,. Moreover, stronger assumptions on F'(€,0) and g have to be imposed.

(FE-5) The function Fj(e, ) is of class C* on the set S? x [0,00), and the heat source
satisfies
g€ Lo(Qr) and g>0 a.e.

The uniqueness result proved in [13] states:

Theorem 2.2 Uniqueness. »
Let the assumptions of Theorem 2.1 and (FE-5) be satisfied, and p > p,. Then the
solution to the problem (P) is unique for any T > 0.

Throughout the rest of the paper we postulate that the assumptions required for the
uniqueness result are satisfied. Then the solution has an additional continuity property.

Corollary 2.2 For a solution to problem (P) the following holds in case p > py:
V3u, Vu,, V0 are continuous in Qr and satisfy the bounds

|V3u|, [Vu, VO] < A

In [14] we have proved also the stability of solutions (u,8) of problem (P) with respect
to control parameters (b, g). Let (u',8') and (u?, 6%) be the solutions corresponding to
(b', g') and (b?, g2), respectively. We have the following

Theorem 2.3 Stability.
Under the assumptions of Theorem 2.2 the solutions (u?, ") corresponding to the right-
hand sides (b', ¢%), i = 1,2, satisfy the inequality

(0 = u', 6 = ) llv) < AB? = Bllgyam + 1162 = 0'lli@n)  (215)

for any finite p > p, and T > 0, where A is a constant dependent on the data of the
problem, ) and time T'.

Both the existence and stability proofs are based on the parabolic decomposition
(see [17]) of the problem (P). The same decomposition is used here for the proof of the
differentiability result. Chosing numbers o, 8 so that

a+B=v, aff = %, (2.16)
the system (2.1) with initial conditions (2.3) and boundary conditions (2.5) is equivalent
to the following two sets of BVP’s for a vector field w:

Wt—,BQW=V'F/€(€,0)+b, in QT)
w(0,x) = u;(x) — aQup(x) in Q, (2.17)
w=0 on Sr,

and the displacement u:

u; — aQu =W, in QT;
u(0,x) = up(x) in Q, (2.18)
u=0 on St,

The condition between parameters k and v, required by Theorem 2.1, assures that
Roa, RB > 0.
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3 Differentiability

Let us consider two control pairs (b, ¢*) € L,(Qr) X Ly, (Q7), ¢* > 0 a.e. in Qr, i = 1,2,
such that
b? =b' + 7¢, @ =g+ (3.1)

We assume that .
9" < Gmazs, 07 < 7, (3.2)

where gpmaz, To are given constants.
‘Let (u',6') € V(p), p > pn, be unique solutions of problem (P) corresponding to
(b*, ¢*). According to Theorem 2.3, we have the following stability estimate

I(a® = ut, 62 = ) lvs) < Allrl@n + Ir¥lzyienm) < AT (33)
for p > p,. Consequently, by the imbedding theorem, similar bound holds pointwise in
Qr for the differences u?—u!, §2-6', V(u?—u}), V*(u?-u!), i = 1,2,3, and V(§2-6").
Our goal is to find a pair (v,n) € V(p) such that

wv=u'+7rv+o(r), FP=0"+mn+o(r)

in the sense of the space V(p).
Let us rewrite problem (P) in the following form:

uy — vQu; + §QQu =V - Fle(e,0) +b, (3.4)
0t - k7(€’ 0)A0 = G(é, €ty 0) + ’Y(G, o)g in QT: (35)

with boundary and initial conditions

u(0,x) = up(x), u(0,x)=uy(x), 6(0,x)=0(x) in Q, (3.6)
u=Qu=0, V6-n=0 on Sr, (3.7)
where
7(e,0) = Jél'o—) Gle, €1,6) = 1(e, O)[0Fac(e, 6) : & + v(A&y) : .

Using formal approximation by Taylor series we obtain the following system of equations
for the pair (v,n):

K
Vit — VQvt + ZQQV =V. (F/leee(v) + F/leaﬂ) + ¢a (38)
m—ky'An=H,:e(v)+H;: e(v;) + Han+7'¢¥ in Qr, (3.9)

with initial and boundary conditions

v(0,x) =0, wv;(0,x)=0, 7n(0,x)=0 in €, (3.10)
v=Qv=0, Vp-n=0 on Sp, (3.11)
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H; = Gj + kv A" + g'v), Hy= Gle» Hs = Gjy+ kv/pA0" + g'v),.

