
Title On the Complexity of Subproblems of SAT (New
Developments of Theory of Computation and Algorithms)

Author(s) Matsuura, Akihiro; Iwama, Kazuo

Citation 数理解析研究所講究録 (2001), 1205: 113-118

Issue Date 2001-05

URL http://hdl.handle.net/2433/41010

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39176236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SAT のいくつかの部分問題の複雑さについて
On the Complexity of Subproblems of SAT

松浦 昭洋 岩間 一雄
京都大学大学院 情報学研究科 通信情報システム専攻

Akihiro Matsuura Kazuo Iwama
Department of Communications and Computer Engineering,

Graduate School of Informatics, Kyoto University
{matsu, iwama}@kuis.kyoto-u.ac.jp

Abstract

In this paPer, we show some complexity results of subproblems of Satisfifiability Problem (SAT).
We introduce adecision problem that asks if, given a k-CNF formula with n variables, there is a
satisfying assingment with at most pn variables set to 1. For k ≥ 2 , we show that (1) when $p=n^{c}$

$(-1<c\leq 0)$, the problem is $\mathrm{N}\mathrm{P}$-complete, and (2) when $p=\log n/n$, it is solvable in $O(n^{\log k}|\phi|)$

time for aformula ϕ . We also show some results on complexity of aclass of formulas for which we
know some information on the number of satisfying assignments.

1 Introduction

The satisfifiability problem of $\mathrm{C}\mathrm{N}\mathrm{F}$ formulas (SAT) is one of the well-known $\mathrm{N}\mathrm{P}$-complete problems [1].
Due to its direct connection to many combinatorial problems, deep understanding of the complexity
of SAT is considered to be one of the important problems in computer science. Extensive research has
been done to clarify the complexity and to develop efficient algorithms. The complexity is investigated
not only for the whole problem but also for the subproblems. Some of them are shown to be NP-
complete and some are solved in polynomial time. For example, k SAT for $k\geq 3$, which consists of
CNF formulas with k literals per clause, is proved to be NP-complete. On the other hand, 2 SAT and
Horn SAT are shown to be in P. (Refer to a survey [2].) Along this line, it should be a very important
and intriguing problem to clarify which part of the problem is hard and which is not.

Papadimitriou et al. [3] studied one of such problems called $\mathrm{L}\mathrm{O}\mathrm{G}$ ADJUSTMENT: Given a $\mathrm{C}\mathrm{N}\mathrm{F}$

formula and a truth assignment a , is there is a satisfying truth assignment whose Hamming distance
from a is at most $\log n$? This problem originally comes from artifificial intelligence [4], and was proved
to be LOGSNP-complete [3]. LOGSNP is an intermediate complexity class between P and $\mathrm{N}\mathrm{P}$, and
LOGSNP-complete problems are likely to require quasipolynomial time to solve exactly. Then, the
following natural question arises: What if a formula is restricted to be k-CNF and if the condition
on Hamming distance is more general? More formerly, we consider a decision problem called $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$

that, given a $k,\mathrm{C}\mathrm{N}\mathrm{F}$ formula ϕ with n variables, asks if there is a satisfying truth assignment that has
only pn variables set to 1. Namely, p is the ratio of the number of variables set to 1. We note that
$\mathrm{L}\mathrm{O}\mathrm{G}$ ADJUSTMENT is equivalent to $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ with $k=n$ and $p=\log n/n$. In this paper, we clarify
the Complexity of k-SATp for some typical $p’ \mathrm{s}$. Namely, for any $k\geq 2$, we show that (1) when $p=n^{c}$,
where c is a constant such that $-1<c\leq 0$, $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ is NP-complete, and (2) when $p=\log n/n$,
$k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ is in P and solvable in $O(k^{\log n}\cdot|\phi|)$ time, where |$| is the size of the formula ϕ . The result
for $p=\log n/n$ contrasts with the LOGSNP-completeness of $\mathrm{L}\mathrm{O}\mathrm{G}$ ADJUSTMENT.

