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From the invention of “electric piles” by Volta in 1800
[1], batteries have a long history. Plante developed
lead-acid batteries in 1859. Leclanche invented dry

cells in the 1860s. Jungner invented nickel-cadmium
(Ni-Cd) batteries in 1899. For the last two centuries, many
types of primary and secondary batteries [2] have been de-
veloped and are now available as shown in Table 1 [3, 4]. It is
surprising that old-type batteries developed in the nine-
teenth century are still used at the forefront of electronic de-
vices and energy storage. In this respect, people in the
twenty-first century should appreciate the great achieve-
ment of electrochemists in the last two centuries.

Nevertheless, batteries have never attracted as much atten-
tion as they do today. This is due to the rapid development of
portable electronic devices, such as cellular phones, camcord-
ers, and mobile computers. The demand for lightweight and
small-sized secondary batteries for these portable electronic
devices has accelerated the development of batteries with
high-energy densities. Much effort had been devoted
throughout the world to satisfy this demand, and small-sized
secondary lithium-ion batteries (LIBs) came onto the market
in 1991 in Japan. A lineup of commercially available LIBs is
shown in Fig. 1. They have higher energy densities than any
other commercially available secondary batteries, such as
lead-acid, Ni-Cd, and nickel-metal hydride (Ni-MH) batter-
ies. The volumetric and gravimetric energy densities of the
latest LIBs reach 400 Wh dm–3 and 150 Wh kg–1, respectively
[5, 6]. Since their commercialization in 1991, LIBs have
spread to a variety of portable electronic devices at an amaz-
ingly rapid pace. It might be said that now almost all Japanese
people enjoy the benefits of LIBs. For example, at the end of
March 2001, registered cellular phones, in which LIBs are ex-
clusively used as a power source, exceeded 66.7 million [7].
This number is equal to about a half of the population of Ja-
pan. Furthermore, the high energy density of LIBs has stimu-
lated their scaling up for use in electric vehicles (EVs) and
dispersed energy storage systems for load leveling [8]. Hybrid
electric vehicles (HEVs) using LIBs, which are capable of re-
ducing CO2 in exhaust gas by 50%, have been commercial-
ized in Japan since 2000 (Fig. 2) [9, 10].

Here we review the up-to-date development of LIBs, fo-
cusing mainly on the situation in Japan. The materials, con-
structions, and performance of the latest commercially
available LIBs, including lithium polymer batteries, which
have come onto the market only fairly recently, are described
in the first half of this article. We then discuss the recent
trends in the development of battery materials for LIBs as
well as those of large-scale LIBs.

LIBs
Battery Reactions

Commercially available LIBs generally employ carbon as
a negative electrode, LiCoO2 as a positive electrode, and a
lithium salt dissolved in nonaqueous solvent as an electrolyte
[11]. Figure 3 shows the principle of LIBs. The electrode re-
actions at the negative and positive electrodes [12] are de-
scribed as
(Negative electrode)

C Li e
Charge

Discharge
Li C+ + →←

+ −x x x

(1)

(Positive electrode)

LiCoO
Charge

Discharge
Li CoO Li e2 2

→← + +−
+ −

1 x x x .

(2)
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Both negative and positive electrodes are layered com-
pounds, as shown in Fig. 3. During charging, the trivalent co-
balt ion in LiCoO2 is oxidized to tetravalent at the positive
electrode and the resulting positive charge is compensated by
deintercalation of the lithium ion into the solution, while the
lithium ion in the solution is reductively intercalated between
the layers of carbonaceous materials at the negative electrode.
The reverse reactions take place during discharging. The
overall battery reactions of LIBs are thus written as

C+LiCoO
Charge

Discharge
Li C Li CoO1-x 22

→← +x .

(3)

Only the lithium ion moves back and forth between the
positive and negative electrode upon charging and discharg-
ing, which gives rise to a potential difference of about 4 V be-
tween the two electrodes. The name, “lithium-ion”
batteries, came from this simple mechanism, that is, the
transfer of lithium ion between the electrodes.

The advantages of LIBs over conventional secondary bat-
teries are: 1) high gravimetric and volumetric energy densi-
ties, 2) high operating voltages, 3) low self-discharge rates,

4) no memory effects, 5) wide temperature ranges of opera-
tion, and 6) quick-charge acceptance, as described in the fol-
lowing sections.

Materials
As was seen above, the positive electrode must contain lith-

ium ions in its lattice when prepared. Many kinds of lith-
ium-transition metal-oxides have been proposed as positive
electrodes so far. These include LiCoO2, LiNiO2, LiMn2O4,
etc. Of these, lithium cobalt oxide LiCoO2 is almost exclu-
sively used in small-sized LIBs because of its excellent
cycleability and the ease of material preparation [13, 14]. The
crystal structure of LiCoO2 is shown in Fig. 4. LiCoO2 has a
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Table I. Commercially Available Primary and Secondary Batteries [3, 4].

