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Kinetic equations for ions and neutrals are numerically solved in the plasma sheath formed at a
condensed phase when strong evaporation is taking place. The Boltzmann distribution is assumed
for electrons. A weakly ionized vapor with the Debye length much shorter than the mean free path
is considered. This is typical for laser evaporation of metals. Under these conditions, the sheath
consists of a Knudsen layer and a thin charge separation layer between the Knudsen layer and the
condensed phase. The self-consistent electrostatic field in the Knudsen layer is obtained from the
quasineutrality condition. The potential barrier in the charge separation layer is determined by the
charge balance. Kinetic boundary conditions for neutrals and charges are estimated by the detailed
balance principle from the parameters of the saturated vapor. The transport of charges in the sheath
is controlled by ions and depends on ion-neutral collisions and the self-consistent electrostatic field.
Ionization degree in the vapor formed by strong evaporation increases with the Mach number and
can attain values about 30% higher than the ionization degree in the saturated vapor. Two factors
contribute to this increase. The first is the drop of the potential barrier in the charge separation layer
and the second is the strengthening of the field in the Knudsen layer. The ionization equilibrium may
be disturbed by a considerable excess of charges. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2002229�

I. INTRODUCTION

Radiation absorption in vapor has a dramatic effect on
pulsed laser evaporation of metals. Laser radiation is ab-
sorbed on the surface and causes thermal evaporation. The
vapor can absorb due to inverse bremsstrahlung on free elec-
trons and photoionization of exited atoms.1 This absorption
is, generally, weak because the ionization degree and the
fraction of excited atoms are low at typical vapor tempera-
tures below 1 eV. However, as the energy of photons is
transferred directly to electrons, the electron temperature
may become high enough to initiate intensive avalanche ion-
ization by electron impact. This process, referred to as opti-
cal breakdown, turns the vapor to a highly ionized and highly
absorptive state. A so-called radiation-supported detonation
wave is formed,2 and the vapor shields the surface from ra-
diation. The optical breakdown reduces material removal and
increases the energy of ejected species. The first is not desir-
able for laser machining3 but the second can be useful for
pulsed laser deposition.4

Stability of the low-absorbing vapor flow is controlled
by the balance of electron thermal energy gained by radiation
absorption and lost due to collisions with colder heavy spe-
cies and, probably, due to thermal conduction to the surface.
Theoretical estimate5 confirms that kinetics of optical break-
down is very sensitive to the initial density of absorbing
species. Therefore, even weak initial ionization is important
at laser evaporation. Such fast processes are usually far from

ionization equilibrium, so that the ionization degree is deter-
mined by transport of electrons, ions, and neutrals in the
collisional sheath formed near the surface.

Known kinetic approaches to the collisional sheath6–11

are generally concerned with a cold catalytic wall without
net flux of neutrals and describe processes similar to ambi-
polar diffusion. On the other hand, strong evaporation is
studied for neutral gas only.12–22 At strong evaporation of
neutral gas, the velocity distribution of molecules ejected
from the surface considerably differs from the distribution of
incident molecules. This discontinuity in the distribution
function indicates high nonequilibrium near the evaporating
surface that disappears in a few mean free paths downstream.

Early analytical12–14 and numerical15 approaches to the
nonequilibrium Knudsen layer at evaporation gave rather
precise estimates of vapor flow parameters. It is convenient
to specify the equilibrium vapor flow far from the Knudsen
layer by pressure, p / ps, and temperature, T /Ts, ratios and
Mach number M =u /c with p, T, u, and c being vapor pres-
sure, temperature, flow velocity, and local sound speed, re-
spectively, and Ts surface temperature and ps saturated vapor
pressure at this temperature. Possible vapor states were
found to lay on a universal curve in the three-dimensional
space of these dimensionless parameters with the Mach num-
ber in the interval 0�M �1. These results were recently
confirmed by direct simulation Monte Carlo �DSMC�,16 nu-
merical approaches to the Bhatnagar–Gross–Krook �BGK�
model of the collision operator in the Boltzmann
equation,17,18 and rigorous analysis of the Boltzmann

a�Electronic mail: AV.Gusarov@relcom.ru
b�Electronic mail: aoki@aero.mbox.media.kyoto-u.ac.jp

PHYSICS OF PLASMAS 12, 083503 �2005�

1070-664X/2005/12�8�/083503/10/$22.50 © 2005 American Institute of Physics12, 083503-1

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.2002229
http://dx.doi.org/10.1063/1.2002229


equation.19–22 Detailed velocity distribution function inside
the Knudsen layer is obtained.18

When several types of molecules are ejected from the
surface, the vapor enriches with the lighter components rela-
tive to the composition of the saturated vapor because of
higher thermal velocities of the lighter molecules.23,24 There-
fore, one can expect faster electron transport through the
Knudsen layer in case of electron emission. However, this
effect should be less than in a mixture of neutrals because
charge separation leads to a strong electrostatic field decel-
erating the ejected electrons and accelerating ions that tends
to equate the densities of electrons and ions in a distance
about the Debye length. This indicates the importance of the
self-consistent electrostatic field characteristic for the plasma
sheath.

