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Positive solutions for nonhomogeneous elliptic equations
Shinji Adachi (RE HEHD)

Department of Mathematics, School of Science and Engineering, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, JAPAN

This paper is based on the joint work [AT1], [AT2] with K. Tanaka.
0. Introduction

In this paper, we study the existence of positive solutions for a nonhomogeneous elliptic
problem in R™:
—Au+u=g(z,u) + f(x) in RV,
u>0 in RV, (0.1)
u € HY(RY),

where g(z,s) € C(RN x R) is a function of superlinear growth, i.e.,

lim g(x’ 3) —
8—00 S

b

and f(z) € HY(RY), f(z) > 0, f(z) # 0. Here H'(R") denotes the usual Sobolev space
over RN and H~!(RY) is the dual space of H'(R"). We denote the duality product
between H-!(RY) and H*(RM) by (-, :)g-1(m~),m(w~) and for f(z) € H-}(RY),
we say f(z) > 0 if (f, p)g-1(gr~),H1(R¥) = 0 holds for any non-negative function ¢ €
HY(RY).

Our main aim is to study the effects of the shape of g(z,u) and f(z) on the existence
and multiplicity of solutions of (0.1). We first consider the existence and multiplicity of
solutions of (0.1) for the general nonlinearity g(z,u) and next consider for g(z,u) = a(z)u?
in particular.

1. Existence of two positive solutions for general nonlinearity g(z,u)

In this section, we will show the existence of at least two positive solutions of (0.1) under
suitable conditions. In some cases we prove the existence of two positive solutions of (0.1),
even if the existence of a positive solution of (0.1) with f(z) = 0 is not known.

1.1. Assumption on g(z,u)
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We assume that
(A1) g(z,s) € CRN xR, R).
(A2) There exist constants do € [0,1) and mo > 0 such that

0 < g(z, s) < dos + mos? for all z € RY and s > 0,

N+2
Nfzisz3,1<p<ooifN=1,2.

(A3) There exists a constant § > 2 such that

where 1 < p <

0 < 6G(z,s) < g(z,s)s forallz € RY and s > 0,

where G(z,s) = / g(z,7)dr.
0

(A4) _9(_375’_5_) is strictly increasing in s > 0 uniformly in z € RY in the following sense:

in i (M) >0 forall0 < r < 7o
s€[ry,r2},z€RN ds S

Moreover, we consider the situation that g(z, s) approaches to some limit function g* (s) €
C'(R, R) as |z| — oc:

(A5) g(z,s) = g*(s) as |z| = oo uniformly on any compact subset of [0, 00).
Moreover we assume

(A6) There exists a constant A > 2 such that for any € > 0 we can find a constant Ce>0
which satisfies

g(z,8) — g=(s) > —e~2l(es 4+ C.sP) for all z € RN and s > 0.

Here the constant A is corresponding to a convergent rate (from below) and the condition
A > 2 plays an important role in our existence result.

We remark that it follows from (A1)-(A5) that the limit function g™(s) satisfies
similar conditions to (A1)-(A4):
(A1) ¢g*(s) € C*(R, R).
(A2') 0 < g*®(s) < dos + mos? for all s > 0. ,
(A3’) 0 < G (s) < g*°(s)s for all s > 0, where G*(s) = / g% (r)dr.

0

(A4) 4 (Qﬂ) > 0 for all s > 0.
ds s
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1.2. Known results

Cao-Zhou [CZ], Jeanjean [J] (c.f. Hirano [H], Zhu [Z]) studied the problem (0.1) as a
perturbation from the following homogeneous equation:

—Au+u=g(z,u) in RV,
u>0 in RN, (1.1)
u € HY(RV).