Primary/ Secondary Type Components Nominal Cell Voltage

Primary

Negative Electrode Electrolyte* Positive Electrode / V

Zinc-carbon (Leclanché) Zn NH4Cl + ZnCl2 (aq) Mn02 1.5

Alkaline Zn KOH or NaOH (aq) MnO2 1.5

Zinc-silver oxide Zn KOH or NaOH (aq) AgO2 1.55

Zinc-air Zn KOH or NaOH (aq) Air 1.4

Lithium-maganese dioxide Li LiClO4 (org) Mno2 3.0

Lithium-carbon monofluoride Li LiBF4 (or) (CF)n 3.0

Secondary

Lead-acid Pb H2SO4 (aq) Pb02 2.0

Nickel-cadmium Cd KOH (aq) NiOOh 1.2

Nickel-metal hydride M-H KOH (aq) NiOOH 1.2

Lithium-ion C LiPF6 (org) LiCoO2 3.6-3.7

Lithium polymer C LiPF6, Li-imide (gel) LiCoO2 3.6-3.7

* (aq): aqueous solution; (oeg): organic solution; (gel): gel electrolyte.

Fig. 1. A lineup of commercially available lithium-ion batteries [27].
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Fig. 2. Components of an internal combustion engine/lithium-ion bat-
tery hybrid electric vehicle [9, 10].



layered rock salt (a-NaFeO2 type) structure. Lithium ions re-
side between the CoO2 layers consisting CoO6 octahedra.
Figure 5 shows typical charge/discharge profiles of LiCoO2
[15]. Lithium deintercalation (charging) and intercalation
(discharging) take place at high potentials of about 4 V against
a metallic lithium electrode (Li+/Li). LiCoO2 shows excellent
cycleability when cycled in the composition range 0.5 < x <
1.0 in LixCoO2. Lithium deintercalation beyond this range
deteriorates the layered structure of LiCoO2, and results in a
poor cycleability. Only half of the theoretical capacity (274
mAh g–1) thus can be used in practical cells.

As negative electrodes, carbonaceous materials are used
in commercially available LIBs [16]. Graphite is a typical car-
bonaceous material that consists of hexagonal sheets of
sp2-carbon atoms (called graphene sheets), weakly bonded
together by van der Waals forces into an ABABAB... stacking,
as shown in Fig. 6(a). Not only lithium ions, but also many
kinds of ions and molecules can be intercalated between
graphite sheets, and the resulting complexes are called
“graphite intercalation compounds” (GICs) [17]. The im-
portant and characteristic property of GICs is the staging
phenomenon, which is characterized by intercalate layers
that are periodically arranged in the matrix of graphite
sheets, as shown in Fig. 6(b). The stage structure of GICs is
designated in terms of the stage index n, which denotes the
number of graphene sheets between adjacent intercalate lay-
ers. Stage-1 Li-GIC is a fully lithiated state with a composi-
tion of LiC6, which restricts the specific capacity of graphite
negative electrodes to 372 mAh g–1.

Typical charge/discharge profiles of graphite are shown in
Fig. 7. The intercalation and deintercalation of lithium ions
take place with flat charge/discharge profiles at a very low po-
tential (< 0.25 V) that is close to the Li+/Li half cell potential.
X-ray diffraction (XRD) [18, 19] and Raman [20] studies
have revealed that the following stage transformations succes-
sively take place during charging and discharging:

Dilute stage-1 ↔ Stage-4 (ca. 210 mV)
Stage-2L ↔ Stage-2 (ca. 120 mV)
Stage-2 ↔ Stage-1 (ca. 90 mV)

where dilute Stage-1 denotes a phase in which lithium is inter-
calated uniformly within the host and Stage-2L denotes a liq-
uid-like Stage-2 phase that has no in-plane ordering [18]. As
shown in Fig. 7, the charge consumed during the first charg-
ing (ca. 400 mAh g–1) is not fully recovered on the following
discharging. The lost capacity is called “irreversible capacity”
(Qirr), 65 mA h g–1 in Fig. 7, and is seen only in the first cycle.
It is widely believed that the irreversible capacity is consumed
by solvent decomposition followed by protective surface film
formation on graphite [16]. The surface film is often called
“solid electrolyte interface (SEI).” The SEI suppresses further
solvent decomposition, but through this film lithium ion can
be intercalated within a graphite negative electrode; that is,
the presence of the SEI layer is a requisite for graphite nega-
tive electrodes to be used in commercially available cells. The
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Fig. 4. Crystal structure of LiCoO2.
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mechanism for SEI formation has been extensively studied in
order to obtain a good SEI layer at a minimum irreversible ca-
pacity [21, 22]. In the second cycle and later, the irreversible
capacity disappears and a specific capacity in the range
300-350 mAh g–1 is usually obtained with a coulombic effi-
ciency > 99%. Less graphitized carbons such as cokes were
used as negative electrodes in the early 1990s; however,
graphite is currently employed in almost all LIBs because of its
higher specific capacity.

