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Abstract

In this paper, we consider the model that the information on the rewards in
vector-valued Markov decision processes includes imprecision or ambiguity. The
fuzzy reward model is analyzed as follows: The fuzzy reward is represented by the
fuzzy set on the multi-dimensional Euclidian space $\mathrm{R}^{p}$ and the infinite horizon fuzzy
expected discounted reward(FEDR) from any stationary policy is characterized as
aunique fixed point of the corresponding contractive operator. Also, we fined a
Pareto optimal policy which maximizes the infinite horizon FEDR over all stationary
policies under the pseudo order induced by aconvex cone $\mathrm{R}^{p}$ . As anumerical
example, the machine maintenance problem is considered.

Keywords: Multi-dimensional fuzzy reward model, Markov decision process,
Pareto optimal, fuzzy optimality equation.

$AMS$ 1991 subject classification. Primary: $90\mathrm{c}40$ ;Secondary: $90\mathrm{c}39$ .

1. Introduction

In mathematical modeling in terms of Markov decision processes (MDPs, in short, cf. [2, 6,
12, 15]), it often occurs that the information on the reward function includes imprecision
or ambiguity. As an example, the reward earned in aday is about 700 dollars or closed
to 700 dollars. On the other hand, multi-criteria decision making is typically involving
flexible requirements for the optimality. In order to deal with uncertain data and flexible
requirements we can use afuzzy set representation (cf. [17]). In this paper, we consider
the case that the $\mathbb{R}^{p}$-valued rewards in standard MDPs are specified by fuzzy sets on Rp,
where $\mathbb{R}^{p}$ is apdimensional Euclidean space $(p\geq 1)$ .

Recently, Kurano et al [10] has introduced apseudo order $\neg K\prec$ in the class of fuzzy
sets on $\mathbb{R}^{p}$ , which is anatural extension of fuzzy $\max$ order (cf.[5, 16]) in fuzzy numbers
on $\mathbb{R}$ and induced by aconvex cone $K$ in $\mathbb{R}^{p}$ . Under this pseudo order $\neg K\prec$ , we fined
aPareto optimal policy which maximizes the infinite horizon fuzzy expected discounted
reward (FEDR) over all stationary policies. Associated with each stationary policy is a
corresponding contractive operator on fuzzy sets, whose fixed point represents the infi-
nite horizon FEDR. Moreover, the Pareto optimal policies are characterized by maxima
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solutions of an optimal equation including efficient fuzzy set functions. As anumerical
example, the machine maintenance problem is considered.

For an interval or fuzzy treatment for MDPs with uncertain transition matrices, see
[8, 9, 11] in which the intervals or fuzzy sets are used to describe uncertain transition
matrices. Also, for the optimization of fuzzy dynamic system refer to $[7, 19]$ .

This paper is organized as follows: In Section 2, we shall give some notations needed
for fuzzy treatments and apseudo order relation of fuzzy sets on $\mathrm{R}^{p}$ is reviewed referring
to Kurano et $\mathrm{a}1[10]$ and the expectation of discrete fuzzy random variables is specified. In
Section 3, we describe the fuzzy reward model and specify the optimization problem. In
Section 4, the infinite horizon FEDR from astationary policy is given as afixed point of a
corresponding operator, which is used to obtain the optimality equation and characterize
aPareto optimal policy in Section 5.

2. Preliminaries

We write fuzzy sets on $\mathrm{R}^{p}$ by their membership functions $\tilde{s}:\mathrm{R}^{p}arrow[0,1]$ (see Novak [13]
and Zadeh [20] $)$ . The $\alpha$-cut $(\alpha\in[0,1])$ of the fuzzy set $\tilde{s}$ on $\mathrm{R}^{p}$ is defined as

$\tilde{s}_{\alpha}:=\{x\in \mathrm{R}^{p}|\tilde{s}(x)\geq\alpha\}(\alpha>0)$ and $\tilde{s}_{0}:=\mathrm{c}1\{x\in \mathrm{R}^{p}|\tilde{s}(x)>0\}$ ,

where cl denotes the closure of the set. Afuzzy set $\tilde{s}$ is called convex if

$\mathrm{s}(\mathrm{X}\mathrm{x}+(1-\lambda)y)\geq\tilde{s}(x)\wedge\tilde{s}(y)$ $x$ , $y\in \mathrm{R}^{p}$ , A $\in[0,1]$ ,

where $a \wedge b=\min\{a, b\}$ .
Note that $\tilde{s}$ is convex if and only if the $\alpha$-cut $\tilde{s}_{\alpha}$ is aconvex set for all $\alpha\in[0,1]$ . Let

$F(\mathrm{R}^{p})$ be the set of all convex fuzzy sets whose membership functions $\tilde{s}$ : $\mathrm{R}^{p}arrow[0,1]$ are
upper-semicontinuous and normal $( \sup_{x\in \mathrm{R}^{p}}\tilde{s}(x)=1)$ and have acompact support. In the

one-dimensional case $p=1$ , $F(\mathrm{R})$ denotes the set of all fuzzy numbers. Let $\mathrm{C}(\mathrm{R}^{p})$ be the
set of all compact convex subsets of Rp. We note that when $p=1$ , $\mathcal{F}(\mathrm{R})$ denotes the set

of bounded and closed intervals in R.
The definitions of addition and scalar multiplication on $\mathcal{F}(\mathrm{R}^{p})$ are as follows: For