In addition to similar assumptions to (A1)—(A5), they needed
9(z,8) > g™(s) forallze RN and s> 0 (1.2)

and they succeeded to show that there exists a constant M > 0 such that if f > 0, f#0,
| fllzz-1@m~) < M, then (0.1) has at least two positive solutions. Here the constant M > 0
was chosen so that the corresponding functional:

1 .
) = gl ~ [ Gau)do- [, fude - HRY) 5 R,

where .
7

lullan = ( [ 1w+ |u|2dx) ,
RN

possesses the mountain pass geometry. That is, if || f||z-1(gv) < M, then I(u) satisfies

(i) there exists a constant py > 0 such that
I(u) >0 for all u € HY(RYN) with lull &2 g~y = po,

(i) {u € HY®R™); llullr gy > po and I(u) < 0} # 0,
(iii) inf I(u) < 0.
. 1wl g1 (g vy <po

To see the role of the condition (1.2), we consider here the homogeneous problem
(1.1). The corresponding functional is

1
J(u) = §||u||fg1(n~) - /RN G(z,u)dz.

It is well-known that the mountain pass critical value for J(u) is attained at some critical
point u € H'(RM) under condition (1.2). However, without the condition (1.2), the
mountain pass value is not attained in general. For example, it is not under condition:
g(s,z) < g°°(s) for all a € RY, a > 0. See Lions [PLL1], [PLL2] for similar arguments.
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We also remark that is seems that the existence of positive solution for (1.1) is' not known
without (1.2) in general. As far as we know, it is obtained just for the case g(z, s) = a(z)s?.
See Bahri-Li [BaYL], Bahri-Lions [BaPLL] for details. Thus the aim of our paper is to
show the existence of positive solutions of (0.1) without (1.2). Even the existence of a
positive solution for homogeneous problem (1.1) is not known, we can show the existence

of at least two positive solutions for nonhomongeneous problem (0.1).

1.3. Main results

Our main result is as follows.

Theorem 1.1. Assume that (A1)-(A6). Then there exists a constant M > 0 such that if
f>0, f20, ||fllz-1@my) < M, then (0.1) ‘has at least two positive solutions.

We will prove Theorem 1.1 via variational methods. We find positive solutions of (0.1)
as critical points of I(u). First we find one positive solution uo(z) as a local minimum of
I(u) near 0. We remark that if f # 0, then 0 is not a solution of our problem and the
first positive solution is obtained as a perturbation of 0. Next we find a positive solution
of (0.1) different from ug(z) by using the Mountain Pass Theorem. When we seek critical
points of I(u), we need to pay attention to the breaking down of Palais-Smale condition
for I(u). ‘ '

2. Existence of four positive solutions in the case g(z,u) = a(z)u?

In this section, we consider the equation (0.1) with g(z,u) = a(z)u?, that is:

—Au+u=a(z)u? + f(z) in RN,

u>0 in RV, | ' (2.1)
u€ HY(RV),
N +2
where 1 < p < ) (N>3),1<p< oo (N=12). We also assume that for

a(z) € C(RY)

(H1) a(z) > 0 for all z € RV,
(H2) a(z) — 1 as |z| = oo,
(H3) there exist § > 0 and C' > 0 such that

a(z) — 1> —Ce~ @l forallz € RV .
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By Theorem 1.1, we see that if ||f||g-1(g~) is not so large, then (2.1) has at least two
positive solutions without order relation between a(z) and 1. We remark that the equation
(2.1) with f(z) = 0:
-Au+u=a(z)uP in RV,

u>0 in RY, (2.2)

u € HY(RY),
possesses at least one positive solution only under condition (H1)-(H3). See Bahri-Li
[BaYL)]. (c.f. Bahri-Lions [BaPLL]). We also remark that Kwong [K] showed that the

limit equation:
—Au+u=u? in RV,

u>0 in RV, (2.3)
u € HY(RVN),

possesses a unique positive radial solution w(z) = w(|z|) > 0 and any positive solution
u(z) of (2.3) can be written as

u(z) = w(r — xo) for some zo € RV .
(c.f. Kabeya-Tanaka [K'T]).
In this section, we consider (2.1) under
(H4) a(z) € (0,1] for all e RY, a(z) # 1.

in addition to (H1)-(H3). We will show the existence of more positive solutions under (H1)-
(H4). The uniqueness of positive solution of the limit equation (2.3) plays an important
role in our existence results. Our main results are the following

Theorem 2.1 ([AT1]). We assume (H1)-(H4). Then there exists a 8y > 0 such that for
non-negative function f(x) satisfying 0 < ||f||g-1(g~y < do, (2.1) possesses at least four
positive solutions. |

As to an asymptotic behavior of solutions obtained in Theorem 2.1 as ||f]| H-1(rN) — 0,
we have

Theorem 2.2 ([AT1]). Assume that a sequence of non-negative functions ( fi(z))52, C
H~Y(R") satisfies f;j(x) # 0 and

|fillz-1 ¥y =0 asj — oo.