Electrolyte solutions are indispensable for batteries be-
cause they carry lithium ions between the positive and nega-
tive electrodes. An aqueous electrolyte solution cannot be
used in LIBs because its potential window is limited within 2
V at maximum by the decomposition of water, that is, hydro-
gen and oxygen evolution. Hence, nonaqueous (organic)
electrolyte solutions, which are much more stable against the
high terminal voltage of about 4 V, are used in LIBs. Typical
organic solvents used in LIBs are summarized in Table II. [23,
24]. Cyclic esters and lactones—such as ethylene carbonate
(EC), propylene carbonate (PC), and γ-butyrolactone
(GBL)—have a high dielectric constant and a high viscosity.
On the other hand, aliphatic esters and ethers—such as
dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl
methyl carbonate (EMC), dimethoxyethane (DME), and
tetrahydrofuran (THF)—have a low dielectric constant and
a low viscosity. Commercially available LIBs usually employ
a mixed solvent system that is based on a viscous solvent with
a high dielectric constant and a less viscous solvent. The high
dielectric constant promotes dissociation of lithium salts and
the low viscosity enhances the movement of lithium ions.
Highly graphitized carbons are degraded upon charging in
PC-based solutions [25], so that EC-based solutions are ex-
clusively used in LIBs using graphite as negative electrodes.
A lithium salt is dissolved in these mixed solvents to obtain
ionic conductivity. Typical lithium salts and their conductivi-
ties in various solvent systems are summarized in Table III
[26]. As shown in Table III, LiPF6 shows the highest ionic
conductivity, and is most widely used in practical cells.

Commercially Available LIBs
Figure 8 shows the cell structures of cylindrical and pris-

matic LIBs [27]. The powder of LiCoO2 is mixed with a con-
ductive filler, e.g., acetylene black, and a binder, e.g.,
poly(vinylidene difluoride). A thin layer of the mixture
(100-150 µm in thickness) is coated on an aluminum foil cur-
rent collector to form a positive electrode. In a similar man-
ner, a thin layer of a graphite powder/binder mixture is
coated on a copper current collector to form a negative elec-
trode. A porous separator (25 µm in thickness) made of poly-
ethylene or polypropylene is sandwiched between the
positive and negative electrodes. They are rolled up spirally
and inserted in a steel casing (negative can). An organic elec-
trolyte solution containing a lithium salt is injected in the
casing and sealed with a positive cap. For safety, a pressure
valve and a PTC (positive temperature coefficient) element
are provided to release gas inside the cell should high pres-
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surization by gas evolution occur and to shut down the cur-
rent upon thermal runaway, respectively. Cylindrical cells
are used in camcorders, portable computers, etc. whereas
prismatic cells in smaller portable electronic devices such as
cellular phones. Some types of prismatic cells use aluminum
as a negative casing instead of steel, which reduces the
weight of the cells by about 30%. The energy density of LIBs
has been improved every year. A two-fold increase in energy
density was achieved in the last 10 years, and LIBs with the
volumetric and gravimetric energy densities greater than
400 Wh dm–3 and 150 Wh kg–1, respectively, are now avail-
able as mentioned earlier.

Figures 9(a) and (b) show typical discharge characteristics of
a cylindrical LIB (type 18650, outer diameter: 18 mm, height:
65 mm, weight: 41 g) [27]. The nominal terminal voltage and
capacity are 3.7 V and 1700 mAh, respectively. Even at a high
discharge rate of 2 C mA [28], 95% of the capacity can be ob-
tained at room temperature. The ionic conductivity of
nonaqueous electrolyte solutions is lower than two orders of
magnitude compared to that of aqueous solutions; however,
the low conductivity is made up for by using thin and large-area
electrodes stuffed into a limited space. In addition, LIBs can be

used over a wide temperature range, –20 to 60 °C, as shown in
Fig. 9(b). Commercially available LIBs retain 70-80% of the
initial capacity even after 300 cycles, and more than 500 cycles
of charging and discharging can be attained [27]. The self-dis-
charge rate of LIBs is typically 35% per year at room tempera-
ture, which is much slower than that of Ni-Cd or Ni-MH cells.
Figure 10 shows a charging profile of the 18650 cells [27]. LIBs
are typically charged at a constant current to a predetermined
cell voltage, and then at the constant voltage, which is called
constant current/constant voltage (CC/CV) charging. The final
voltage is usually set at 4.1-4.2 V, which depends on the combi-
nation of the positive and negative electrode materials. Over-
charge beyond this limit may lead to combustion or explosion
so that the cells should be charged with their exclusive chargers.
It takes a few hours for LIBs to be fully charged, while about
90% of capacity could be charged in an hour.

Lithium Polymer Batteries
Gel Electrolytes

Portable electronic devices, especially cellular phones, are
becoming immensely popular in Japan, which imposes a de-
mand for even smaller secondary batteries. However, it is
widely recognized that a critical thickness is 4 mm for LIBs
using metal cans as casings. In 1999, the limit of 4 mm was
overcome by lithium polymer batteries (LPBs) using poly-
mer electrolytes [29] and aluminum/resin-laminated films
(~100 µm in thickness) as casings.