$\tilde{s},\tilde{r}\in F(\mathrm{R}^{p})$ and A $\geq 0$ ,

(2.1) $( \tilde{s}+\tilde{r})(x):=\sup_{x_{1},x_{2}\in \mathrm{R}^{\mathrm{p}}}\{\tilde{s}(x_{1})\wedge\tilde{r}(x_{2})\}$
,

(2.1) (Ai)(x) $:=\{$

$\tilde{s}(x/\lambda)$ if $\lambda>0$

$1_{\{0\}}(x)$ if $\lambda=0$

$(x\in \mathrm{R}^{p})$ ,

where $1\{\cdot\}(\cdot)$ is an indicator. By using set operations $A+B:=\{x+y|x\in A, y\in B\}$ and
$\lambda A:=\{\lambda x|x\in A\}$ for any non-empty sets $A$ , $B\subset \mathrm{R}^{p}$ , the following holds immediately.

(2.3) $(\tilde{s}+\tilde{r})_{\alpha}=\tilde{s}_{\alpha}+\tilde{r}_{\alpha}$ and $(\lambda\hat{s})_{\alpha}=\lambda\tilde{s}_{\alpha}$ $(\alpha\in[0,1])$ .
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Let $\rho$ be the Hausdorff metric on $\mathrm{C}(\mathrm{R}^{p})$ , that is, for $A$ , $B\in \mathrm{C}(\mathrm{R}\mathrm{P})$ ,

$\rho(A, B)=\max\{\max d(a, B), \max d(b, A)\}a\in Ab\in B$’

where $d$ is ametric in $\mathbb{R}^{p}$ and $d(x, D)= \min_{y\in D}d(x, y)$ for $x\in \mathrm{R}^{p}$ and $D\in \mathrm{C}(\mathrm{R}^{p})$ . Extending
this $\rho$ to $\mathrm{C}(\mathbb{R}^{p})$ , we define, with abuse of notation, the Hausdorff metric on $F(\mathrm{R}^{p})$ by

(2.4)
$\rho(\overline{u},\tilde{v})=\sup_{\alpha\in[0,1]}\rho(\tilde{u}_{\alpha},\tilde{v}_{\alpha})$

for $\tilde{u}$ , $\tilde{v}\in \mathrm{C}(\mathrm{R}\mathrm{P})$ ,

where $\overline{u}_{\alpha}$ and $\tilde{v}_{\alpha}$ are $\alpha$-cuts of $\tilde{u}$ and $\tilde{v}$ respectively.
Then, the following facts are well known.

Lemma 2.1 (cf. [14]). The metric space $(F(\mathbb{R}^{p}), \rho)$ is complete.

Lemma 2.2 (cf. [3]). If $\overline{u}$, $\overline{v},\tilde{u’},\tilde{v’}$ and $\overline{r}\in \mathcal{F}(\mathbb{R}^{p})$ , then

(i) $\rho(\lambda\overline{u}, \lambda\tilde{v})=\lambda\rho$ ( $\mathrm{i}$ , i) for all $\lambda\geq 0$ .
(ii) $\rho(\overline{u}+\overline{u’}, \tilde{v}+\tilde{v’})\leq\rho(\overline{u},\tilde{v})+\rho(\overline{u’},\tilde{v’})$,

(iii) $\rho(\overline{r}+\overline{u}, \overline{r}+\overline{v})--\rho(\overline{u},\overline{v})$ .

Here, we pick up apseudo order relation introduced in Kurano et al [10], which is
necessary for our problem formulation in the sequel. The partial order relation $\neg\prec 1$ on
$\mathrm{C}(\mathbb{R})$ is defined as follows: For any $[c_{1}, c_{2}]$ , $[d_{1}, c_{2}’]\in \mathrm{C}(\mathbb{R})$ , $[c_{1}, c_{2}]\neg 1\prec[d_{1}, \phi]$ means that
$c_{1}\leq c_{1}’$ and $c_{2}\leq c_{2}’$ .

Let $K$ be anon-empty cone of Rp. Using this $K$ , we can define apseudo order relation
$\neg K\prec$ on $\mathbb{R}^{p}$ by $x\neg\prec_{K}y$ if and only if $y-x\in K$ . By the pseudo order $\neg K\prec$ on $\mathbb{R}^{p}$ , apseudo
order $\neg K\prec$ on $\mathcal{F}(\mathbb{R}^{p})$ is defined as follows.

For $\overline{s}$, $\overline{r}\in \mathcal{F}(\mathbb{R}^{p})$ , $\tilde{s}\prec_{\neg K}\overline{r}$ means the following (F.a) and (F.b) :

(F.a) For any $x\in \mathbb{R}^{p}$ , there exists $y\in \mathbb{R}^{p}$ such that $x\neg\prec_{K}y$ and $\tilde{s}(x)\leq\overline{r}(y)$ .
(F.b) For any $y\in \mathbb{R}\mathrm{p}$ , there exists $x\in \mathbb{R}^{p}$ such that $x\neg K\prec y$ and $\overline{s}(x)\geq\tilde{r}(y)$ .