Then there exist a subsequence of (f;j(z));Z, — still denoted by (f;(z))32; — and four
sequences (ug-k) (z))jen (k= 1,2,3,4) of positive solutions of (2.1) with f(z) = f;(z) such



i

@) [lu$" a2 vy — 0 as § = oo.
(ii) There exist sequences (yJ ))J 1 (y§-3));‘;1 c RY such that

" k
WPl = 00, (@) — 0@ — 4@y = 0

as j — oo for k = 2,3.
(iii) There exists a positive solution vo(x) of (2.2) such that

||“§'4) (z) = ”0(3’)'||H1(RN) -0 as j — oo.

We use variational methods to find positive solutions of (2.1). We define for given
a(z) and f(z)

1 p+1 _/ . glmaN
p+1/ a(z)ul dz Nfudx.H(R)—)R,

Jo, (V) = maxIa Ftv): 24 - R,

1
Io,s (u) = S llulln gy =

where

== {ve H'®R"); [vlm@~) =1}

Ty ={veZ;v #£0}.
We will see that critical points of I, s(u) : H'(RY) = R or J,s(v) : £4 — R are
corresponding to positive solutions of (2.1). ' P

We will find critical point of I, f(u), Ja,7(v) in the following way. First we find one

positive solution u™M(a, f; ) = Uioc min(a, f;z) as a local minimum of I, f(u) near 0. Next
we see that the Palais-Smale compactness condition for I, s(u) and J, ¢(v) breaks down
only at levels '

I f(uo(z)) + hiow) £=1,2,..

where I o(u) is a functional corresponding to the limit equation (2.3), w(z) is a unique
positive radial solution of (2.3) and uo(z) is a critical point of I, s(u). In particular, we will
see that the Palais-Smale condition holds under the level I, f(uioc mm(a f32)) + I o(w).
Next we find two critical points different from ujoc min under the first level of breaklng
down of Palais-Smale condition, that is, under the level I, ¢(uioc min(a, f ,:1:)) + 11 o(w)
We use notation:
[Ja s ] ={u€Ey; Joys(u) <c}

for ¢ € R. We will observe that for sufficiently small € > 0

[Ja,,f < Ia,f(uloc min(a'7 fax)) + Il,O(w) - 5]
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is not empty and

cat([Ja,f < Io,5(Uioc min(a, f;x)) + I1 0(w) — €]) > 2 (2.4)

provided f(z) > 0, f(z) # 0 and ||f||g-1(gn) is sufficiently small. Here cat(-) stands
for the Lusternik-Schnirelman category. We find two positive solutions u(?(a, f;z) and
u®(a, f; z) satisfying

I s (u®(a, f;2)) < Lo £ (Woc min(a, f : 7)) + Lo(w) for k=23 (2.5)
We remark that for f = 0, we see that
Uloc min(aa 0; :L‘) =0

and
[Ja,O < Ia,O(uloc min(aa 0; -'L') + Il,O(w)] =0 (2'6)

and (2.4) is the key of our proof. To get (2.4), we use the following interaction phenomenon
as in [AT2] (c.f. Bahri-Coron [BaC}, Bahri-Li [BaYL], Bahri-Loins [BaPLL], Taubes
[T]):

Ia,f(uloc min(a, fax) + w(-’” - y)) < Ia,f(uloc min(aa fa-'L')) + II,O(W)

for sufficiently large |y| > 1.
'To find the fourth positive solution, we adapt the minimax method of Bahri-Li [B aYL|
to our functional J, s(v). More precisely, we define

ba,,f = inf sup Ja,f('Y(y))a
’YEF yGRN
where

: w . —
I={yeCR",Z4);7(v) = MV—) for large |y|}.

Then ‘wev will find a positive solution u(#)(a, f; ) corresponding to the minimax value ba, 5
which satisfies
Id,f (u’(4) (ai f; (L‘)) > Ia,f('uloc min(aa f; .’E)) + Il,O(w)

for sufficiently small || f|| -1 (g~). To show Theorem 2.2, we also use (2.5) and (2.6) in an

essential way.
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