The major difference between LIBs and LPBs is that the
latter use polymer electrolytes instead of liquid electrolyte
solutions in the former. Polymer electrolytes used in com-
mercially available LPBs are so called “gel electrolytes.”
They are composed of an electrochemically inactive poly-
mer matrix swollen by a lithium salt solution in a compatible
solvent, and are further classified as “homogeneous gels”
and “porous gels.” At high temperatures they flow like liq-
uid, but below a glass transition temperature (Tg) they be-
have as rubber, as shown in Fig. 11. A suitable choice of a
lithium salt and a solvent system can attain a high conductiv-
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Table II. Characteristics of Organic Solvents in LIBs [23, 24].

Solvent Melting Point
/ °C

Boiling Point
/ °C

Dielectric Constant
at 25 °C/ -

Viscosity at 25 °C
/ cP

Donor Number
/ -

Ethylene carbonate (EC) 39-40 248 89.6
a

1.86
a

16.4

Propylene Carbonate (PC) -49.2 241.7 64.4 2.53 15.1

g-Butyrolactone (GBL) 42 206 39.1 1.751 -

Dimethyl carbonate (DMC) 0.5 90-91 - 0.59 -

Diethyl carbonate (DEC) -43 126.8 2.82 0.748 -

Ethyl Methyl carbonate (EMC) -55 108 2.9 0.65 -

1,2-Dimethoxyethane (DME) -58 84.7 7.2 0.455 24

Tetrahydrofuran (THF) -108.5 65 7.25
b

0.46
b

20

Methyl Formate (MF) -99 31.5 8.5 0.33 -
a
at 40 °C and

b
at 30 °C.

Table III. Ionic Conductivity of Various Electrolyte Solutions [26].

Salt* Ionic conductivity ** / mS cm–1

PC GBL PC/DME GBL/DME PC/EMC

(1:1 mol) (1:1 mol) (1:1 mol)

LiBF4 3.4 7.5 9.7 9.4 3.3

LiClO4 5.6 10.9 13.9 15.0 5.7

LiPF6 5.8 10.9 15.9 18.3 8.8

LiAsF6 5.7 11.5 15.6 18.1 9.2

LiCF3SO3 1.7 4.3 6.5 6.8 1.7

LiN(CF3SO2)2 5.1 9.4 13.4 15.6 7.1

LiC4F9SO3 1.1 3.3 5.1 5.3 1.3

* Concentration: 1 mol dm
–3

** PC: propylene carbonate; GBL: γ-Butyrolactone; DME: dimethyl ether; EMC: ethyl
methyl carbonate



ity (10–3-10–2 S cm–1), which is comparable with that of a liq-
uid electrolyte solution.

Homogeneous gels are prepared by polymerizing a mix-
ture of a monomer and a liquid electrolyte solution. The poly-

mer matrix completely dissolves in the liquid electrolyte solu-
tion in homogeneous gels. Typical matrix polymers used in
homogeneous gels are poly(ethylene oxide) (PEO), poly-
acrylonitrile (PAN), and poly(methyl methacrylate) (PMMA).
In contrast, porous gels are prepared using a phase separation
of a polymer matrix in a solvent system. The resulting porous
matrix is soaked in a liquid electrolyte solution to form a solid
gel. Microscopically the crystalline part of the polymer matrix
forms a framework of the gel, while the amorphous part dis-
solves the electrolyte solution. Co-polymer of vinylidene
difluoride and hexafluoropropylene P(VdF-HFP), which was
developed by Bellcore [30], is a typical polymer matrix for po-
rous gels. Both types of gel electrolytes are now employed in
commercially available LPBs.

The main advantage of LPBs is the absence of free sol-
vents. Figure 12 compares the amounts of evaporated sol-
vent when a gel electrolyte and a porous separator
containing a liquid electrolyte solution were heated to vari-
ous temperatures [31]. Evaporation of solvent is much lower
from the gel electrolyte. Consequently, the use of gel electro-
lytes results in a decrease in internal pressure and suppresses
the expansion of the battery casing, which enables the use of
mechanically weak aluminum/resin laminated films as cas-
ings of LPBs. In addition, the absence of free solvents greatly
improves the safety and reliability of the cells.

November/December 2001  — Vol. 17, No. 6 11

PTC Device Positive Cap

Gasket

Separator

Casing

(Negative Terminal)

Negative
Electrode

Positive
Electrode

Positive Current
Collector

Negative
Current

Collector

Insulator

Safety Vent

Current Breaker

Negative Cap Safety Vent

Gasket

Negative
ElectrodePositive

Electrode
Casing

Separator

Insulating Spacer
Current Collector

Cover

(a)

(b)

Fig. 8 Cell structures of (a) cylindrical and (b) prismatic lithium-ion
batteries [27].

Discharge Capacity / mAh
(a)

Discharge Capacity / mAh
(b)

2.0 C

0.2 C

2.0

2.5

3.0

3.5

4.0

4.5

2.0

2.5

3.0

3.5

4.0

4.5

C
el

lV
ol

ta
ge

 /
V

C
el

lV
ol

ta
ge

 /
V

Charge: 1.6 A 4.2 V (CC CV), 3 h Temp.: 25 C− °−

Charge: 1.6 A 4.2 V (CC CV), 3 h Discharge: 0.32 A− −

1.0 C

0

0

400

400

800

800

1200

1200

1600

1600

−20 C° −10 C° 0 C°

20, 60 C°

0.5 C

Fig. 9. Performance of a lithium-ion battery (type 18650, outer diame-
ter: 18 mm, height: 65 mm, weight: 41 g). (a) Rate capability and (b)
temperature dependence [27].