When $p=1$ and $K=[0, \infty)$ , the $\neg K\prec$ on $F(\mathrm{R})$ is apartial order and called the fuzzy
$\max$ order (cf. [5, 16]) defined by $\neg 1\prec$ . That is, for $\tilde{s}$, $\tilde{r}\in F(\mathbb{R})$ , $\tilde{s}\prec_{\neg 1}\overline{r}$ means that $\tilde{s}_{\alpha}^{L}\leq\overline{r}_{\alpha}^{L}$

and $\tilde{s}_{\alpha}^{U}\leq\tilde{r}_{\alpha}^{U}$ for all $\alpha\in[0,1]$ , where the $\alpha$-cuts of $\overline{s}$ and $\tilde{r}$ are denoted respectively by
$\overline{s}_{\alpha}=[\overline{s}_{\alpha}^{L},s_{\alpha}]\triangleleft\gamma$ and $\tilde{r}_{\alpha}=[\overline{r}_{\alpha}^{L}, \tilde{r}_{\alpha}^{U}]$ .

Define the dual cone of acone $K$ by

$K^{+}:=$ { $a\in \mathbb{R}^{p}|a\cdot x\geq 0$ for all $x\in K$},

where $x\cdot y$ denotes the inner product on $\mathrm{R}^{p}$ for $x$ , $y\in \mathbb{R}^{p}$ . For asubset $A\subset \mathbb{R}^{p}$ and
$a\in \mathbb{R}^{p}$ , we define

(2.5) $a\cdot A:=\{a\cdot x|x\in A\}(\subset \mathbb{R})$ .
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The definition (2.5) means the projection of $A$ on the extended line of the vector $a$ if
$a\cdot a=1$ . It is trivial that $a\cdot A\in \mathrm{C}(\mathrm{R})$ if $A\in \mathrm{C}(\mathrm{R}^{p})$ and $a\in \mathbb{R}^{p}$ .

The pseudo order relation $\neg\prec K$ on $F(\mathrm{R}^{p})$ is characterized by $\neg\prec 1$ on $F(\mathbb{R})$ through the
projection (2.5), where the proof is in [10].

Lemma 2.3 [10]. Let $\tilde{u},\tilde{v}\in F(\mathrm{R}^{p})$ . Then, $\overline{u}\prec_{\neg K}\tilde{v}$ on $F(\mathrm{R}^{p})$ ifand only if $a\cdot\overline{u}_{\alpha}\neg\prec_{1}a\cdot\overline{v}_{\alpha}$

on $\mathcal{F}(\mathrm{R})$ for all a $\in K^{+}$ and $\alpha\in[0,$ 1].

Lemma 2.4 [10]. Let asequence $\{\tilde{u}_{l}\}\subset \mathcal{F}(\mathrm{R}^{p})$ be such that $\tilde{u}_{1}\neg\prec K\tilde{u}_{2}\neg\prec K\ldots$ , and
$\tilde{u}=\lim_{larrow\infty}\tilde{u}_{l}\in F(\mathrm{R}^{p})$ . Tien, it holds that $\tilde{u}_{1}\neg\prec_{K}\tilde{u}$ .

The following lemma is used in the sequel.

Lemma 2.5. Let A, B $\in \mathrm{C}(\mathrm{R}^{p})$ and a $\in \mathrm{R}^{p}$ . Then, we have:

(i) a. $(A+B)=a$ . $A+a$ . B,

(ii) a. $(\lambda A)=\lambda(a$ .A) for all $\lambda\geq 0$ .

Proof. For $A$ , $B\in \mathrm{C}(\mathrm{R}^{p})$ , $a\cdot(A+B)\in \mathrm{C}(\mathrm{R})$ , so that, $a\cdot(A+B)=[a\cdot(x^{L}+y^{L}), a\cdot(x^{U}+y^{U})]$

for some $x^{L},x^{U}\in A$ and $y^{L}$ , $y^{U}\in B$ . Since $a\cdot$ $(x^{L}+y^{L})=a\cdot$ $x^{L}+a\cdot$ $y^{L}$ , $a\cdot x^{L}\in a$ . $A$ and
$a\cdot y^{L}\in a\cdot B$ , it holds $a\cdot(x^{L}+y^{L})\in a\cdot A+a\cdot B$ . Similarly, $a\cdot(x^{U}+y^{U})\in a\cdot A+a\cdot B$ . Thus,
$a\cdot(A+B)\subset a\cdot A+a\cdot B$ . Conversely, if we set $a\cdot A=[a\cdot x^{L}, a\cdot x^{U}]$ and $a\cdot$ $B=[a\cdot y^{L}, a\cdot y^{U}]$ ,
$a\cdot(A+B)=[a\cdot(x^{L}+y^{L}),a\cdot(x^{U}+y^{U})]$ , which implies $a\cdot$ $A+a\cdot$ $B\subset a\cdot$ $(A+B)$ .

Also, (ii) clearly holds, as required. $\square$

In order to formulate the optimization problem in the next section, we need the concept

of the expectation of discrete fuzzy random variables.
Let $(\Omega, B, P)$ be aprobability space and $\tilde{X}$ : $\Omegaarrow \mathcal{F}(\mathrm{R}^{p})$ adiscrete fuzzy random

variable with its range $\{\tilde{s}_{1}, \tilde{s}_{2}, \cdots, \tilde{s}_{l}\}\subset \mathcal{F}(\mathrm{R}^{p})$. Then, we define the expectation of $\overline{X}$ by

(2.6) $E[ \tilde{X}]=\sum_{\dot{|}=1}^{l}\tilde{s}_{\dot{1}}P(\tilde{X}=\tilde{s}_{\dot{1}})$ .