The superscript (-)* means that the quantity is evaluated at (u’, 6*), for i = 1,2. We note
that due to the regularity properties of the solutions (u’,8*) there holds: H; € Ly, (Qr),
H; € L, (Qr), and Hy is continuous in Q. By similar arguments as in Theorem 2.3, we
can claim that there exists the unique solution (v, 7) € V(p) to the problem (3.8)—(3.11)
for any T > 0.

We shall prove here the following differentiability result:

Theorem 3.1 Let the assumptions of Theorem 2.2 hold and the data (b%,g*) satisfy
(3.1), (3.2). Then the solutions (ut, &) of (3.4)-(3.7) and (v,n) of (3.8)—(3.11) fulfil the
following relation

|(u? = u' = 7v,6% = 6' — )|y < AT? (3.12)
for any p > p,, where A is a constant dependent on the data of the problem (in particular
Lo—norm of g), Q and time T. Hence

N VA S 2 _ g1 _ _
Tl_1)151+-;||(u u —71v,0° = 0" —)|lve) =0, (3.13)

what means that the pair (v,n) constitutes a Gateauz derivative of the solution with
respect to the parameters (b, g). In fact, this convergence is uniform with respect to the
norms of ¢,, that is (v,n) defines a Fréchet derivative.

Proof. Let us define functions
z=u’—-u'-1v, o=06*-0"—1n. (3.14)
Due to their construction, they satisfy the following BVP:
2 — vQzq + gQQz =V - (Fl.e(@) +Flpp+F?) in Qr, (3.15)

o1 — kv Ap = (Gl + g')c) : €(z) + G, : €(z:) + (GJg + 9"7)g) P
+ G2 4 gyt 4 T¢(72 —
+ k(7] : €(z) + 7o) A0

+ ky12A0!
+ k(v =) A6 - 6Y)
=:Ri+Ry+R3+Rs+Rs in Qr, (3.16)
with conditions
z(0,x) =0, 2z(0,x)=0, ¢(0,x)=0 in Q, (3.17)
z=Qz=0, Vo-n=0 on Sr, (3.18)

where

F/le,2 = F/2€ - F/le - F/lee(62 - el) - F'/le()(e2 - 01)1
G =G -G -G, : (& —€') -G, : (& —€) — Gly(6® - 6,

Y= =yt = e (€€ — €) — (67 — 67).
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In view of the known regularity of solutions (u’,?), there exists the unique solution
(z,9) € V(p) to the problem (3.15)—(3.18) for any p > pn.
We shall show that

1z ) llve) < AT (3.19)

The assumptions concerning the function F(e,8) and the regularity of solutions (u*, §*) €
V (p) allow us to obtain immediately the following bounds:

|F2), V2| < A(l€® - €' + 162 - 6']?), (3.20)
|G*?| < A(|€? — €!]* + |2 — €}|* + |6% — 6*?), (3.21)
Iv? = 7| < A(l€? - €' + 167 - 6']). (3.22)

The reasoning will follow closely the arguments of Theorem 2.3 in [14]. We start from
energy estimates for z. Multiplying the equation (3.15) by z, and integrating over Q;
yields

1d

[, (Gale+ 551 ) dde +v | (Acte) - efa doat

= - / (Flee€(2) + Fjp9) : €(2) dzdt’ — / F)?: €(z;) dzdt'. (3.23)
Qt Q:

From this, after estimating the right-hand side and applying Gronwall’s inequality to-
g

gether with estimate (3.20) on F}; , we get

1Zel| Lo (0,7:L2@)) + 1| €(2) || Lo 0,T:a(2)) T+ | Q2| Leo(o,7iLa@)) + l€(Ze) lLa(@r) <
<A (”‘p”Lz(QT) + 7-2) , (3.24)
where in the last inequality we have applied stability estimate (3.3). Hence, by the
elipticity property of Q,
2l oo 0,mwic)y < A (lllzacery +7°) - (3.25)

In order to obtain energy estimates for ¢ we multiply equation (3.16) by ¢ and integrate
over @ to get