II. SATURATED VAPOR

The variety of plasma parameters makes it difficult to
propose a universal model, so we first consider weak evapo-
ration at M �1 when ionized vapor is approximately in equi-
librium with the condensed phase. This gives an estimate of
the domain of possible plasma parameters at strong evapora-
tion, M �1. Figure 1�a� shows the temperature dependences
of pressure ps and ionization degree �s of saturated vapors of
aluminum and copper calculated using thermodynamic
tables.25,26 One can see that the ionization degree is small
compared to unity at least up to the temperature of T
=4500 K.

The distribution functions of vapor species over molecu-
lar velocity c are Maxwell distributions fM��n� ,0 ,T� with
subscript �=n, i, and e for neutrals, ions, and electrons, re-
spectively, and nn= ps / �kT� and ni=ne=�snn. Here, the Max-
well distribution is specified by density n, flow velocity u,
and temperature T:

fM��n,u,T� = n� m�

2�kT
�3/2

exp�−
m��c − u�2

2kT
� , �1�

where m� is the molecular mass and k the Boltzmann con-
stant. According to the detailed balance principle, the distri-
bution of neutrals ejected from the surface at equilibrium
should be equal to Maxwellian �1� at positive normal com-
ponent of molecular velocity cz�0 �let axis Z be directed
along the external normal�. This distribution complements
the half-Maxwellian fMn, cz�0, of neutrals striking the sur-
face to the equilibrium function �1�. However, similar esti-
mates for distributions of ejected charges, ions and electrons,
are not valid because the surface generally acquires an elec-
tric charge and the electric field formed in the adjacent
sheath layer highly influences the transport of charges.

The charge balance in the sheath can be estimated by the
flux of electrons coming from the plasma to the external
edge of the sheath,

Fe
− = − �

cz�0
fMe�ne,0,T�czdc = ne	 kT

2�me
, �2�

and thermionic flux Fe
+ at the surface as shown in Fig. 2�a�.

Thermal emission of electrons is given by the Richardson–
Dushman equation:27,28

Fe
+ =

4�me�kT�2

h3 exp�−
W

kT
� , �3�

where h is the Planck’s constant and W the work function.
Figure 1�b� shows these fluxes for Al and Cu vapors at equi-

FIG. 1. �Color online�. Vapor-condensed phase equilibrium parameters for
Al and Cu: �a� saturated vapor pressure ps and ionization degree �s; �b�
thermionic Fe

+ and backward Fe
− fluxes of electrons; �c� Debye length �D and

mean free path of neutrals �n.

FIG. 2. Sheath structure at equilibrium �a� and at evaporation �b�: thermi-
onic Fe

+ and backward Fe
− electron fluxes are shown by arrows in �a�; �D is

the Debye length and �n the mean free path of neutrals.
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librium with their condensed phases. The values of work
function are taken from Ref. 29 and listed in Table I. One can
see that the typical case is when Fe

+�Fe
− �Al and Cu at T

�2100 K�. In such conditions, the condensed phase is
charged negatively and an electrostatic field arises in the
sheath that partly repels electrons coming from the vapor to
equate their flux at the surface to the thermionic flux. The
sheath thickness at equilibrium is estimated as the Debye
length

�D =	 kT

4�e2ne
, �4�

where e is the elementary charge.
When evaporation starts, a nonequilibrium Knudsen

layer arises with the thickness of about several mean free
paths of neutrals:14–18

�n = 1/��d2n� , �5�

where d is the atomic diameter listed in Table I. Figure 1�c�
shows that the Debye length is, generally, several times less
than the mean free path, so that the charge separation layer is
well inside the Knudsen layer as shown in Fig. 2�b� and
sheath thickness at evaporation is determined by mean free
path �n.

III. MODEL

Further consideration is restricted to weakly ionized va-
por when ionization degree is so small that collisions be-
tween charges are negligible. Ionization/recombination reac-
tions in the sheath are also neglected according to previous
estimates.7–11 Only the limiting case of infinitely small ratio
�D /�n is studied. According to the above examples, the last
assumption is not rigorous but a reasonable approximation.
In this limit, the sheath �see Fig. 2�b�� can be regarded as a
quasineutral Knudsen layer with boundary conditions deter-
mined by thin collisionless charge separation layer. Negative
electrostatic potential 	s�0 of the condensed phase relative
to the bulk of the vapor is assumed, so that electric field in
the charge separation layer reduces ion emission.