Note that the expectation in (2.6) is defined in (2.1) and (2.2). The definition of (2.6) is

corresponding to the discrete case of the integral of aset-valued function (cf. [1]) or the

expectation of general fuzzy random variables (cf. [14]).
The following clearly holds.

Lemma 2.5. If $\tilde{X}$ and $\tilde{\mathrm{Y}}$ are discrete fuzzy random variables whose ranges are finite

subsets of $\mathcal{F}(\mathrm{R}^{p})$ , then

(i) $E[\tilde{X}]\in F(\mathrm{R}^{p})$ ,

(ii) $E[\tilde{X}+\tilde{\mathrm{Y}}]=E[\tilde{X}]+E[\tilde{\mathrm{Y}}]$ ,

(iii) $E[\lambda\tilde{X}]=\lambda E[\tilde{X}]$ for all $\lambda\geq 0$ .
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3. The fuzzy reward model

In this section, we formulate MDPs with fuzzy rewards on $\mathrm{R}^{p}$ and specify our optimization
problem. Let $S$ and $A$ be finite sets denoted by $S=\{1,2, \cdots,n\}$ and $A–\{1,2, \cdots, k\}$ .
The sequential decision model consists of four objects:

$(S, A, \{q_{\dot{l}j}(a);i,j\in S, a\in A\},\tilde{r})$ ,

where $S$ and $A$ denote the state and action spaces respectively and $\overline{r}=\overline{r}(i, a)\in F(\mathbb{R}^{p})$

is afuzzy reward function on $S\cross A$ and $\{q_{ij}(a)\}$ is the law of motion, i.e., for each
$(i, a)\in S\cross A$ , $q_{ij}(a)\geq 0$ and $\sum_{j\in S}q_{ij}(a)=1$ .

When the system is in state $i\in S$ and we take action $a\in A$ , the present state moves to
anew state $j\in S$ selected according to the probability distribution $q_{i}.(a)$ and we receive
afuzzy reward $\overline{r}(i, a)\in F(\mathrm{R}^{p})$ . This process is then repeated from the new state $j\in S$ .
The sample space is the product space $\Omega=(S\cross A)^{\infty}$ such that the projection $X_{t}$ and
$\triangle_{t}$ on the $t$-th factor $S$ and $A$ describe the state and the action at the $t$-th time of the
process $(t=1,2, \ldots)$ .

We denote by $F$ the set of all functions from $S$ to $A$ . Apolicy $\pi$ is asequence
$(f_{1}, f_{2}, \ldots)$ of functions with $f_{t}\in F(t\geq 1)$ . Let $\Pi$ be the class of policies. We denote
by $f^{\infty}$ the policy $(f_{1}, f_{2}, \ldots)$ with $f_{t}=f$ for all $t\geq 1$ and some $f\in F$ . Such apolicy is
called stationary and denoted simply by $f\in F$ . The set of all stationary policies will be
denoted by $\Pi_{F}$ . Then, for each policy $\pi\in\Pi$ and starting state $i\in S$ , we can define the
probability measure $P_{\pi}^{\dot{1}}$ on $\Omega$ in ausual way. Here, we consider the expected fuzzy reward
in which the future reward is discounted with afactor $\beta(0<\beta<\mathrm{I})$ .

For any policy $\pi\in\Pi$ and starting state $i\in S$ , let

(3.1) $\tilde{\phi}_{T}(i, \pi)=\sum_{t=1}^{T}\beta^{t-1}E_{\pi}^{i}[\overline{r}(X_{t}, \Delta_{t})]$,

where $E_{\pi}^{i}$ is the expectation with respect to $P_{\pi}^{i}$ and its expectation of fuzzy random
variable is defined by (2.6). We note from Lemma 2.5 that $\phi\sim\tau(i, \pi)\in \mathcal{F}(\mathbb{R}^{p})$ for $i\in S$ ,
$\pi\in\square$ and $T\geq 1$ .

In order to rewrite (3.1) by using vectors and matrices, we shall introduce some nota-
tions. Let $\mathcal{F}(\mathbb{R}^{p})^{n}$ be the set of all $n$-dimensional column vectors whose elements are in
$\mathcal{F}(\mathbb{R}^{p})$ , i.e.,

$\mathcal{F}(\mathbb{R}^{p})^{n}:=\{\tilde{u}=(\tilde{u}_{1}, \overline{u}_{2}, \ldots,\overline{u}_{n})’|\tilde{u}_{i}\in F(\mathbb{R}^{p}), 1\leq i\leq n\}$,

where $d’$ denotes the transpose of avector $d$ .
The Hausdorff metric $\rho$ on $F(\mathrm{R}^{p})^{n}$ is defined (with abuse of notation) by

$\rho(\tilde{u},\tilde{v})=\max_{1\leq i\leq n}\rho(\tilde{u}_{\dot{l}},\overline{v}_{\dot{1}})$ ,
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where $\tilde{u}=$ $(\tilde{u}_{1},\tilde{u}_{2}, \ldots, \tilde{u}_{n})’$ , $\tilde{v}=(\tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{n})’\in F(\mathrm{R}^{p})^{n}$ and $\rho(\tilde{u}_{\dot{1}}, \tilde{v}_{\dot{l}})$ is defined in (2.4).
Then, from Lemma 2.1, we observe that the metric space $(F(\mathrm{R}^{p})^{n}, \rho)$ is complete.