5
-1-/ Pdr+ | ky|Vo|*dzdt = —/ kcp(ch-V'yl)dzdt'+Z Ripdzdt'. (3.26)
2 Ja, Q: Q¢ i=1 Y Q¢
For the first term on the right-hand side we have, due to continuity of V4!,
| / ko(V - 1) dzdf| < Ay / V|2 dadt + AS;! / SAdedt.  (3.27)
Q¢ Q: Q:

For terms containing R; we get, using (3.20)—(3.22), (3.24), the following inequalities:
| | Ripdzdt|, | | Repdzdt| <A | (p*+7%)dzdt),

Q¢ Q: Q: ,

| | Rspdzdt| < As; | |Vo|>dzdt + A1+ 637) / (¢? + 1) dzdt,
Qe Q: Qt

| | Rspdzdt'| < A63/ |Vo|>dzdt’ + A(1+657) / (¢ + 7*) dzdt,
Q: Q: Q¢

| | Rspdzdt| < A<'54/ | V| dzdt’ + A1+ 64'1)/ (¢* + ) dzdt'.
Q: Q: Qe
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In the process we have used the bounds for gradients of oy and the stability estimate.
As a result, after suitable choice of J;, we get from (3.26) :

/ o?dz + / |Vol2dzdt <A | (¢ +7%)dzdt, (3.28)
Qe Qt Q:

and, applying Gronwall’s inequality,
0/l o072 + [V llLa@r) < AT (3.29)

Substituting (3.29) into (3.24) yields
2]l Lo 0722 + €@ Lewo L) + Q2] L0712 + l€(ZE) |La@r) < AT (3.30)
Hence, the classical imbeddings and parabolic estimates [1] imply the following bounds:

I|¢|‘L2pn/n(QT) + He(z)“Lm(O,T;an(ﬂ)) S AT2' (331)

In order to obtain still more refined estimates we employ the parabolic decomposition of
the system (3.15) into BVP’s:

w;— BQw =V - (F/lee : €(z) + F/leocp + F1€’2) in Qr,
w(0,x) =0 in Q, (3.32)
w=0 on Sr,

z;—aQz=w in Qr,
z(0,x) =0 in 9, (3.33)
z=0 on Sr.

Using (3.20) and the stability estimate we get
/Q t |Flec€(z) + Flegp + F)2P dzdt’ < A(ll€@)1L, gpy + 101, 0 +77)-  (3:34)

Therefore, thanks to the regularity theory of parabolic systems (see [13]),
IV2llwzi @p) + 1V WliL,@n < Alle(@)lL,@n + l€llz@r) +7°)- (3-35)

Consequently, because of (3.31),
2pn

2
le(@)llw2r (o) < AT for p< — (3.36)
As a result, since p,/2 < 2p,/n,
Pn :
IVe@)lL,(@r), le@lL@n < AT for p> . (3.37)

In the next step we improve the bounds for the function ¢. Let us write (3.16) in the
form

5
ctoy— kAp = Z R*  where R!=c'R,, (3.38)

i=1
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and assess the right-hand side in Ly(Q7)-norm.
Using (3.20)—(3.22), the stability estimate and (3.31), (3.36), (3.37) yield

IlRﬂle(Qr) + ”R;”lfz(QT) + ”Rgan(QT) + ”RZ”Id(QT) + ”R;”Lz(QT) < ATz’

Therefore, by the classical parabolic theory [7],
“('OHW:'I(QT) < A7? (3.39)

and by the appropriate imbedding,

Il @ry < A2 for 2<p< P, (3.40)

n

Now we can limit the right-hand side of (3.38) in the stronger L,, /2(Qr)-norm:
| RllL,, o@r) + |1 B3llL,, j2@r) + I RElIL,, o) + I REIL,,, a(er) < AT?

”R;”LP(QT) < A7-2 for P 2 Dn.

Hence
2
lellwa,@n < AT% (3.41)

and

p
IVellLm@r: llollL@n < Ar? for p> ?" (3.42)

We return now to the decomposed system (3.32), (3.33). By the regularity of solutions
the following estimates hold:

IV - (Fjee€(2) + Fleg#)| < Alle(2)] + [ Ve(2)] + 0] + [ V)),

V- Fi2| < A(le® = €+ V(€ - ) + |6 — 0% + [V (62 = 61) ).

