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The dispersion relation, the field distribution, and the lifetime of the radiational eigenmodes in two-
dimensional photonic crystals composed of metallic cylinders were calculated fBrgbkarization by means
of the numerical simulation of the dipole radiation based on the finite-difference time-d@RIAD) method.
The convergence and the central processing unit time were compared with the plane-wave expansion method.
The opaque frequency ranges in the transmission spectra calculated by the method of Pendry and MacKinnon
corresponded quite well to the band gaps and the antisymmetric modes found in the photonic band diagram.
The dispersion relation and the symmetry of the eigenmodes obtained by the numerical calculation were
consistent with the prediction of the group theory and the analytical expression by the long-wavelength
approximation.
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I. INTRODUCTION nant polarization plays an important role in their optical re-
sponse, we cannot neglect the frequency dependence of their
The dispersion relation and the density of states of thelielectric constants.
radiation field in photonic crystals are substantially different To our knowledge, a small number of numerical works
from those in free spade’ When their crystal structure is have been reported related to this problem. Kuzmiak and
appropriately designed and the amount of the spatial modwzo-workers treated two-dimensional photonic crystals com-
lation of their dielectric constant is large enough, frequencyposed of metallic cylinders with a dielectric constant of the
ranges called photonic band gaps can appear in which nbrude type by means of the plane-wave expansion
electromagnetic eigenmode is allowed to exist. Optical propmethod®~® Nojima calculated the dispersion relation of ex-
erties of atoms and molecules embedded in such photonititon polaritons in a one-dimensional photonic cryStahe
crystals can also be quite different from those in free spacealculation was performed by searching the zero points of
or uniform materials. For example, if the transition fre- the determinant of the coefficients obtained by the plane-
guency of the embedded atoms lies in the photonic band gapyave expansion. Yannopapasal. reported the dispersion
no optical transition is allowed and spontaneous emission afelation and transmission spectra of fcc lattices composed of
photons is completely forbidden. In the very beginning of themetallic sphere&® The calculation was performed by the
extensive investigation of photonic crystals, Yablonovitchtransfer matrix method based on the vectorial Korringa-
pointed out these types of drastic changes of the opticakohn-Rostokei(KKR) formalism'?In this case, spherical
properties and their possible application to light-emittingwaves were used as a basis set, and good numerical accuracy
devices’ was attained with a small number of spherical waves. The
In most theoretical investigations reported so far, the di-same holds for a two-dimensional array of circular cylinders,
electric constants of the photonic crystals were assumed tsince we may use cylindrical waves as the basis sdbw-
be independent of frequency. When we deal with transparerdver, in general cases in which we cannot assume a spherical
materials whose optical transition frequencies are far fronmor cylindrical symmetry for the components of the crystal,
those of the relevant radiation field, this assumption is reawe have to apply a more general method such as the plane-
sonable. However, when we deal with materials whose resovave expansion in spite of its slow convergence.
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Since spheres and cylinders are the simplest structures tigenmodes is rigorously taken into account as well by im-
be analyzed, they have been treated by the plane-wave erosing an appropriate boundary condition when we solve the
pansion method as well. As Kuzmiak al. reported for the difference equations derived from Maxwell’'s equations. The
two-dimensional array of metallic cylinders, in contrast with lifetime of the eigenmodes can be obtained by evaluating the
the frequency-independent case, the eigenvalue equation si¢émporal decrease in the accumulated radiation energy after
isfied by the expansion coefficients is not linear withic?, ~ Switching off the oscillation of the dipole.
wherew is the angular frequency of the radiation field and N this study, we analyzed the radiation field in two-

is the light velocity in free space. So they had to linearize theflimensional metallic systems. The present work consists of

eigenvalue equation by taking a larger basis set, which reWO Papers. This papePaper J deals mainly with the prin-

sulted in a heavier computational task. In the case ofgthe CiPle and accuracy of our numerical method. The conver-
polarization for which the electric field is parallel to the cyl- 96nc€ and the CPU time of our method will be compared
inder axis and perpendicular to the two-dimensional planeVith the plane-wave expansion method. The dispersion rela-
the linearization procedure needed triple plane waves. In thion, the field distribution, and the lifetime of the radiational
case of theH polarization for which the magnetic field is €/9enmodes in two-dimensional square crystals composed of
parallel to the cylinder axis, quadruple plane waves werdnetallic cylinders calculated for the polarization will be