For a $n\cross n$ stochastic matrix $Q=(q_{\dot{l}j})$ and $\tilde{u}=(\tilde{u}_{1},\tilde{u}_{2}, \ldots,\tilde{u}_{n})’\in F(\mathbb{R}^{p})^{n}$ , the
product $Q\tilde{u}\in F(\mathrm{R}^{p})^{n}$ will be defined by

(3.2) $(Q \overline{u}):=\sum_{j=1}^{n}q_{\dot{\iota}j}\overline{u}_{j}(1\leq i\leq n)$ .

Here, we associate with each $f\in F$ the $n$-dimensional column fuzzy vector $\tilde{r}(f)\in F(\mathbb{R}^{p})^{n}$

whose $i$-th element is $\tilde{r}(i, f(i))\in \mathcal{F}(\mathrm{R}^{p})$ and the $n\cross n$ stochastic matrix $Q(f)$ whose $(i, j)$

element is $q_{\dot{*}j}(f(i))$ . For each policy $\pi\in\Pi$ , let

$\tilde{\phi}_{T}(\pi)=(\tilde{\phi}_{T}(1, \pi),\tilde{\phi}(2, \pi),$

$\ldots,$
$\phi\sim T(n, \pi))\in F(\mathrm{R}^{p})^{n}(T\geq 1)$ .

Then, we have the following.

Lemma 3.1. For any $\pi=(f_{1}, f_{2}, \ldots)\in\Pi$ , we have:
(i) $\tilde{\phi}_{T}(\pi)$ is described by the following matrix representation.

(3.3) $\tilde{\phi}_{T}(\pi)=\tilde{r}(f_{1})+\beta Q_{1}(\pi)\tilde{r}(f_{2})+\cdots+\beta^{T-1}Q_{T-1}(\pi)\tilde{r}(f_{T})(T\geq 1)$ ,

where $Q_{t}(\pi)=Q(f_{1})\cdots$ $Q(f_{t})(t\geq 1)$ .

(ii) $\{\tilde{\phi}(\pi)\}_{T=1}^{\infty}$ is aCauchy sequence.

Proof. By the definition, for any $t\geq 0$ we have that

$E_{\pi} \dot{.}=\sum_{j\in S}P_{\pi}\dot{.}(X_{t}=j)\tilde{r}(j, f_{t}(j))=\mathrm{I}$
$Q_{t}(\pi).\cdot j\tilde{r}(j, f_{t}(j))$ ,

which clearly leads to (3.2).
For any $T>H$ , it holds from Lemma 2.2 that

$\rho(\tilde{\phi}_{T}(\pi),\tilde{\phi}_{H}(\pi))\leq\rho(\tilde{0},\sum_{t=H+1}^{T}\beta^{t-1}Q_{t-1}\tilde{r}(f_{t}))$

$= \beta^{H}\rho(\tilde{0},\sum_{t=H+1}^{T}\beta^{t-H-1}Q_{t}\tilde{r}(f_{t}))\leq\beta^{H}\rho(\tilde{0}, \tilde{r})/(1-\beta)$,

where $0\equiv 1\{0\}$ . This implies (ii), as required. $\square$

By Lemma 3.1, the infinite horizon FEDR from $\pi$ can be defined by

$\tilde{\phi}(\pi)=\lim_{Tarrow\infty}\tilde{\phi}_{T}(\pi)$ .

In order to specify our optimization problem, we extend the pseudo order $\neg\prec K$ on $\mathcal{F}(\mathbb{R}^{p})$

given in the preceding section to that on $F(\mathrm{R}^{p})^{n}$ as follows: For $\tilde{u}=(\overline{u}_{1},\overline{u}_{2}, \ldots,\tilde{u}_{n})’$,
$\tilde{v}=$ $(\tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{n})’\in F(\mathrm{R}^{p})^{n},\tilde{u}\prec_{\neg K}\tilde{v}$ means $\tilde{u}_{\dot{l}}\neg\prec_{K}\tilde{v}_{\dot{l}}$ for all $i(1\leq i\leq n)$ .

Then, our problem is to maximize the $\tilde{\phi}(\pi)\in F(\mathrm{R}^{p})^{n}$ over all policies $\pi\in\Pi$ with
respect to the pseudo order $\neg\prec K$ .
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4. Stationary policies and operators

In this section, the infinite horizon FEDR from astationary policy is given as aunique
fixed point of acorresponding operator. Associated with each $f\in F$ is acorresponding
operator $U_{f}$ : $\mathcal{F}(\mathbb{R}^{p})^{n}arrow F(\mathrm{R}^{p})^{n}$ defined as follows: For $\tilde{u}\in F(\mathrm{R}^{p})^{n}$ ,

(4.1) $U_{f}\tilde{u}=\overline{r}(f)+\beta Q(f)\tilde{u}$ ,

where the arithmetics in (4.1) are defined in the preceding sections.
Since it holds that $\lambda(\tilde{c}+\tilde{d})=\lambda\overline{c}+\lambda\overline{d}\mathrm{f}\mathrm{o}\mathrm{r}$ any $\overline{c},\tilde{d}\in \mathcal{F}(\mathrm{R}^{p})$ and A $\geq 0$ , the following

lemma is easily proved.

Lemma 4.1. If $Q$ is $n\cross n$ stochastic matrix and $\tilde{u}$, $\overline{v}\in F(\mathbb{R}^{p})^{n}$ , then it holds that

$Q(\tilde{u}+\tilde{v})=Q\overline{u}+Q\tilde{v}$.