Next, we consider formulas that have at least $q2^{n}$ satisfying assignments. When $q=1/2$, for
example, this implies that 50 %of the 2^{n} truth assignments are satisfying ones. Such a formula was

数理解析研究所講究録 1205巻 2001年 113-118

113

first considered in [5]. They showed that for any polynomial $p(n)$ and for $q=1/p(n)$, there is a

polynomial time algorithm that fifinds one satisfying assingment with $O(\log n)$ variables set to 1. In
this case, the algorithm for $k- \mathrm{S}\mathrm{A}\mathrm{T}\log n/n$ can be also applied although the previous algorithm is slightly
faster. Furthermore, we consider a formula that has less number of satisfying assingments; namely,
we consider the case the formula has at least $q2^{n}$ satisfying assignments where $q=O(1/2^{cn})$ and c is
aconstant such that $0<c\leq 1$. Then, the corresponding decision problem that asks the satisfiability
of such aformula turns out to be $\mathrm{N}\mathrm{P}$-complete for $k\geq 3$.

This paper is organized as follows: In Section 2, we give the defifinitions concerning SAT. In Section
3, we consider the complexity of $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ for two typical $p’ \mathrm{s}$. Section 4 is devoted to another type of
formulas that have a certain number of satisfying assingments. Finally, we make concluding remarks
in Section 5.

2Preliminaries

In this section, we define some concepts on $\mathrm{C}\mathrm{N}\mathrm{F}$ formulas and some complexity class.

Definition 1. k-SAT is the problem of satisfiability of a formula in k-CNF. SAT is the problem
of satisfiability of a general formula in $\mathrm{C}\mathrm{N}\mathrm{F}$.

Given a $(k’)\mathrm{C}\mathrm{N}\mathrm{F}$ formula ϕ of n variables, when ϕ is satisffiable and has a satisfying truth assign-
ment a^{*} , we count the number of variables set to 1. The ratio of the number of variables set to 1 over
n is written as p . We explore how difficult it is to find a satisfying assignment with a specifified number
of variables set to 1.

Definition 2. $(k-)\mathrm{S}\mathrm{A}\mathrm{T}_{p}$: Given a (k-)CNF formula with n variables, is there a satisfying truth
assignment that has at most pn variables set to 1?

We note that for $p=O(1/n)$, since $pn=O(1)$ means that there are only constant number of
variables set to 1, so it can be trivially solved in polynomial time by exhaustive search. Also $\mathrm{f}\mathrm{o}$

$p=O(1)$, $(k,)\mathrm{S}\mathrm{A}\mathrm{T}_{p}$ coincides with (fc-)SAT.

There is an intermediate class called LOGSNP that is defined using logical expression.

Definition 3. LOGSNP is a subclass of $\mathrm{N}\mathrm{P}$ whose language can be polynomially reduced to a

problem in the following class of problems:

$\{I : \exists S\in[n]^{\log n}\forall x\in[n]’\exists j\in[\log n]^{\epsilon}\phi(I, s_{j}, x, j)\}$,

where $[n]=\{1,2, \cdots, n\}$, I is the input relation, r and s are some constant integers, x and i are are
tuples of first-0rder variables, and ϕ is aquantifier-free first-0rder expression.

$(k-)\mathrm{S}\mathrm{A}\mathrm{T}_{\log n/n}$ i s easily shown to be in LOGSNP. Especially, $\mathrm{S}\mathrm{A}\mathrm{T}\log n/n$ that is called $\mathrm{L}\mathrm{O}\mathrm{G}$ AD-
JUSTMENT in [3] is proved to be LOGSNP-complete. LOGSNP-complete problems are supposed to
require quasipolynomial time to be solved exactly.

In the next section, we study the complexity of (fc-)SATp for general cases.

3Complexity of $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$

3.1 Complexity of $k- \mathrm{S}\mathrm{A}\mathrm{T}_{n^{\mathrm{c}}}$

In this section, we show the following

114

Theorem 1. For $k\geq 2$ and for $p=n^{c}(-1<c\leq 0)$, $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ is NP-complete.

Proof. First, we prove for the case $2- \mathrm{S}\mathrm{A}\mathrm{T}_{n^{\mathrm{c}}}$. It is reducible from VERTEX COVER (VC). $\mathrm{V}\mathrm{C}$ is
first reduced to its variant called $\mathrm{V}\mathrm{C}_{n^{\mathrm{c}}}$. $\mathrm{V}\mathrm{C}_{n^{\mathrm{c}}}$ is the following decision problem:
VCnc: Given agraph G with n vertices, is there avertex cover of G that has at most size n^{1+c} ?