A. Kinetic equations

A coordinate system is introduced with the origin on the
surface and axis Z directed along the external normal to the
condensed phase. Both the surface and the charge separation
layer lay in plane z=0. To avoid ambiguity, values at z=0
will be referred to the boundary between the charge separa-

tion layer and the Knudsen layer and values on the boundary
between the condensed phase and the charge separation layer
will be designated by subscript s. Velocity distribution func-
tions of heavy species, neutrals, fn, and ions, f i, are described
by Boltzmann equations in domain z�0:

�fn

�t
+ cz

�fn

�z
= Jnn, �6�

�f i

�t
+ cz

�f i

�z
−

e

mi

�	

�z

�f i

�cz
= Jin, �7�

where t is the time, 	 the electrostatic potential, and Jnn and
Jin the neutral-neutral and ion-neutral collision integrals, re-
spectively. Collisions between neutrals and charges are ne-
glected in Eq. �6� because of small ionization degree.

High atom-to-electron mass ratio is known to result in
three significantly different relaxation times 
ee, 
nn, and 
en

for electron-electron, heavy-heavy, and electron-heavy spe-
cies collisions, respectively, which are in proportion:30


ee:
nn:
en = 1:�mn/me�1/2:�mn/me� . �8�

At flow velocity about the sound speed, vapor passes through
the Knudsen layer with thickness about several mean free
paths �n for a time about the intermediate relaxation time 
nn.
This means that electrons are in equilibrium with themselves
in the Knudsen layer and, on the other hand, collisions with
heavy species do not influence them. Intensive thermionic
emission �see Fig. 1�b�� ensures electronic temperature to be
about the temperature of the condensed phase Ts, so that
Maxwell velocity distribution fMe�ne ,0 ,Ts� �1� is a good ap-
proximation. The Boltzmann distribution is accepted for
electron density:

ne�z� = ne���exp�e	/kTs� , �9�

where electrostatic potential 	 is meant to be zero at infinity.
The same approach for electrons was used in Refs. 7–9

while numerical solution of kinetic equations for electrons in
Refs. 10 and 11 indicated that Eq. �9� is rather rough. How-
ever, the characteristic time for the diffusion-controlled
sheath considered in these works should be significantly
higher than 
nn and may approach 
en. So, electron collisions
with heavy specious do disturb the Boltzmann distribution
�9� in these conditions. Approximation �9� is expected to be
more precise in the conditions of strong evaporation.

Electrostatic potential can be excluded from Eq. �7� us-
ing Eq. �9� and the quasineutrality condition

ni = ne, �10�

that results in the following kinetic equation for ions:

�f i

�t
+ cz

�f i

�z
−

kTs

mini

�ni

�z

�f i

�cz
= Jin. �11�

Collision integral Jin in the right-hand side of Eq. �11� de-
pends on the distribution function of neutrals, which can be
found from Eq. �6�. There is no explicit interaction with elec-
trons, however, electrons participate in formation of the elec-
trostatic field taken into account through the third term in the
left-hand side of Eq. �11�. Similar kinetic formulation was

TABLE I. Parameters of Al and Cu.

Name Symbol Unit Al Cu

Work functiona W eV 4.18 4.51

Atomic diametera d nm 0.282 0.2551

Charge exchange
Cross-sectionb

�ex 10−18 m2 1.9 1.6

Cross-section ratio �ex /�d2 — 7.6 7.8

aReference 29.
bAt 1 eV �Ref. 31�.
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used for the plasma sheath earlier.10,11 The principal differ-
ence of the present work is the highly nonequilibrium veloc-
ity distribution of neutrals typical for strong evaporation18

while only Maxwell distribution of neutrals was studied in
Refs. 10 and 11.

The problem of strong evaporation is known to be not
sensitive to the character of interatomic interaction, and so
the relaxation model of the collision integral gives a good
approximation.17,18 This model is implemented here for
neutral-neutral collisions:

Jnn = 
nn„fMn�nn,un,Tn� − fn… , �12�

with standard definition of distribution function moments:

n� =� f�dc, 0 =� C�f�dc ,

P� = m�� C�C�f�dc, q� = �m�/2� � C�
2C�f�dc , �13�

n�kT� = p� = �Pxx� + Pyy� + Pzz��/3, �14�

where u� is the flow velocity, C�=c−u� the peculiar velocity,
P� the pressure tensor, q� the heat flow vector, p� the hydro-
static pressure, and T� the temperature. Relaxation frequency
is estimated as18


nn =
32

15
nnd2��kTn

mn
�1/2

, �15�

where d is the atomic diameter given in Table I for Al and
Cu.

The most important process of ion-neutral interaction is
known to be charge exchange. Resonant charge-exchange
cross-sections �ex are calculated in Ref. 31 and listed in
Table I for Al–Al+ and Cu–Cu+ collisions at relative ener-
gies of about 1 eV. The ratio of charge exchange to elastic
collision cross-section �d2 shown in the last row of Table I is
large. Therefore, elastic collisions are neglected. In the ap-
proximation of linear trajectory, charge exchange is equiva-
lent to a head-on collision6 that gives the following collision
term:

Jin =� �f i�c��fn�c� − f i�c�fn�c����exgdc�, �16�

where g=c−c� is the relative velocity. Cross-section �ex gen-
erally depends on g, however, calculations31 in the range of
relative energies from 0.1 to 10 eV indicate that this depen-
dence is weak. Therefore, the constant value of this cross-
section estimated at 1 eV is accepted in this work �see Table
I�.