Commercially Available LPBs
Figure 13 shows an LPB and its construction [32].

LiCoO2 and carbons are commonly used as positive and neg-
ative electrode materials, respectively, in LPBs. For porous
gel-type LPBs, the positive and negative electrodes and a
polymer matrix layer are rolled up and inserted in an alumi-
num/resin-laminated film casing. A liquid electrolyte solu-
tion is then injected to form a gel electrolyte. A polyolefin
microporous separator and/or fine ceramic filler, such as
SiO2, are often added to improve the mechanical strength.
For the preparation of homogeneous gel-type LPBs, a
polyolefin microporous separator is sandwiched between
the positive and negative electrodes. They are rolled up and
inserted in a laminated film casing. After a mixture of a
monomer and an electrolyte solution are injected in the cas-

ing, thermal polymerization is carried out to form a gel
polymer in the cell.

Figure 14 shows discharge characteristics of a typical
LPB (type: 363562, size: 35 × 62 × 3.6 mm, weight:
13.5 g; nominal capacity: 570 mAh). The discharge char-
acteristics at high rates and at low temperatures, which
are considered to be weak points of LPBs, have been im-
proved to levels comparable with those of LIBs. The
gravimetric and volumetric energy densities of the LPB
are 156 Wh kg–1 and 270 Wh dm–3, respectively. The re-
sults of safety tests are not found in the literature; how-
ever, the absence of free solvents undoubtedly improves
the safety of LPBs. Most of LPBs are currently manufac-
tured for use as power sources of cellular phones that be-
come thinner and lighter every year in Japan.

Recent Development of Battery Materials
Negative Electrode Materials

As mentioned earlier, graphite is most widely used as a
negative electrode in LIBs. In addition to graphite, many
kinds of carbonaceous materials such as carbon black, acti-
vated carbon, carbon fiber, and cokes are manufactured
and have been tested as negative electrodes. The electro-
chemical characteristics of carbonaceous materials depend
on the morphology, the crystallinity, the orientation of
crystallites, etc. Pyrolyzed carbons are classified as “soft car-
bons (graphitizable carbons)” and “hard carbons
(nongraph- itizable carbons)” [16]. Figure 15 shows rela-
tionships between the specific capacity and heat-treatment
temperature (HTT) of soft and hard carbons [33]. In Fig.
15, two types of carbons have attracted attention because
they exhibit higher specific capacities than those of highly
graphitized carbons heat-treated at temperatures > 2400
°C. One is soft carbons heat-treated at temperatures below
1000 °C, which show a specific capacity in the range
500-1000 mAh g–1 [34, 35]. Typical charge/discharge pro-
files are shown in Fig. 16(a) [36]. This kind of soft carbon is
characterized by a large hysteresis in their potential pro-
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files. The presence of the hysteresis leads to a loss of stored
electrical energy, which is dissipated as heat during
charge/discharge cycles. Another drawback is poor
cycleability, and the capacity decreases to a half of the ini-
tial capacity in several cycles. Various models explaining
their high capacity have been suggested so far. These in-
clude lithium intercalation between graphene sheets with
an in-plane LiC2 structure [37], lithium doping within
nanoscopic cavities [38], formation of ionic complexes like
lithium naphthalene [39], a chemical reaction between in-
serted lithium atoms and the hydrogen-terminated edges of
hexagonal carbon fragments [40], etc. However, the mech-
anism for the high capacity is still controversial.

The other type of the high-capacity carbons are hard car-
bons heat treated at ~1000 °C, which exhibits a specific ca-
pacity in the range 500-700 mAh g–1. Hard carbons
pyrolyzed from petroleum pitch, poly(furfuryl alcohol), and
phenolic resins belong to this category. This type of hard car-

bon is characterized by the presence of a low and large po-
tential plateau at about 0.05 V in their charge/discharge pro-
files as shown in Fig. 16(b) [41]. It seems that the high
capacity is brought about by Li-cluster formation in
nanopores formed by small graphene sheets (~2.5 nm) in
the hard carbons [42], which is called a “house of card”
model [43].

Lithium metal is the most attractive alternative material as
a negative electrode in LIBs because of its low electrode po-
tential (–3.045 V vs. standard hydrogen electrode) and its
high specific capacity (3860 mAh g–1). In fact, lithium metal
has been widely used as a negative electrode in primary lith-
ium cells for more than 20 years. The R&D of secondary bat-
teries using lithium metal began in 1970s, and secondary
Li/MoS2 cells were once commercialized in 1987 for cellular
phones. In secondary cells, however, prolonged charge/dis-
charge cycling causes dendrite formation of the lithium
metal, which results in poor safety and cycleability. Because
of the safety problems, all the manufactured Li/MoS2 cells
were recalled in 1989. The key to suppress dendritic deposi-
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tion of lithium metal is to control the SEI (solid electrolyte
interface) layer formed on lithium metal. For this purpose,
the composition and morphology of SEI have been studied
extensively using a variety of analytical tools such as FT-IR
[44], X-ray photoelectron microscopy (XPS) [45], and
atomic force microscopy [46]. In spite of extensive efforts of
many researchers, it will be some time before secondary lith-
ium metal batteries are placed on the market.