For any policy $\pi=$ $(f_{1}, f_{2}, \ldots)$ , let $\pi^{-l}=(f_{l+1}, fi_{+2}, \ldots)$ for each $\mathit{1}\geq 1$ . The sequence
$\{\overline{\phi}_{T}(\pi)\}_{T=1}^{\infty}$ is recursively described.

Lemma 4.2. For any policy $\pi=$ $(f_{1}, f_{2}, \ldots)$ , we have

(4.2) $\tilde{\emptyset}\tau(\pi)=Uf_{1}Uf_{2}\ldots$ $U_{f\iota}\overline{\phi}\tau-l(\pi^{-l})$ for each $l\geq 1$ .

Proof. Since $\overline{\phi}_{1}(\pi^{-1})=\tilde{r}(f_{2})$ , we have

$\tilde{\phi}_{2}(\pi)=\tilde{r}(f_{1})+\beta Q(f_{1})\overline{r}(f_{2})=U_{f_{1}}\tilde{\phi}_{1}(\pi)$.

For $T=3$ , from Lemma 4.1, we have that

$\overline{\phi}_{3}(\pi)=\overline{r}(f_{1})+\beta Q(f_{1})\tilde{r}(f_{2})+\beta^{2}Q(f_{1})Q(f_{2})\overline{r}(f_{3})$

$=\tilde{r}(f_{1})+\beta Q(f_{1})(\tilde{r}(f_{2})+\beta Q(f_{2})\tilde{r}(f_{3}))=U_{f_{1}}\overline{\phi}_{2}(\pi^{-1})$ .

By induction on $T$ and $l$ , we can easily prove (4.2). $\square$

Here are some basic properties of $U_{f}$ . The following lemma is easily proved from
Lemma 2.2.

Lemma 4.3. For $f\in F$ , $U_{f}$ is acontraction with modulus $\beta$ , $i.e.$ ,

$\rho(Uf\tilde{u}, Uf\overline{v})\leq\beta\rho(\overline{u}, \tilde{v})$ , for $\tilde{u},\overline{v}\in F(\mathbb{R}^{p})^{n}$ .

Lemma 4.4. Let $K$ be aconvex cone of $\mathbb{R}^{p}$ . Then, for $f\in F$ , $U_{f}$ is monotone with
respect to the pseudo order $\neg K\prec$ on $F(\mathbb{R}^{p})^{n}$ , i.e., for any $\tilde{u}$, $\tilde{v}\in F(\mathbb{R}^{p})^{n}$ with $\tilde{u}\prec_{\neg K}\overline{v}$, it
holds that $U_{f}\overline{u}\prec_{\neg K}U_{f}\overline{v}$.
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Proof. Prom Lemma 2.3, it suffices to show that $a\cdot$ $(U_{f}\tilde{u}):,\alpha\neg\prec 1a\cdot$ $(U_{f}\tilde{v})_{i,\alpha}$ for all $a\in K$ ,

$\alpha\in[0,1]$ and $i=1,2$ , $\ldots$ , $n$ , where $(U_{J}\tilde{v}):,\alpha$ is the $\alpha$-cut of the $i$-th element of $U_{f}\overline{v}$.

Applying Lemma 2.5, we get

(4.2) $a \cdot(U_{f}\tilde{v}):,\alpha=a\cdot\tilde{r}(i, f(i))_{\alpha}+\beta\sum_{j=1}^{n}q_{\dot{l}j}(f(i))(a\cdot\tilde{u}_{j,\alpha})$ .

Since $\tilde{u}\prec_{\neg K}\overline{v}$ implies from Lemma 2.3 that $a\cdot$ $\tilde{u}_{j,\alpha}\neg\prec_{1}a\cdot$ $\tilde{v}_{j,\alpha}$ for all $j=1,2$ , $\ldots$ , $n$ , (4.2)

implies that $a\cdot(U_{f}\tilde{u})_{j,\alpha}\neg\prec_{1}a\cdot$ $(U_{f}\tilde{v})_{j,\alpha}$ . This completes the proof. $\square$

By Lemma 4.2, $\tilde{\phi}_{T}(f)=U_{f}\tilde{\phi}_{T-1}(f)$ for all $T\geq 2$ . As $Tarrow\infty$ in the above, $\overline{\phi}(f)$ is a
fixed point of $U_{f}$ . Thus, noting Lemma 4.3, the characterization of $\tilde{\phi}(f)$ is immediately

formulated as atheorem.

Theorem 4.1. For any stationary policy $f\in F,\tilde{\phi}(f)$ is aunique solution of the

following equation:

(4.3) $\tilde{u}=U_{f}\tilde{u}$ , $\tilde{u}\in F(\mathrm{R}^{p})^{n}$ .

Note that (4.3) can be rewritten as the $\alpha$-cut equation:

(4.4) $\tilde{u}_{\alpha}=\tilde{r}(f)_{\alpha}+\beta Q(f)\tilde{u}_{\alpha}$ , $\alpha\in[0,1]$ ,

where $\tilde{u}_{\alpha}=$ $(\tilde{u}_{1,\alpha},\tilde{u}_{2,\alpha}, \ldots,\tilde{u}_{n,\alpha})’$ and $\tilde{r}(f)_{\alpha}=(\tilde{r}(1, f(1))_{\alpha},\tilde{r}(2, f(2))_{\alpha},$ $\ldots,\tilde{r}(n, f(n))_{\alpha})’\in$

$\mathrm{C}(\mathrm{R}^{p})^{n}$ .
Prom acontraction of $U_{f}$ , the next corollary holds.