B. Boundary conditions

Neutrals, ions, and electrons incident to the condensed
phase are supposed to stick the surface without reflection. In
this case, the velocity distributions of ejected species are
independent of the distributions of incident species and are
the same as would be at equilibrium at the temperature of
condensed phase Ts. The distributions ejected from the sur-

face at equilibrium are estimated from Eq. �1� by the prin-
ciple of detailed balance. This gives a well-known result for
neutrals:12–22

fn�0� = fMn�ns,0,Ts� at cz � 0, �17�

where ns= ps /kTs, is the saturated vapor density.
The electrostatic barrier of the charge separation layer

complicates application of the same method to charges. A
relation like Eq. �17� is valid for ions at the boundary be-
tween the condensed phase and the charge separation layer
while Boltzmann equation �11� requires to specify distribu-
tion of ions f i�0� passed through the potential barrier. This
gives an additional Arrhenius factor:

f i�0� = exp� e�	s − 	�0��
kTs

� fMi�nis,0,Ts� at cz � 0, �18�

where difference 	s−	�0� is assumed to be negative and nis

is an unknown function of temperature. According to the
detailed balance principle, distribution �18� is equal to �1� at
equilibrium:

fMi��sns,0,Ts� = exp� e	s
eq

kTs
� fMi�nis,0,Ts� , �19�

where �s is the ionization degree of saturated vapor and
	s

eq�0 the condensed phase potential at equilibrium. It is
taken into account that 	�0�=0 at equilibrium because there
is no Knudsen layer. One can exclude nis from Eqs. �18� and
�19�:

f i�0� = exp� e�	s − 	s
eq − 	�0��

kTs
� fMi��sns,0,Ts� at cz � 0.

�20�

The last equation indicates that the boundary condition for
ions depends on their density in saturated vapor �sns as well
as on the change of potential barrier relative to equilibrium.

Condensed phase potential 	s can be estimated from the
charge balance at the surface. Note that in the conditions of
intensive thermionic emission �see Fig. 1�b��, contribution of
ions into charge balance is negligible because of low ratio of
ion to electron thermal velocity. Consider electron balance at
the boundary between the condensed phase and the charge
separation layer. Electrostatic field in the charge separation
layer partly repels electrons coming from the Knudsen layer,
therefore electron flux in negative direction given by Eq. �2�
is multiplied by an Arrhenius factor similar to that in Eq.
�18�:

Fe
+ = ne�0�	 kTs

2�me
exp� e�	s − 	�0��

kTs
� , �21�

where Fe
+ is the thermionic flux given by the Richardson–

Dushman equation �3�. The similar balance at equilibrium is

Fe
+ = �sns	 kTs

2�me
exp� e	s

eq

kTs
� . �22�

The flux Fe
+ can be excluded from Eqs. �21� and �22� to

obtain a relative potential barrier in the charge separation
layer:
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e�	s − 	s
eq − 	�0��

kTs
= ln� �sns

ni�0�� , �23�

where electron density ne�0� at the boundary between the
charge separation and Knudsen layers is replaced by ni�0�
according to Eq. �10�. Substitution of Eq. �23� into Eq. �20�
results in boundary condition for ions:

f i�0� = fMi� ��sns�2

ni�0�
,0,Ts� at cz � 0. �24�

This condition does not specify the distribution of ejected
species explicitly as in the case of neutrals �see Eq. �17�� but
only connects it with zero-order moment ni�0�.

Far from the surface, strong evaporation produces uni-
form flow of equilibrium vapor with one degree of
freedom,17–24 so that one flow parameter should be specified
at infinity and steady-state values of other parameters can be
found from the kinetic equations. This relation between va-
por flow parameters is known as gas-dynamic boundary con-
dition of strong evaporation, which has been extensively
studied for one-component gas.13–22 In this work we specify
pressure at infinity pn���. The functions of flow velocity
uzn���=uzi��� and temperature Tn���=Ti��� versus pressure
are the same as at one-component evaporation. The objective
of the present study is to calculate ionization degree ����
= pi��� / pn����1.