Given an instance of $\mathrm{V}\mathrm{C}$ such that (G, K) with a connected graph $G=(V, E)$ such that $|V|=n$
and integer K , we transform it to an instance of $\mathrm{V}\mathrm{C}_{n^{\mathrm{c}}}$ as follows. The idea is to add areasonable
number of vertices to one (arbitrarily) chosen vertex $v0$ of V . Namely, let W be a set of vertices such
that $|W|=$ $(K11)$ $\frac{1}{1+\mathrm{c}}-n$ and suppose that each vertex in W is connected with only $\mathrm{v}\mathrm{o}$. If $|W|$ is
less than 0with above definition, we set $W=\phi$ and add no vertex. Now, we defifine the instance of
VCnc so that $G’=(V’, E’)$, $V’=V\cup W$, and $E’=E$. If V_{0} is a vertex cover of G of size $\leq K$ %1,
$V_{\mathrm{O}}\cup\{v\circ\}$ is avertex cover of $G’$. The ratio of the size of the vertex cover is

$\frac{|V_{0}\cup\{v_{0}\}|}{|V|+|W|}\leq\frac{K+1}{n+|W|}\leq(n+|W|)^{c}$,

since $\mathrm{K}1$ 1 $\leq(n+|W|)^{1+c}$. Therefore, $G’$ is a yes instance of $\mathrm{V}\mathrm{C}_{n^{c}}$. Conversely, if V_{0} is avertex cover
of $G’$ whose ratio is at most $(n+|W|)^{c}$, then $|V_{0}|\leq(n+|W|)^{1+c}\leq K$. Therefore, $\mathrm{V}\mathrm{C}_{n^{\mathrm{c}}}$ is shown to
be $\mathrm{N}\mathrm{P}$-complete. The next step is to reduce $\mathrm{V}\mathrm{C}_{n^{\mathrm{c}}}$ to $2- \mathrm{S}\mathrm{A}\mathrm{T}_{n^{\mathrm{c}}}$. For aedge $\{v_{i}, vj\}$, we correspond a

disjunct $x_{i}+Xj$. Then, we see that a graph in $\mathrm{V}\mathrm{C}_{n^{\mathrm{c}}}$ has a vertex cover of size at most n^{1+c} if and
only if the corresponding 2-CNF formula has asatisfying assignment with at most n^{1+c} variables set
to 1. Therefore, $2- \mathrm{S}\mathrm{A}\mathrm{T}_{n^{\mathrm{c}}}$ is shown to be NP-complete.

For $3- \mathrm{S}\mathrm{A}\mathrm{T}_{n^{\mathrm{c}}}$, the reduction is done from $2- \mathrm{S}\mathrm{A}\mathrm{T}_{n^{\mathrm{c}}}$ by transforming a2-CNF clause C to $(C+y)$.
$(C\mathrm{b}\overline{y})$, where y is anew variable. It is clear that C is satisfiable if and only if $(C+y)\cdot$ $(C+\overline{y})$ is
satisfiable. Furthermore, the new 3-CNF formula has asatisfying assignment whose ratio of variables
set to 1is less than n^{c} . \square

Remark. For $p=\log^{i}n/n(i\geq 1)$, the above transformation makes the number of clauses exp0-

nential on n , so such reduction does not work. This case will be treated in the next section.

3.2 Algorithm for $k- \mathrm{S}\mathrm{A}\mathrm{T}\log n/n$

In this section, we show that $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ for $p=\log n/n$ can be solved deterministically in polynomial
time. The result is the following.

Theorem 2. For p $=\log n/n$, $k- SAT_{p}$ is in P. For a k-CNF ϕ with n variables for which the
answer is yes, it is solvable in $O(n^{\log k}$. |$|) time.

Proof. The algorithm is based on the derandomized version of Sch\"oning’s probabilistic algorithm
[6], [7]. We first summarize the probabilistic algorithm by Sh\"oning. Given a k-CNF formula with n

variables, the algorithm proceeds as follows:

1. guess an initial assignment $a_{0}\in\{0,1\}^{n}$, uniformly at random;

2. repeat $3n$ times: If the formula is satisfified by the actual assignment, stop and accept. Let C

be some clause not being satisfied by the actual assignment, pick one of the $\leq k$ literals in the
clause at random and flip its value in the current assignment.

This can be derandomized by setting specifific initial assignments and by making computation for all
the choices of literals to be flipped in the above $3n$ iterations. There is a derandomized version of this
algorithm [7] and it takes exponential time to obtain the satisfying assignment for ageneral formula

115

0:assignment that approaches to a^{*}

\bullet :satisfying assignment

However, since we want to know if there is a satisfying assignment with at most $\log n$ variables set to
1, this procedure is applied quite $\mathrm{w}\mathrm{e}\mathrm{u}$.