Therefore,

IV - (Fec€(2) + Fjg9)llLy@r) S A2 for p=p,, (3.43)
IV - Fillyem S A2 for p>pa. (3.44)

Applying the Solonnikov theory of parabolic systems [15],[16] to (3.32) and (3.33) yields
”W”wg;}(QT) <A = llzllwgg(q,) < AT (3.45)
Finally, by imbedding,
IV2e(@)llL,iar) + ll€(@)lly@r) < A7 for p 2> pa. (3.46)
With this estimate we can bound the right-hand side of p—equation in L,(Q7)-norm for
any p 2 pa.

Indeed, we may directly improve the bounds for R}, R,

IR L 00) + IR llL,0r) S AT2 for p > pn.
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In analysis of R, R and R we make use of the fact that A¢* € W2 (Qr), due to
assumption (BV-p). Hence,

1
|R3llz,c0r) < A (/Q |AGY P d:z:dt) " (/Q I'y}e : €(z) + fy}ocp|:Tp-]? d:r;dt) < AT?,
T T

and similarly for Ry and Rj.
In consequence,

Il‘r”llwp"l(QT) + Vel < AT? for p 2 pn. : (_3'47)
Hence the estimate (3.43) holds also for p > p,. As a result,
[Wllwzigr < Ar? and lzllwazory < AT? for p>p..

This completes the proof. 0

4 Optimal control problem

Let us denote the control space by

U=L,Qr) x L,(Qr) for p>pa,

and assume that g is subject to the additional pointwise constraint, i.e.
f=(b,g) €Upa={(b,9) EU|0< g < gmaz ae in Qr}.

Let S denotes the solution operator, i.e. the map from the admissible set U,qs into
V(p) = W;2(Qr) x W2 (Qr), defined by

S(f) = (u,9), (4.1)

where (u,) is the solution of (P) corresponding to f = (b,g). From Theorem 2.3 it
follows that the map S is Lipschitz continuous.
Thanks to the a priori estimates in Theorem 2.1 it is easy to prove the following continuity

property.

Lemma 4.1 Under assumptions of Theorem 2.2 the map S is continuous from Ugq
(weak) into V(p) (weak).

By virtue of the stability estimate (3.3), the result of Theorem 3.1 can be easily
reformulated in terms of S in the following way:
Let
f,f+06f €Uy, f=(b,g), 6f =(d,¥), (4.2)

and S(f), S(f + 6f) be the corresponding solutions of (P). Then
IS(f + o) — S(£) — S'(£) of vy < AlloEli, (4.3)
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where S'(f) : Usg = V(p) is a linear operator, and (v,n) = &'(f) of is the solution of
the problem (3.8)—(3.11), where the coefficients F /¢, F /9,7, H1, H2, H3 are evaluated at
(u,8) = S(f). The operator S'(f) is the Fréchet derivative of S.

We consider the following cost functional

1 -
Jlu, 6] = 5 fq &(ju—aP, le(u—a)[%, |V (6-B)[") dadt+5 /Q (|b|?* +¢%) dzdt, (4.4)
T T

where the function ®(s;, s2, 83) is assumed to be of a class Cl(lﬁi), Lipschitz continuous,
and the regularizing weight coefficient p is positive. Moreover, s € N and 2s > p,. The
functions i, § are given reference solutions satisfying initial and boundary conditions of
problem (P).

The following holds

Theorem 4.1 There ezists an optimal control f € U,y minimizing the cost functional
(4.4) of the problem (P), i.e.

J1@,6:4] = inf J[u, ;) (4.5)

where (,6) = S(f) and (u,0) = S(f).

Proof. The proof follows by standard arguments. Let (u®,8";f"), (u",0") = S(f*)
be a minimizing sequence for the functional J. Since J[u®,6";f*] < A, thanks to the

positivity of p we have
£l < A.