IV. NUMERICAL METHOD

Vapor parameters change very sharply near the con-
densed phase and gradually tend to constants with increasing
the distance z to the surface. Therefore high spatial resolu-
tion is required at small z while it becomes excessive at large
z. Such problems were numerically solved on nonuniform
spatial grids17 or with high-order schemes.18 In this work, a
nonlinear coordinate transform to dimensionless variable w
is used:

�1 + w�2 = 1 + z/a , �25�

with transform parameter a, which enlarges the region near
the surface and condenses space at infinity. Dimensionless
variables are introduced as shown in Table II: 
 and � are
dimensionless time and molecular velocity, respectively, and
dimensionless velocity distribution functions and their mo-
ments are denoted by waves. Unknown value ni�0� is used in
the definition of dimensionless velocity distribution function
f i of ions and its moments �see Table II�. This is possible
because kinetic equation for ions �11� is invariant when f i is
multiplied by a factor, and so the resulting dimensionless
problem becomes independent of ni�0�.

Kinetic equation for neutrals �6� with collision term �12�
and relaxation frequency �15� becomes

�1 + w�
� f̃ n

�

+ �z

� f̃ n

�w
=

32

15

a

�s
ñn	2T̃n

�
�1 + w�

�
 ñn

��T̃n�3/2
exp�−

�� − ũn�2

T̃n

� − f̃ n� ,

�26�

where

�s = 1/��d2ns� , �27�

is the mean free path of neutrals in the saturated vapor at the
temperature of condensed phase. Kinetic equation for ions
�11� with collision term �16� is transformed to

�1 + w�
� f̃ i

�

+ �z

� f̃ i

�w
−

1

2ñi

�ñi

�w

� f̃ i

��z

= 2
a

�s

�ex

�d2 �1 + w� � � f̃ i���� f̃ n��� − f̃ i��� f̃ n������� − ���d��.

�28�

Boundary conditions at the surface �17� and �24� reduce to

TABLE II. Dimensionless variables.

Name Dimensional Dimensionless

Length z w= �1+z /a�1/2−1

Time t

 =

t

a
	 kTs

2mn

Molecular and flow
velocities � c

u�
�, �=n , i � �

ũ�
� = � c

u�
�	 mn

2kTs

Velocity distribution
function of neutrals

fn
f̃n =

fn

ns
�2kTs

mn
�3/2

Velocity distribution
function of ions

f i
f̃ i = fi

ni�0�
��sns�2�2kTs

mn
�3/2

Density of neutrals nn ñn=nn /ns

Density of ions ni
ñi =

nini�0�
��sns�2

Pressure of neutrals �Pn

pn
� �P̃n

p̃n

� =
1

ps
�Pn

pn
�

Pressure of ions �Pi

pi
� �P̃i

p̃i

� =
ni�0�

��sns�2kTs
�Pi

pi
�

Temperature T�, �=n , i T̃�=T� /Ts

Heat flow of neutrals qn
q̃n =

qn

ps

	 mn

2kTs

Heat flow of ions qi
q̃i =

qini�0�
��sns�2kTs

	 mn

2kTs
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f̃ n�0� = f̃ i�0� =
1

�3/2e−�2
at �z � 0, �29�

and pressure ratio p̃n���= pn��� / ps is specified at infinity.
A discrete velocity method described below reduces Eqs.

�26� and �28� to a set of advection equations, which are
solved by a second-order finite volume method.18 In the con-
sidered evaporation problem, distribution functions are sym-
metric in the velocity space about the normal to the surface.
Therefore, molecular velocity � is specified by its axial �z

and radial �r components in the cylindrical coordinate system
shown in Fig. 3. Calculation domain 
�z

−��z��z
+ ,0��r

��r� is divided into Nz�Nr rectangular toroidal cells with
sides ��z= ��z

+−�z
−� /Nz and ��r=�r /Nr, centers at 
��z�k

=�z
−+ �k−1/2���z , ��r�l= �l−1/2���r� for k=1. . .Nz and l

=1. . .Nr �see Fig. 3�, and volumes

Vl = �
��z�k−��z/2

��z�k+��z/2

d�z2��
��r�l−��r/2

��r�l+��r/2

�rd�r = 2���r�l��z��r.

�30�

Discrete distribution function � f̃��kl is defined as the average

of continuous distribution f̃� over cell �k , l�.

A. Equation for neutrals

Kinetic equation for neutrals �26� is approximated on
this grid by

�1 + w�
�� f̃ n�kl

�

+ ��z�k

�� f̃ n�kl

�w
=

32

15

a

�s
ñn	2T̃n

�
�1 + w�

��� f̃Mn�kl − � f̃ n�kl� , �31�

with discrete equilibrium distribution � f̃Mn�kl and the follow-
ing definition of moments:

ñn = �
k,l=1

Nz,Nr

� f̃ n�klVl, �32�

ñnũn = �
k,l=1

Nz,Nr

��z�k f̃klVl, �33�

3

2
ñnT̃n = �

k,l=1

Nz,Nr


���z�k − ũn�2 + ��r�l
2� f̃ klVl. �34�

We do not distinguish here between z-component ũnz and
absolute value ũn of flow velocity because they are equal at
the cylindrical geometry of the problem.