Suppose that there is asatisfying assingment with at most $\log n$ l’s and denote it by a^{*} . We first
set the initial assignment to be $a=(0,0, \cdots,0)$. Then, the algorithm is the following:

Algorithm for $k-\mathrm{S}\mathrm{A}\mathrm{T}\log n/n$

1. evaluate the value of the formula by the present assignment;

2. pick up (any) unsatisfied clause and apply all the k kinds of flips of the k variables it has;

3. for all the k flips in 2, apply the procedures 1 and 2 recursively;

4. at each branch of the recursion, if the depth of the recursion is $\log n$ or satisfying assingment is
found, stop.

This procedure is expressed using a tree T as shown in Fig. 1 with the following properties: (i)
Let $a0=(0, 0, \cdots, 0)$ be aroot node; (ii) each node has a label of a truth assignment; (iii) nodes
whose label has aHamming distance of i from the root is said to be at Level i ;and (iv) node u is a

leaf if either of the two conditions hold: (a) u satisfies the formula, or (b) u is at Level $\log n$.

We can now show the following key claim.

Claim. T has at least one leaf that has a label of a satisfying assignment.

Proof of Claim. Recall that there is a satisfying assingment with at most $\log n$ l’s. First, if initial
assignment $a\mathit{0}$ satisfies ϕ , then the algorithm stops and accepts. If $a\mathit{0}$ does not, there must be at least
one assignment at Level 1 which approaches to a^{*} for one Hamming distance. Since this property
holds at every level, for the whole tree of T up to Level $\log n$, there must be at least one leaf in T

116

that approaches to a^{*} for one Hamming distance successfully at every Level, or has a label of different
satisfying assignment from a^{*} . \square

If a formula is a “no” instance of $k,\mathrm{S}\mathrm{A}\mathrm{T}\log n/n$

’ suppose that there is no satisfying assignment with
at most $\log n1’ \mathrm{s}$. Then, the tree T with at most $\log n$ levels can not fifind a satisfying assingment since
otherwise, it can not be a no instance. Therefore, the algorithm outputs no.

As for the computing time, Since the size $\circ \mathrm{f}$ the tree is $O(k^{\log n})=O(n^{\log k})$ and it takes $O(|\phi|)$

time at each node for evaluating the formula, the total running time is $O(n^{\log k}\cdot|\phi|)$. \square

Finally, we note that for the case $p=\log^{2}/n$, $k- \mathrm{S}\mathrm{A}\mathrm{T}_{p}$ is only known to be in $\mathrm{L}\mathrm{O}\mathrm{G}^{2}\mathrm{S}\mathrm{N}\mathrm{P}$, which is
denned similarly to LOGSNP.

3.3 On formulas that have a certain number of satisfying assingments

There is a strong relation between the number of variables set to be 1 in the satisfying assignment and
the number of satisfying assignments. Hirsch showed a polynomial time algorithm for k-CNF formula
that has many satisfying assignments [5].

Theorem 3. ([5]) For $0<\delta<1$, suppose that k-CNF formula (? with n variables has at least
$\delta 2^{n}$ satisfying assignments, there is a deterministic algorithm to find one satisfying assignment in
$O(n^{B(k)\log(2/\lambda(k))}\cdot|\phi|)$ time, where ϕ is the size of a formula ϕ . Furthermore, the number of variables
set to be 1 in the assignment can be at most $\log_{2/\lambda(k)}(\frac{2}{\mathit{6}})+k-1$.

Here, $\lambda(k)$ is the only positive root of $f(x)=1-x^{-1}-x^{-2}-\cdots-x^{-k}$ and $\mathrm{B}\{\mathrm{k})=(\log_{\lambda(k)}2-1)^{-1}$.
Note that $1<\lambda(k)<2$ and $B(3)=7.27$, $B(4)=17.79$, and etc. If we consider the case that it finds
one satisfying assignment with $O(\log n)$ variables set to 1, the algorithm for $k- \mathrm{S}\mathrm{A}\mathrm{T}\log n/n$ can also find
asatisfying assignment. Namely, the following corollary of Theorems 2and 3hold:

Corollary 1. For any polynomial $p(n)$ and for any k-CNF formula with n variables that has at
least $2^{n}/p(n)$ satisfying assignments, the algorithm for $k- SAT\log n/n$ finds one satisfying assignnment in
polynomial time.