Corollary 4.1. For any stationary policy $f\in F$ ,

$\tilde{\phi}(f)=\lim_{larrow\infty}U_{f}^{l}\tilde{u}$ $(\tilde{u}\in F(\mathrm{R}^{p})^{n})$ .

As asimple example, we consider afuzzy treatment for amachine maintenance prob-

lem dealt with in ([12], p.l, p.17-18).

amachine maintenance problem. Amachine can be operated synchronously, say,

once an hour. At each period there are two states; one is operating(state 1), and the

other is in failure(state 2). If the machine fails, it can be restored to perfect functioning

by repair. At each period, if the machine is running, we earn the fuzzy return of (2,3,4)

dollars per period; the probability of being in state 1at the next step is 0.7 and the

probability of moving to state 2is 0.3 where for any $a<b<c$ , the fuzzy number $(a, b, c)$

on $\mathrm{R}$ is defined by

$(a, b, c)(x)=\{$
$(x-a)/(b-a)\vee \mathrm{O}$ if $x\leq b$ ,
$(x-c)/(b-c)\vee \mathrm{O}$ if $b\leq x$ .
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If the machine is in failure, we have two actions to repair the failed machine; one is ausual
repair, denoted by 1, that yields the fuzzy reward $(-2,$ $-1, 0)$ dollars with the probability
0.4 moving in state 1and the probability 0.6 being in state 2; another is arapid repair,
denoted by 2, that requires the ffizzy reward $(-3,$ $-2,$ $-1)$ dollars with the probability 0.6
moving in state 1and the probability 0.4 being in state 2.

For the model considered, $S=\{1,2\}$ and there exists two stationary policies, $F=$

$\{f_{1}, f_{2}\}$ with $f_{1}(2)=1$ and $f_{2}(2)=2$ , where $f_{1}$ denotes apolicy of the usual repair and
$f_{2}$ apolicy of the rapid repair. The state transition diagrams and fuzzy reward vector for
two policies are shown in Figure 1.

$\overline{r}$( $f_{1}$ ) $=$ $($ (–( $22$ )) $-13,)$ $4)0)$ $)$

(a) Usual repair $f_{1}$

$\overline{r}(f_{2})=(\begin{array}{llll}( 2 3 4)(-3,-2 -1)\end{array})$

(b) Rapid repair $f_{2}$

Figure.l Transition diagrams and fuzzy rewards.

Applying Theorem 4.1, we obtain the infinite horizon FEDR as aunique solution of
(4.3). So, putting

$\tilde{\phi}(f_{1})_{\alpha}=([x_{\alpha}^{1}, y_{\alpha}^{1}], [x_{\alpha}^{2}, y_{\alpha}^{2}])’$ ,

the $\alpha$-cut interval equations (4.4) with $\beta=0.9$ become:

$x_{\alpha}^{1}=2+\alpha+0.9(0.7x_{\alpha}^{1}+0.3x_{\alpha}^{2})$

$y_{\alpha}^{1}=4-\alpha+0.9(0.7y_{\alpha}^{1}+0.3y_{\alpha}^{2})$

$x_{\alpha}^{2}=-2+\alpha+0.9(0.4x_{\alpha}^{1}+0.6x_{\alpha}^{2})$

$y_{\alpha}^{2}=-\alpha+0.9(0.4y_{\alpha}^{1}+0.6y_{\alpha}^{2})$

After asimple calculation, we obtain

$\tilde{\phi}(f_{1})_{\alpha}=([10\alpha+\frac{380}{73}, \frac{1840}{73}-10\alpha],$ $[10 \alpha-\frac{20}{73}, \frac{1440}{73}-10\alpha])’$ ,

which leads to

$\overline{\phi}(f_{1})=((\frac{380}{73}, \frac{1110}{73}, \frac{1840}{73}),$ $(- \frac{20}{73}, \frac{710}{73}, \frac{1440}{73}))’$ .
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5. Pareto optimality

Here, we confine our attention to the class of stationary policies, which simplifies our
discussion in the sequel. Let $K$ be aconvex cone in $\mathrm{R}^{p}$ . Apolicy $f^{*}\in\Pi_{F}$ is called Pareto
optimal if there does not exist $f\in\Pi_{F}$ such that $\tilde{\phi}(f^{*})\neg\prec_{K}\tilde{\phi}(f)$ . In this section, we derive
the optimal equation, by which Pareto optimal policies are characterized.

The following important result is crucial to the development in the characterization
of Pareto optimality.

Lemma 5.1. For any $f$ , $g\in F$ , suppose that

(5.1) $\tilde{\phi}(f)$
$\{\begin{array}{l}\prec_{\backslash K}\prec_{K}\end{array}\}$

$U_{g}\tilde{\phi}(f)$ .
Then, it holds that

(5.2) $\tilde{\phi}(f)$
$\{\begin{array}{l}\prec_{\backslash K}\prec_{K}\end{array}\}$

$\phi-(g)$ .