Approximation of discrete equilibrium distribution

� f̃Mn�kl by Maxwell function �1� taken at node 
��z�k , ��r�l�
generally gives nonconservative numerical schemes,18,32 so
that careful calculation thereof is required. It is known from
statistical mechanics33 that the logarithm of the distribution
function at equilibrium is an additive integral of motion,
which is, actually, a linear combination of energy, momen-
tum, and angular momentum. For ideal gas, this integral is
equal to a quadratic form of molecular velocity that gives the
following general expression for the discrete equilibrium dis-
tribution:

� f̃Mn�kl = A exp„− �
���z�k − ��2 + ��r�l
2�… , �35�

with constants A, �, and �. To approximate Maxwell distri-
bution �1�, these constants should tend to A= ñn, �

= ñn / ��T̃n�3/2, and �= ũn when ��z and ��r tend to zero.
Equations like �35� were applied in Refs. 18 and 32.

To obtain a conservative approximation of the collision
term, the three unknowns can be found from discrete analogs
of conservation laws:

�
k,l=1

Nz,Nr

�� f̃Mn�kl − � f̃ n�kl�� 1

��z�k

��z�k
2 + ��r�l

2�Vl = 0. �36�

The resulting equations are solved by the Newton’s method
as explained in Ref. 18.

B. Equation for ions

The collision �right-hand side� term of Eq. �28� can be
expressed as a sum of integrals over cells in the velocity
space �see Fig. 3�:

J̃in = 2
a

�s

�ex

�d2 �1 + w� �
k*,l*=1

Nz,Nr �
��z�k*−��z/2

��z�k*+��z/2

d�z�

� �
��r�l*−��r/2

��r�l*+��r/2

� f̃ i��z�,�r�� f̃ n��z,�r�

− f̃ i��z,�r� f̃ n��z�,�r����r�d�r�

� �
0

2�

	��z − �z��
2 + �r

2 + 2�r�r� cos � + �r�
2d�, �37�

where � is the azimuth angle between vectors � and ��. One
can approximate integrands in Eq. �37� by their values at the
centers of cells with the second-order of accuracy:

FIG. 3. Cylindrical coordinates ��z ,�r�, in the velocity space and its discreti-
zation: ��z and ��r are cell dimensions and ��z�k and ���r�l node
coordinates.
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�J̃in�kl = J̃in���z�k,��r�l� = 2
a

�s

�ex

�d2 �1 + w� �
k*,l*=1

Nz,Nr

�� f̃ i�k*l*� f̃ n�kl − � f̃ i�kl� f̃ n�k*l*�gklk*l*Vl, �38�

where the matrix of integrals

gklk*l* =
1

�
�

0

�

	���z�k − ��z�k*�2 + ��r�l
2 + 2��r�l��r�l*cos � + ��r�l*

2 d�, �39�

is numerically calculated once for a given velocity grid.
Symmetry of this matrix about the exchange of index pairs kl
and k*l* ensures conservation of mass.

Discrete velocity equation corresponding to kinetic
equation for ions �28� is written as

�1 + w�
�� f̃ i�kl

�

+ ��z�k

�� f̃ i�kl

�w
−

1

2ñi

�ñi

�w

� f̃ i�k+1/2,l − � f̃ i�k−1/2,l

��z

= �J̃in�kl, �40�

where the right-hand side is given by Eq. �38� and the con-
servativity of the advection term �last term in the left-hand

side� is guaranteed by introducing values � f̃ i�k+1/2,l of distri-
bution function averaged over the boundary between cells
�k , l� and �k+1, l�. They are estimated by “minmod” slope
limiter method:34

� f̃ i�k+1/2,l = ��k���z�k + ��z/2�, �ni/�w � 0,

�k+1���z�k + ��z/2�, �ni/�w � 0,
� �41�

�k��z� = � f̃ i�kl +
�z − ��z�k

��z
minmod„� f̃ i�k+1,l − � f̃ i�kl,� f̃ i�kl

− � f̃ i�k−1,l… , �42�

with the “minmod” function

minmod�x,y� = �0, xy � 0,

x, xy � 0 and �x� � �y� ,
y, xy � 0 and �x� � �y� .

�43�

This gives a second-order monotone approximation of the
advection term. To specify reconstruction by Eq. �42� near
boundaries �z=�z

− and �z=�z
+, ghost nodes are introduced

with � f̃ i�−1l= � f̃ i�0l= � f̃ i�Nz+1,l= � f̃ i�Nz+2,l=0 for l=1. . .Nr.

V. RESULTS AND DISCUSSION

Numerical results are obtained for pressure ratios p̃n���
from 0.22 to 0.8 and normalized charge exchange cross-
section �ex / ��d2� from 2 to 10. Transform parameter a in
Eq. �25� is set to �s /4. The convergence of numerical solu-
tions versus the number of grid points is estimated by com-
parison of test computations with different grid sizes. The
optimal dimension of velocity grid is found to be Nz�Nr

=40�20. The optimal spatial grid size varies from 40 to 640
nodes. The higher spatial resolution is necessary for higher
charge exchange cross-sections and lower pressure ratios.