Due to the Lemma 4.1 we can select a subsequence of {f*} and {(u",0")}, denoted by
the same index n, such that f* — f weakly in U, and

(u",6") = S(f*) = (u,0) = S(f) weakly in V(p).
By the weak l.s.c. of J[u, 6;f],
lim inf J[u",6"; £*] > J[u, 6; f).
n—o00

Thus f := f is an optimal control for (P). O

5 Necessary optimality conditions

We turn now to the neccessary optimality conditions which have to be satisfied by any
optimal control £. The variation of the goal functional (4.4) is given by

0J = -c%_-J[S(f+ 7 6f; f + 7 0f]|r=0
= / [@/s; (0 —T) - v+ B/ e(u— 1) : €(v) + &/, V(0 — 0) - V] dzdt
Qr

+ ps / (b%~1. ¢ + g* ') dzdt.
Qr



21

Performing integration by parts gives

0J = (®1-v+Pn)dzdt+ps [ (B! ¢+ g* ') dzdt, (5.1)
Qr Qr

where

‘I’l = Q/.u(u - ﬁ) -V. [@/,26(11 - ﬁ)]1
& =~V - [®,V(0 -0

We note that by the regularity properties of solution (u,8) € V(p) the function ®, is
continuous in Qr, and ®; € L,(Qr).

In order to derive the adjoint equations it is advantageous to rewrite (3.8)-(3.11) as
a first order system, introducing an artificial variable z:

v, =z, (5.2)
2= vQz — TQQV + V - (Fjeee(v) + Fream) + ¢, (5.3)
ne = kyAn+H, : e(v) + Hy : €(z) + Hsn+vy in Qr, (5.4)

with initial and boundary conditions

v=z=0, =0 on {0} xQ, (5.5)
v=z=Qv=0, Vp-n=0 on Sr. (5.6)

Denoting the adjoint variables by p, r, g we may formally write down the adjoint system
as

p: = gQQr — V - (Fee€(r) + Hig) — @4, (5.7)
r, = —p—vQr+ V- (Hy), (5.8)
gt = Fleg : €(r) — V - [V(kvq)) — H3g — ®, in Qr, (5.9)

with terminal and boundary conditions

p=r=0, ¢=0 on {T}xQ, (5.10)
r=Qr=0, V(ky¢g)-n=0 on Sr. (5.11)

The first order adjoint system (5.7)—(5.11) is equivalent to
K
ry +vQr, + ZQQI' =V- (F/eee(r)) — Hiq + (Haq):) + P4, (5.12)
g+ V - [V(kvq)] = Flep : €(r) — Hyg — @2 in Qr, (5.13)
with terminal and boundary conditions

r(T,x) =0, r(T,x)=0, ¢(T,x)=0 in Q, (5.14)
r=Qr=0, V(kyg):n=0 on Sr. (5.15)
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Multiplying equations (5.2)-(5.4) correspondingly by p, r, ¢ and integrating over Qr gives,
after several integration by parts and use of boundary conditions, the following identity

(p-v,+r‘zt+qm)dxdt=

Qr
==~ [ (v-p: +z-rt+nqt)dxdt—/ (P, -v+<I>217)da:dt+/ (¢ - r + yy¥q) dzdt.
Qr Qr QT
(5.16)
Hence, from conditions (5.5), (5.10) it follows that
/ (@1 v+ Pon) dzdt = / (¢ r + vq) dzdt. (5.17)
Qr Qr

This identity corresponds to the definition of the solution (r,q) of the adjoint system
(5.7)—(5.11) in the transposition method sense of Lions, Magenes [9)].

As common in the control theory, despite the lower regularity of the solution (r,q),
identity (5.17) allows to formulate the first order optimality condition.

Actually, according to (5.1), the first variation of the cost functional has the repre-
sentation

0J = [ (¢ r+7yq)dzdt+ ps/ (¢ - b* ! 4 4pg®~1) dzdt. (5.18)
Qr QT

Concluding, we get the following characterization of optimality conditions

Theorem 5.1 Letf = (b, g) € Upq be an optimal control for problem (P). If (u,8) = S(f)
is the corresponding solution of (P) and (r,q) the corresponding solution of the adjoint
system (5.12)-(5.13), then they satisfy the first order optimality condition

[(r + psb**~1) - (b — b) + (yg + psg**~")(g — g)] dzdt > 0
Qr

for all (b, 3) € Upg.
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