As for the running time, however, in the case both algorithms output a satisfying assingment with
$\log n$ variables set to 1, and for $k=3$, the previous algorithm takes time $O(n^{0.88}\cdot|\phi|)$ and ours takes
time $O(n^{1.58}\cdot|\phi|)$, where $|\phi|$ is the size of the formula, and for all $k’ \mathrm{s}(\geq 3)$, the previous algorithm is
faster.

On the number of satisfying $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{S}_{\}}$ the following natural question arises: What if $p(n)$

is larger? Namely, we are further interested in a case the number of satisfying assignments is at
least $2^{n}/p(n)$ for $p(n)$ larger than any polynomial. Typical cases are when the numbers of satisfying
assignments are at least $2^{n}/n^{\log n}$, and 2^{cn} for $0\leq c<1$. In each case, we know by Theorem 3 that
the corresponding formula has a satisfying assignment with $O(\log^{2}n)$ or $O(n)$ l’s, respectively.

In the former case, we only note that the formula is a yes instance of $k- \mathrm{S}\mathrm{A}\mathrm{T}_{O(\log^{2}n/n)}$. In the latter
case, let us consider a $\mathrm{C}\mathrm{N}\mathrm{F}$ formula ϕ with n variables which is either unsatisfifiable or satisfiable with
at least 2^{cn} satisfying assignments. Then, we show that the satisfifiability of such a formula is shown to
be $\mathrm{N}\mathrm{P}$-complete for any c such that $0\leq c<1$. The idea is to simply increase the number of satisfying
assignments. More precisely, we transform a k-CNF formula ϕ to a CNF formula $\tilde{\phi}=\phi\cdot$

ψ , where

ψ $= \prod_{i=3}^{m}(y_{1}+y_{2}+\cdots+y_{i-1}+y_{i})$,

where y_{1} , y_{2} , \cdots , y_{m} are newly introduced variables. It is easy to check that the number of unsatisfying
assignments of ψ is less than $2^{m-3}+2^{m-4}+\cdots 2+1=2^{m-2}-1$. Therefore, by taking sufficiently

117

large m (still polynomial on n), the number of satisfying assignments for $\phi\sim$ can be more than $2^{c(m+n)}$

for any c such that $0\leq c<1$. To summarize, the following theorem holds:

Theorem 4. For $k\geq 3,0<\delta\leq 1$, and $0\leq c<1$, let ϕ be a k,CNF formula with n variables
which is either unsatisfiable or has at least $\delta 2^{cn}$ satisfying assignments. Then, the decision problem to
ask if ϕ is satisfiable is NP-complete.

It might be interesting to note that with respect to parameter c , $c=1$ is the tight threshold;
namely, for $c=1$, a satisfying assignment of the corresponding formula is computed in polynomial
time and for $c<1$, the decision problem is NP-complete.

4Concluding remarks

In this paper, we presented some results on the complexity of some problems related to SAT. There
are some problems left open, e.g., the complexity of $k,\mathrm{S}\mathrm{A}\mathrm{T}_{p}$ for $p=\log^{i}n/n(i\geq 2)$, the complexity
of general CNF formulas with at least $\delta 2^{n}$ satisfying assignments for $0<\delta<1$, and so forth. The
related maximization and minimization problems should be also studied.

Reference

[1] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” Proc. of 3rd STOC, pp. 151-158,
ACM, New York, 1971.

[2] E. Dantsin, “The Algorithmics of the Propositional Satisfiability Problem,” in Problems of Reduc,

ing the Exhaustive Search (V. Kreinovich and G. Mints, editors), AMS Translation-Series 2, Vol.
178, 1997.

[3] C. H. Papadimitriou and M. Yannakakis, “On Limited Nondeterminism and the Complexity of the
V-C Dimension,” JCSS 53, PP. 161-170, 1996.

[4] B. Selman, “Tractable Default Reasoning,” PhD. thesis, Chap. 6, University of Tronto; Also,
Collection open problems. Also presented at the Workshop on Coping with $\mathrm{N}\mathrm{P}$-completeness, UCSD,
1990.

[5] E. A. Hirsch, “A Fast Deterministic Algorithm for Formulas That Have Many Satisfying Assign-
ments,” L. J. of the IGPL, Vol. 6, No. 1, pp. 59-71, Oxford University Press, 1998.

[6] U. Sch\"oning, “A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems,” Proc.
of 40th FOCS, pp. 410-414, 1999.

[7] E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Sch\"oning, “Deterministic Algorithms for k-SAT Based
on Covering Codes and Local Search,” Proc. of ICALP2000, LNCS 1853, pp. 236-243, Springer-
Verlag, 2000

118