Figure 4 shows profiles of distribution function moments
and electrostatic potential 	 in the Knudsen layer at evapo-
ration with pressure ratio p̃n���=0.25 and �ex / ��d2�=5. At
such pressure ratio, Mach number in the uniform vapor flow
behind the Knudsen layer M =0.857 is obtained, where

M =
un���

	5

3

kTn���
mn

= ũn���	 6

5T̃n���
. �44�

Normalized electrostatic potential �see Fig. 4�a�� is obtained
from Eqs. �9� and �10� as

e	

kTs
= ln

ñi

ñi���
. �45�

Charges do not influence neutrals according to the con-
sidered model. Therefore, neutral moments �broken lines in
Fig. 4� are the same as at one-component evaporation calcu-
lated previously in Refs. 17 and 18. Boundary conditions
�29� at the surface are equal for dimensionless distribution
functions of ions and neutrals, so that differences between
corresponding neutral and ion dimensionless moments in the
Knudsen layer reflect difference in transport of these species
described by Eqs. �26� and �28�. In particular, the electro-
static force pushes ions in the direction from the surface that
makes their flow velocity ũi be greater than ũn �see Fig. 4�b��
and dimensionless density ñi� ñn �Fig. 4�a��. The difference
in velocity decreases with the distance from the surface be-
cause the field becomes weaker and vanishes behind the
Knudsen layer in the equilibrium vapor flow. On the con-
trary, the difference in density is accumulated downstream
and remains constant behind the Knudsen layer.

Ionization degree in weakly ionized gas is generally de-
fined as

� =
ni

nn
. �46�

One can obtain it from dimensionless densities ñn and ñi

given in Table II:

�

�s
=

1

	ñi�0�

ñi

ñn

. �47�

Ionization degree normalized thus by its value in the satu-
rated vapor �s is considerably greater than unity as shown in
Fig. 4�a�.
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The difference between temperatures of neutrals T̃n and

ions T̃i is small and not visible in Fig. 4�b�. Heat flows, q̃n

and q̃i �see Fig. 4�b��, and differences between lateral and

axial normal components of pressure tensor, P̃xxn− P̃zzn and

P̃xxi− P̃zzi �Fig. 4�c��, tend to zero with increasing the dis-
tance from the surface that indicates relaxation to equilib-

rium in the vapor flow. Notice that the values of dimension-

less partial pressures P̃xxn= P̃zzn and P̃xxi= P̃zzi remain
different in the equilibrium region. This corresponds to the
difference in dimensionless densities of neutrals and ions.

Numerical calculations indicate that differences between
corresponding dimensionless moments of neutrals and ions
decrease with increasing charge-exchange cross-section �ex.
Indeed, at high �ex, the charge-exchange integral �right-hand
side� dominates in Eq. �28� that determines fast relaxation of
velocity distribution of ions to that of neutrals. Therefore,

one can expect that dimensionless distributions f̃ n= f̃ i be-
come equal in the limit of very intensive charge-exchange
interaction.

Figure 5 and Table III show numerical results obtained at
various Mach numbers and charge-exchange cross-sections.
Electrostatic potential 	�0� at the external boundary of the
charge separation layer �three lower rows of points in Fig.
5�a�� is calculated by Eq. �45�. At very high values of �ex,
dimensionless density of ions ñi approaches that of neutrals
ñn �see Fig. 4�a��, and so this potential can be estimated from
the density distribution of neutrals:

FIG. 4. Dimensionless parameters in the Knudsen layer versus distance z
from the condensed phase: �a� density ñ�, electrostatic potential e	 / �kTs�
and ionization degree � /�s; �b� temperature T̃�, flow velocity ũ�, and heat

flow q̃�; �c� axial, P̃zz�, and lateral, P̃xx�= P̃yy�, normal components of pres-
sure tensor. Moments of velocity distribution function for neutrals �subscript
�=n� are shown by broken lines and the moments for ions ��= i� are shown
by full lines.

FIG. 5. Normalized condensed phase potential e�	s−	s
eq� /kTs ��a�, upper

curve�, potential at the external boundary of the charge separation layer
e	�0� /kTs ��a�, lower curve�, and ionization degree outside the Knudsen
layer ���� /�s �b� versus Mach number M. Points are obtained by numerical
solution of kinetic equations for neutrals and ions at various normalized
charge exchange cross-section �ex / ��d2�. Curves are obtained by numerical

solution of kinetic equations for neutrals and approximation f̃ i= f̃ n for ions.
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e	�0�
kTs

= ln
ñn�0�
ñn���

. �48�

This approach is shown by the lower curve in Fig. 5�a�. The
value of 	�0� is always positive and increases with the Mach
number. The electrostatic energy e	�0� becomes comparable
with the thermal energy kTs when the Mach number ap-
proaches unity. This indicates that the electrostatic field in
the Knudsen layer significantly influences the distribution of
charges �ions and electrons� at strong evaporation.