Another class of potential negative electrodes are lith-
ium-alloys and intermetallic compounds LixM (Mg, Ca, Al,
Si, Ge, Sn, Pb, As, Sb, Bi, Pt, Ag, Au, Zn, Cd, Hg, etc.) that of-
fer much higher specific capacities than graphite, e.g., 710
mAh g–1 for Li4.4Sn [47]. However, alloying causes a large
volume change (i.e., 100-300%) and the resulting alloys are
usually brittle. Lithium-alloy electrodes hence suffer from
cracking and crumbling (pulverization), and deteriorate af-
ter only several charge/discharge cycles. A big breakthrough
in lithium-alloy electrodes was proposed by Fuji Photo Film
Co. in 1997 [48]. They developed tin-based amorphous
composite oxide (TCO), SnBxPyOz [x = 044-0.6, y =
0.6-0.4, and z = (2 + 3x +5y)/2], which exhibits a good

cycleability as well as a high specific capacity (~640 mAh
g–1). During the first charging, SnBxPyOz is first reduced to
active Sn particles and an oxide matrix, and the Sn metal is
alloyed with Li at lower potentials. The oxide matrix stabi-
lizes the fine Sn particles, and greatly improves the cycle-
ability. Stimulated by the success of TCO, lithium-alloy and
related materials have received particular attention, and
many kinds of improved alloys and intermetallic compounds
have been proposed [47]. These include Sn-Sb [49],
Sn-Fe(-C) [50], In-Sb [51], and Mg-Ge [52].

Lithium transition-metal nitrides (Li3–xMxN, M: Co, Ni,
and Cu) are also potential candidates for negative electrode
materials [53]. Li2.6Co0.4N shows a high capacity of 900
mAh g–1 at an average discharge potential of 0.7 V, and
shows good cycleability [54]. Spinel Li[Li1/3Ti5/3]O4
(Li4Ti5O12) is an interesting material as a negative electrode
[55]. Although the discharge potential (~1.6 V) is not as low
as other alternative negative electrodes, this material shows
no volume change during charging and discharging, and
hence is characterized by an excellent cycleability with a
small capacity fade upon prolonged cycling.
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Positive Electrode Materials
As mentioned earlier, most small-sized LIBs employ

LiCoO2 as a positive electrode material. Nevertheless, the
toxicity and the scarcity of cobalt resources, and the rela-
tively low specific capacity (~140 mAh g–1) have accelerated
the development of alternative positive electrode materials
with higher specific capacities and lower costs.

LiNiO2-based oxides are among the most promising can-
didates as 4-V class positive electrode materials [56, 57].
LiNiO2 crystallizes in the same layered structure as LiCoO2.
Lithium ion is reversibly extracted and inserted in the range
0.3 ≤ x ≤ 1.0 in LixNiO2, and thereby LiNiO2 offers a higher
specific capacity (~200 mAh g–1) than LiCoO2. Preparation
of stoichiometric LiNiO2 is very difficult because Ni3+ ions
are unstable and tend to be reduced to Ni2+ ions, which oc-
cupy the Li+ sites in the layered rock-salt structure. Even
stoichiometric LiNiO2 shows poor cycleability upon pro-
longed cycling. The structural instability of LiNiO2 can be
partly overcome by Co3+ doping (LiNi1–yCoyO2) [58, 59].
Figure 17 compares discharge curves of LiCoO2, LiNiO2,
and LiNi0.8Co0.2O2 electrodes [60]. A specific capacity of
about 190 mAh g–1 can be achieved from the LiNi0.8Co0.2O2
electrode. Figure 18 shows differential scanning calorimetry
(DSC) curves of LiCoO2, LiNi0.9Co0.1O2, and
LiNi0.6Co0.3Mn0.1O2 [61]. Singly doped LiNi0.9Co0.1O2 de-
composes at about 200 °C accompanied by a large exother-
mic heat. Such thermal instability is greatly improved by
double doping of Co and Mn ions [62] as shown in Fig. 18.
Doubly doped LiNi0.6Co0.3Mn0.1O2 exhibits a specific ca-
pacity of 160 mAh g–1 with a good cycleability [63].