necessary. Usually the central processing (@RU) time for ~ Presented and compared with the prediction of the group
the diagonalization of a matrix is proportional to the cube oftn€ory. The transmission spectra calculated by the method of

its dimension, and hence to the cube of the number of thEendry and MacKinndfi will be compared with the disper-
plane waves. So the computaional task was 27 times heavi€fon refation, and good correspondence between them will be
for the E polarization and 64 times heavier for thepolar-  ShoWn. In the following papeiPaper I),”> we will deal with
ization than the frequency-independent case. Extension ¢f€H polarization of the same system and show the presence
this method to three-dimensional systems and more complf €igénmodes with extremely small group velocites due to
cated systems such as those containing structural defedfie localized nature of surface plasmons. This feature will be

seems difficult, as a much larger number of plane waves arg/ther clarified by comparing their eigenfrequencies and
necessary for an accurate calculation. eigenfunctions with the Mie resonance states for a single

One of the present authors and his collaborator reportefetallic cylinder.
another method based on the numerical simulation of the
dipolg radiation by means Qf the fi_nite-difference time- Il. THEORY
domain (FDTD) method** Originally, this method was ap-
plied to the problem of point defects in a two-dimensional Let us explain our method here. We consider the radiation
square crystal, and an excellent agreement between the thgrocess of an oscillating dipole moment that is embedded in
oretical calculation and the experimental observation waghe photonic crystal. We begin with the following two equa-
shown?®® Later, it was applied to point defects in a hexagonaltions (MKS units):
crystal® line defects in a square crystdland the evaluation
of the quality factor in the presence of dielectric 16%4n p
this method, the electromagnetic field radiated by an oscil- VXE(r,t)=—puo—=H(r,t), (1)
lating point dipole is calculated as a function of the oscilla- Jt
tion frequency. The eigenfrequency is obtained as a reso-
nance frequency, i.e., as a peak frequency of the radiation 9
spectrum. The emitted field at the resonance frequency gives VXH(r,t)= E{DO(r’t) +Py(r,t)}, ()
the eigenfunction. The CPU time for this method is essen-

tially proportional to the number of the representative points

on the spatial mesh used for the discretization of Maxwell’sWhere E.(r,f[), H(r,1), and u denote the elgctric field, the
agnetic field, and the magnetic permeability of free space,

equations, which is in marked contrast to the case of thé" X o
plane-wave expansion method for which the CPU time ig€SPectively. In Eq(2), Py(r.t) stands for the oscillating
proportional to theubeof the number of the plane waves. In diPole moment:

addition, the FDTD algorithm is especially suitable for the

vector processing and parallel computing, and so, the CPU Py(r,t) = ud(r —rg)exp —iwt), 3)

time can be reduced greatly by using a computer with a

vector processor or a parallel machine. Therefore, the nuyhere u andr, are the magnitude and the position of the
merical simulation of the dipole radiation is superior to thegdjpole moment, and is Dirac’s delta functionDy(r,t) de-
plane-wave expansion method when large and/or complinotes the electric displacement due to the regular dielectric
cated systems are analyzed. For example, we can deal withsgructure of the photonic crystal. It is generally given by the

larger supercell than that usually assumed in the plane-wavgnvolution integral of the electric field and the dielectric
expansion method when we calculate the eigenfrequenciggsponse functiod(r,t):

and the eigenfunctions of localized defect modes. Thus the

impurity-band effect can be eliminaté@iThree-dimensional

systems can also betreated, as was shown by the excellent Do(r,t)=¢ fw dt'd(r,t—t)E(r,t') ()
calculation by Hwanget all® The spatial symmetry of the o °) ' o
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whereeg is the permittivity of free spaceb(r,t) is given by i.e., we can obtain the dispersion relation. By the boundary
the Fourier transform of the dielectric constasfr,w), conditions, Eqs(12) and(13), it is enough to treat a unit cell
which is now a function of frequency as well as the spatialin the numerical calculation, and we do not need additional
coordinates: boundary conditions such as the absorbing boundary condi-
tion, which is often necessary when we treat a finite volume
by the FDTD calculatio This fact resulted in a small CPU
time. The computation of the integral in the second term on
. o the right-hand side of Eq9) may seem time-consuming at a
Note that®(r,t) should satisfy the causality, i.e., first glance. But it is not, since the kernel has a sir(r1§>le form.
_ When we denote the electric field at tirtre pAt by EP)(r),
¢(r,H=0 for 1<0, ©) whereAt is the interval of the temporal mesh points gnis
which implies that (r,») does not have a pole in the upper an integer, the integral is approximated by
half of the complexw plane.