Proof. Suppose that $\phi\sim(f)\{_{\prec\kappa}^{\prec}\backslash K\}U_{g}\tilde{\phi}(f)$ . Then, we have from Lemma 4.3 that

$\tilde{\phi}(f)$
$\{\begin{array}{l}\prec_{\backslash K}\prec_{K}\end{array}\}$

$U_{g}\tilde{\phi}(f)$
$\neg\prec$ $U_{g}^{l}\tilde{\psi}(f)$ $(l\geq 2)$ ,

So, taking the limit in the above as $larrow\infty$ , (5.2) follows from Corollary 4.1 and Lemma
2.4. $\square$

Let $D$ be an arbitrary subset of $F(\mathrm{R}^{p})^{n}$ . Apoint $\tilde{u}\in D$ is called an efficient element
of $D$ with respect to $\neg\prec K$ on $F(\mathrm{R}^{p})^{n}$ if and only if it holds that there does not exist $\overline{v}\in D$

such that $\tilde{u}\prec_{K}\tilde{v}$ . We denote by $\mathrm{e}\mathrm{f}\mathrm{f}(D)$ the set of all elements of $D$ efficient with respect

to $\neg\prec K$ on $F(\mathrm{R}^{p})^{n}$ . For any $\tilde{u}\in F(\mathbb{R}^{p})^{n}$ , let $\mathcal{U}(\tilde{u}):=\mathrm{e}\mathrm{f}\mathrm{f}(\{U_{f}\tilde{u}|f\in F\})$ . Note that
$\mathcal{U}(\tilde{u})\subset \mathcal{F}(\mathrm{R}^{p})^{n}$ .

Here, we consider the following fuzzy equation including efficient fuzzy functions $\mathcal{U}(\cdot)$

on $F(\mathrm{R}^{p})^{n}$ :

(5.3) $\tilde{u}\in \mathcal{U}(\tilde{u})$ , $\tilde{u}\in F(\mathrm{R}^{p})^{n}$ .

The equation (5.3) is called an optimality equation, by which Pareto optimal policies are
characterized. Asolution $\tilde{u}$ of (5.3) is called maximal if there does not exist any solution
$\tilde{u}$

, of (5.3) such that $\tilde{u}\prec_{K}\tilde{u}’$ . Pareto optimal policies are characterized by maximal
solutions of the optimality equation (5.3).

Theorem 5.1. A policy $f$ is Pareto optimal ifand only $ifa$ fixed point of the corresponding
$U_{f},\tilde{\phi}(f)$ , is amaximal solution to the optimal equation (5.3).

Proof. The proof of “only if “part is easily obtained from Lemma 5.1. In order to prove
“if “part, suppose that $\tilde{\phi}(f)$ is amaximal solution of (5.3) but $f$ is not Pareto optimal.
Then, there exists $f^{(1)}\in F$ such that $\tilde{\phi}(f)\prec_{K}\tilde{\phi}(f^{(1)})$ .
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Now, suppose that $\tilde{\phi}(f^{(1)})\not\in \mathrm{e}\mathrm{f}\mathrm{f}(\tilde{\phi}(f^{(1)}))$. This assumption assures that there exists
$f^{(2)}\in F$ satisfying $\overline{\phi}(f^{(1)})\prec_{K}U_{f}(2)\tilde{\phi}(f^{(1)})$ , which implies from (5.1) that $\tilde{\phi}(f^{(1)})\prec_{K}$

$\overline{\phi}(f^{(2)})$ . By repeating this method successively, we come to the conclusion that there
exists $f^{(l)}\in F$ such that $\tilde{\phi}(f)\prec_{K}\tilde{\phi}(f^{(l)})$ and $\tilde{\phi}(f^{(l)})$ satisfies (5.3), which contradicts
that $\overline{\phi}(f)$ is maximal, as required. Cl

Remark. For vector-valued discounted MDPs, Furukawa[4] and White[18] had derived
the optimality equation including efficient set-function on Rp, by that Pareto optimal
policies are characterized. The form of the optimal equation (5.3) is corresponding to a
fuzzy version of MDPs.

For the machine maintenance problem given in Section 4, we find that

$U_{f_{2}} \tilde{\phi}(f_{1})=((\frac{380}{73}, \frac{1110}{73}, \frac{1840}{73})$ , $(- \frac{21}{73}, \frac{709}{73}, \frac{1439}{73}))’$ ,
Recall that

$U_{f_{1}} \tilde{\phi}(f_{1})=\overline{\phi}(f_{1})=((\frac{380}{73}, \frac{1110}{73}, \frac{1840}{73}),$ $(- \frac{20}{73}, \frac{710}{73}, \frac{1440}{73}))’$ ,

which satisfies $U_{f_{2}}\overline{\phi}(f_{1})\prec_{1}\overline{\phi}(f_{1})$ , $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\prec_{1}$ is the fuzzy $\max$ order on $F(\mathbb{R})^{2}$ and corre-
sponding to $\neg\prec K$ in case of $K=[0, \infty)$ .

Thus, $\overline{\phi}(f_{1})\in \mathrm{e}\mathrm{f}\mathrm{f}(\{U_{f}\overline{\phi}(f_{1})|f\in F)$, so that from Theorem 5.1 $f_{1}$ is Pareto optimal.
In fact, we can find, by solving (4.3) or (4.4) for $f_{2}$ , that

$\overline{\phi}(f_{2})=((\frac{470}{91}, \frac{1380}{91}, \frac{2290}{91}),$ $(- \frac{30}{91}, \frac{880}{91}, \frac{1790}{91}))’$, and $\overline{\phi}(f_{2})\prec_{1}\overline{\phi}(f_{1})$ .
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