Manganese is an abundant natural resource and its toxic-
ity is low, which makes spinel LiMn2O4 positive electrodes
very attractive for use not only in small-sized cells, but also in
large-scale LIBs [64-66]. The charge/discharge profiles of
spinel LiMn2O4 are shown in Fig. 19. The practical capacity
of LiMn2O4 in the 4-V region is around 130 mAh g–1. Spinel
LiMn2O4 electrodes suffer from a serious capacity fade upon
prolonged charge/discharge cycling. Partial substitution of
Mn3+ with Li+ [67] or other transition metal ions, such as
Cr3+, Co3+, and Ni2+ [68], is effective to suppress the capac-
ity fade. It was reported that the presence of oxygen vacan-
cies plays a major role in the capacity fade of undoped
LiMn2O4 [69-71]. The partial substitution decreases oxygen
vacancies, which improves the cycleability at room tempera-
ture. However, even doped spinel electrodes deteriorate at
elevated temperatures (~60 °C) accompanied by the disso-
lution of Mn ion [72]. It seems that the capacity fade at ele-
vated temperatures is related to the presence of acid in the
solution [72] and the structural instability of LixMn2O4 at x
~ 0.8 [73].

It is worth mentioning that doped spinel electrodes
(LiMyMn2–yO4, M: Cr, Co, Ni, Cu, etc.) exhibit a capacity in
the 5 V range in addition to that in the 4 V range [74-76]. The
high voltages of these doped spinel electrodes result from
high solid-state redox potentials of the dopants in the spinel
framework. Unfortunately, the 5 V positive electrodes cannot

be used in LIBs at present because of a lack of electrolyte mate-
rials that are stable against the high potentials. Other types of
5 V positive electrodes such as inverse-spinel LiNiVO4 [77]
and olivine LiCoPO4 [78] have been also reported.

Layered manganese dioxide, LiMnO2, has a lower work-
ing potential than the spinel electrodes, but shows a higher
capacity (~200 mAh g–1) [79]. The layered structure of pure
LiMnO2 tends to transform into the spinel structure on
charge/discharge cycling, resulting in a rapid deterioration
in performance. The transformation can be suppressed by
partial substitution of Mn3+ by other metal cations, and
thereby the performance can be greatly improved. Cr-doped
Li(Cr0.4Mn0.4Li0.2)O2 exhibits a specific capacity of 180
mAh g–1 at 55 °C, and the transformation to spinel is not ob-
served at least for 200 cycles [80]. However, the cycleability
of these layered manganese oxides is still open to questions
for practical use in LIBs.

Electrolytes
The choice of the proper electrolyte is crucial in LIBs.

Commercially available LIBs commonly employ an electro-
lyte solution of LiPF6 dissolved in a mixture of ethylene car-
bonate (EC) and an aliphatic carbonate such as
dimethylcarbonate (DMC), diethylcarbonate (DEC), and
ethyl methyl carbonate (EMC). Electrolyte solutions contain-
ing LiPF6 show a high ionic conductivity (~10–2 S cm–1) and
high electrochemical stability against LiCoO2 positive elec-
trodes up to ~4.5 V, and furthermore can provide a dense and
uniform SEI (solid electrolyte interface) layer on graphite neg-
ative electrodes. However, its safety cannot be guaranteed
upon thermal runaway because LiPF6 decomposes gradually
at about 100 °C and extensively at 200 °C. Novel lithium salts
that show superior stability as well as high ionic conductivity
have been reported recently. These include lithium imides
[81] such as LiN(SO2CF3)2, LiN(SO2C2F5)2, and
LiN(SO2CF3)(SO2C4F9), as well as lithium fluoroalkyl-
phosphates such as LiPF6–n(CF3)n [82] and LiPF6–n(C2F5)n
[83]. The sensitivity towards hydrolysis is also suppressed to a
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great extent. It has been pointed out that the imide salts cor-
rode aluminum current collectors in LIBs [84].

Another important issue to improve safety is the develop-
ment of nonflammable solvents. In this respect, partially flu-
orinated solvents are attracting considerable attention
because the electronegativity of the substituted fluorine at-
oms results in a low reactivity and a higher decomposition
temperature [85] - [87]. For example, fluorinated esters such
as methyl difluoroacetate exhibit a significant improvement
in thermal stability when coexisting with lithium metal or
LixCoO2 [88]. Another advantage of fluorination is to ex-
pand liquidus ranges of solvents, which improves the ionic
conductivity at low temperatures [89].

DRY POLYMER ELECTROLYTES
There are two types of polymer electrolytes. One is the

“gel electrolyte” described earlier. The other type is called
“dry polymer electrolyte," which consist only of a polymer
and a lithium salt. Dry polymer electrolytes are based on a
complex of PEO, which has sequential oxyethylene units,
–(CH2–CH2–O)n–, and a lithium salt such as LiClO4, LiBF4,

LiCF3SO3, LiN(SO2CF3)2, etc. At room temperature, most
of the dry polymer is crystallized, which results in a low ionic
conductivity in the range 10–7-10–6 S cm–1. Above a melting
point at about 60 °C, segmental motion of the polymer
chains is activated and the conductivity increases by three or-
ders of magnitude. The suppression of crystallization is ef-
fective to improve the ionic conductivity. This has been
realized by (i) cross-linking, (ii) co-polymerization, (iii) in-
troduction of branched side chains [90], (iv) polymer alloy-
ing, and (v) inorganic filler addition [91].