Electrostatic potential of the condensed phase relative to
its equilibrium potential �three upper rows of points in Fig.
5�a�� is derived from Eqs. �23� and �45� as

e�	s − 	s
eq�

kTs
=

1

2
ln�ñi�0�� − ln�ñi���� . �49�

The relation between dimensional and dimensionless ion
densities �see Table II� is taken into account to obtain Eq.
�49�. Substitution of ñn in place of ñi in Eq. �49� gives an
estimate of the condensed phase potential at �ex→� �the
upper curve in Fig. 5�a��. The condensed phase potential in-
creases approximately linearly with the Mach number M. It
raises faster than 	�0�, so that potential difference through
the charge separation layer 	�0�−	s�0 decreases with M.

The results on vapor parameters in the uniform flow re-
gion outside the Knudsen layer are summarized in Table III.
Pressure ratio p̃n��� �first row� is specified and temperature

ratio T̃n���, Mach number M, and ionization degree ���� are
calculated. The accuracy of the calculated values is up to the
last digit written excluding cases where the error is given

explicitly. The relations between p̃n���, T̃n���, and M are the
same as for neutral vapor. They were already discussed in
Refs. 17 and 18 for the same collision model. The ionization
degree is the original result obtained in this work. It is cal-
culated by Eq. �47�. In the limiting case �ex→� one can
obtain:

����
�s

=
1

	ñn�0�
. �50�

Ionization degree ���� is plotted versus Mach number
M in Fig. 5�b�. It increases with M up to about 1.3 of ion-
ization in the saturated vapor �s �remind that �s�1�. Ioniza-
tion degree at the considered conditions is controlled by
emission and transport of ions. The potential barrier in the

charge separation layer near the condensed phase surface
partly repels ejected ions. This barrier decreases with M and
allows more ions to pass through it. The contribution of this
process to the ionization degree is given by the limiting
curve at �ex→� in Fig. 5�b�. Slipping of ions relative to
neutrals becomes possible at finite values of �ex. As ions are
forced by the electrostatic field in the Knudsen layer �see
Fig. 4�a��, this gives an additional increase of ionization
�points in Fig. 5�b��. The contribution of the field in the
Knudsen layer increases with decreasing �ex.

Figure 5�b� shows that ionization degree in vapor ob-
tained by strong evaporation is greater than in the saturated
vapor at the temperature of the condensed phase. Note that
the temperature of the vapor is less than that of the con-
densed phase �see Table III�, so that its equilibrium ioniza-
tion should be still less than in the saturated vapor. There-
fore, a considerable excess of charges is expected relative to
the ionization equilibrium.

VI. CONCLUSIONS

Strong evaporation of a condensed phase is considered at
temperatures where its saturated vapor is weakly ionized.
The Debye length is assumed to be much shorter than the
mean free path, so that the plasma sheath consists of a Knud-
sen layer and a thin charge separation layer between the con-
densed phase and the Knudsen layer. The electrostatic poten-
tial of the condensed phase is assumed to be negative relative
to the gas phase. These conditions are typical for laser
evaporation of metals.

The transport of charges in the sheath is controlled by
ions and depends on ion-neutral collisions and a self-
consistent electrostatic field. The principal interaction be-
tween ions and neutrals is the charge exchange. A potential
barrier is formed in the charge separation layer that partly
repels ions ejected from the condensed phase. Its absolute
value decreases with the Mach number. An electrostatic field
accelerating ions is formed in the Knudsen layer. The poten-
tial difference through the Knudsen layer increases with the
Mach number.

Ionization degree in the vapor formed at strong evapora-
tion increases with the Mach number and can attain values
about 30% higher than the ionization degree in the saturated
vapor. Two factors contribute to this increase. The first is the
drop of the potential barrier in the charge separation layer

TABLE III. Steady-state vapor parameters far from the condensed phase surface.

Pressure ratio, p̃n��� 0.8 0.6 0.4 0.3 0.25 0.22

Temperature ratio, T̃n��� 0.953 0.891 0.801 0.734 0.689 0.657

Mach number, M 0.118 0.279 0.528 0.724 0.857 0.955

Ionization
degree,
������s

�ex��d2 =2 1.090 1.191 1.297 1.334 1.347 1.355

�ex��d2 =5 1.088 1.181 1.274 1.306 1.319 —

�ex��d2 =10 1.087 1.178
±0.002

1.262
±0.002

1.295
±0.005

1.305
±0.005

—

�ex��d2 →� 1.067 1.142 1.217 1.244 1.251 1.253
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and the second is the strengthening of the field in the Knud-
sen layer. The ionization equilibrium may be disturbed by a
considerable excess of charges.
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