In dry polymer electrolytes, lithium ions are strongly
fixed by oxyethylene units so that anions move faster than
lithium ions. This causes a depletion of lithium ions in the vi-
cinity of an electrode at high current densities and may result
in a large polarization. In this respect, single (lithium)-ion
conductive dry polymer electrolytes are preferred for use in
LPBs. Inorganic-organic hybrid polymers have been re-
ported for single-ion conductors [92]. The potential window
of PEO-based polymer electrolytes is limited to 3.7-3.8 V be-
cause of their instability against oxidation; hence, 3-V posi-
tive electrodes such as V6O13, Li4Mn5O12 [93], and LiFePO4
[94, 95] are used in lithium dry-polymer batteries.

Dry polymer electrolytes are completely free from vola-
tile solvents, and hence their use improves the safety to a
great extent. In addition, dry polymer electrolytes are likely
to suppress the dendritic formation of lithium metal [96].
These features of dry polymer electrolytes are very profit-
able when used in large-scale batteries. In Japan, large-scale
lithium dry-polymer batteries are being developed under a
national project as described in the following section [97].

Large-Scale Batteries
Limitation on fossil resources and environmental

considerations press our society to utilize energy re-
sources more efficiently. In Japan, energy security is-
sues are even more serious than those in other
developed countries due to Japan’s scarce resources.
Utilization of natural energy resources such as sun-
shine, wind, wave, etc. is becoming important in our
society. One of the problems in utilizing these natural
energy resources is difficulty in expressing a resource
as a stable supply of electricity. Development of
large-scale batteries of high performance and long cy-
cle life is essential to solve this problem. It is also im-
portant to level the load of electric power with
rechargeable batteries for efficient operation of exist-
ing large-scale electric power plants.

Although modern cars emit far less toxic pollutants
than their predecessors, their increasing number is re-
sulting in a growing insistence to reduce automobile
pollution. It is necessary to replace a significant num-
ber of the internal-combustion-engine vehicles with
electric vehicles including pure (PEVs), hybrid
(HEVs), and fuel cell (FCEVs) electric vehicles in the
near future [98]. This has been accelerated by an am-
bitious requirement of the California Air Resource
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Fig. 20. Photographs of (a, b) stationary-type (2 kW-class) and (c,d) EV-applica-
tion-type (3 kW-class) battery modules and unit cells developed in the NSS Pro-
gram. [Courtesy of New Energy and Industrial Technology Development
Organization of Japan (NEDO)].

Table IV. Goals of Battery Modules in the New Sunshine Program [103, 104].

Type Stationary EV application

Module capacity 2 kWh class 3 kWh class

Gravimetric energy density / Wh kg
-1

120 150

Volumetric energy density / Wh dm
-3

240 300

Power density / Wh kg
-1

- 400

Cycle life / cycles 3500 1000

Energy efficiency / % > 90 > 85



Board (CARB) [99]. Auto-manufacturers in the world are in
fierce competition for developing their own electric vehi-
cles. In response to this, national projects were established in
the United States, Europe, and Japan, and have continued
with the development of large-scale batteries for EVs.

In Japan, the Lithium Battery Energy Storage Technology
Research Association (LIBES) began contracted research and
development of large-scale LIBs of 20-30 kWh for use in dis-
persed battery energy storage systems and electric vehicles as
part of the government’s New Sunshine (NSS) Program
[100, 101]. In 1997, the basic plan was revised [102] and
great importance was placed on the development of
high-performance battery modules of 2-3 kWh, as shown in
Table IV [103, 104]. The modules are manufactured by com-
bining several unit cells of 200-360 Wh. For example, 360
Wh unit cells with energy densities of 129 Wh kg–1 and 288
Wh dm–3 have been already developed. The stationary-type
and EV application-type battery modules and unit cells de-
veloped in the NSS Program are shown in Fig. 20. The re-
vised plan emphasizes safety and low cost, as well as easy
processing. In addition, battery technologies in the near fu-
ture such as lithium dry-polymer batteries, lithium metal
batteries, and nonflammable electrolytes are being devel-
oped with special emphasis in the NSS Program.

Conclusions
Since the commercialization in 1991, the production of

LIBs has grown satisfactorily in Japan. In the next decade
LIBs must meet diverse demands of the market. The rapid
development of portable electronic devices imposes a de-
mand for even smaller secondary batteries. Development of
large-scale LIBs for EVs and energy storage systems is also a
matter of great urgency in the twenty-first century. The en-
ergy density of LIBs has been doubled without changing the
basic components since 1991. However, the improvement
of the energy density has reached the limits, and now it
seems to be the time for LIBs to evolve from the original
components. Such evolution started with the commercial-
ization of LPBs in 1999. Some of the alternative materials
described in this review article are very promising, and in the
first decade of the 21st century variety types of LIBs includ-
ing large-scale batteries will be developed and commercially
available not only in Japan, but also in all over the world.

Finally, safety is the most important issue in the develop-
ment of LIBs although it is not described with special empha-
sis in this review article. One explosion somewhere in the
world may plunge the whole market of LIBs into a serious
situation, as was proved by the history of secondary lithium
metal batteries.
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