1 (= .
q)(r,t):Ef_wdws(r,w)exp(—lwt). (5)

In order to treat the particular problem discussed by ® P gyt (p—)
Kuzmiak et al,’~® we consider a photonic crystal that con- FP)(r)= ZO Ate” HEPTD(r). (14)
tains metallic components and assume a dielectric constant -
of the Drude type in the metal: F(P)(r) can easily be calculated, since we have the following
, recursive equation:
w
LU Earear Ty L FOH(r) = AEP (1) +e ¥ EP(r) (19

wheree., is the dielectric constant at sufficiently high fre- with F((r)=0. So, the increase in the numerical task com-
quencies,w, is the plasma frequencyy is the relaxation pared yvith the case of freggency-independent dielectric con-
rate, ands is a positive infinitesimal. In Eq7), we took into  stants is not serious, and it is actually several tens of percent.
account the imaginary part of the dielectric constant in order In the next section, we will first present the band structure
to fulfill the Kramers-Kronig relation and hence the causal-of a three-dimensional simple cubic lattice composed of di-

ity. Then Eq.(5) leads to electric spheres with a frequency-independent dielectric con-
stant and compare the convergence and the CPU time with
sacwlzJ the case of the plane-wave expansion method. Here we dealt

O(r,t)=e.6(t)+ 5 [1—exp(—y1)]6(t), (8  with the frequency-independent case since the plane-wave
expansion method is impractical for the frequency-dependent

whered(t) is a unit step function. From Eqgé}) and(8), we  case. Next we will present the band structure and the field
obtain distribution of the two-dimensional square lattice composed

of metallic cylinders for theE polarization. We will show

iE(r,t)_i_sochJmdtlefyt’E(r,t_tr) f[hat the eigenmodes for tht‘epolarizatiqn have }heir replicas .
at PJo in free space, and the group-theoretical assignment of their
(9)  symmetries based on the reduction of the reducible represen-

tations given by the linear combination of plane waves in

in the metallic region. On the other hand, we assume that th]efee space is satisfactory. We will also show that the long-

dielectric constant is frequency independent outside the NS . . e
Wavelength approximation gives an appropriate description

1 c?D =
oo Ot olr,t)=e.,

metal, i.e., of the band structure of the metallic system in the low-
e(r,w)=ep(r). (10) frequency region. . ' N

Let us conclude this section by giving three remarks.

Thus we have First, our method is not restricted to dielectric constants of

_ the Drude type. If we would like to treat semiconductors, for

Do(r,t) = eoen(NE(T,1). (1D example, we may assume the following dielectric constant:

In the FDTD calculation, we discretized Eq4) and (2) 2 5
to obtain difference equatioi$,and solved the latter nu- ew)=¢ o mo ey (16)

merically with initial conditionsE=0 andH=0, and bound- s “wi- 0wy’

ary conditions ) o )
wherewt (w|) is the transversélongitudina) exciton fre-

E(r+a,t)=exp(ik-a)E(r,t), (12 quency andy is the relaxation rate. In this case, the response
function is given as follows:

H(r+a,t)=exp(ik-a)H(r,t), (13 .
wherek is a wave vector in the first Brillouin zone ards (I)(t):sxg(t)_;_ismw
the elementary lattice vector. The latter conditions extract the 20y
contribution to the radiated electromagnetic field from par- X [e~ (M +i0nt_ g=("=i0Dt g(¢), (17)

ticular eigenmodes with the specified wave vector. We can
thus calculate the resonance frequency as a functiok, of where
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¥ TABLE |. Comparison between the eigen-angular-frequencies
I'= > (18) of the lowest symmetric band on the point calculated with the
metallic response functiorM), Eg. (8), and with that of the semi-
conductor §), Eqg. (17). The wave numbek and the angular fre-
guencyw are normalized with the lattice constamtand the light
velocity c. See text for details.

and

2
Qr=\or= 7~ (19 ka/2m wal2mc (M) wal2mc (9

We can deal with other cases as long as the assumed 0.1 0.750 0.752
frequency-dependent dielectric constant satisfies the causal- 02 0.764 0.766
ity or the Kramers-Kronig relation. 0.3 0.785 0.786

Second, if thek vector in the first Brillouin zone chosen 0.4 0.805 0.805
for the photonic band calculation has a certain symmetry, 0.5 0.814 0.815
i.e., if the eigenmode fok should have a certain spatial
symmetry expected by the group theory, we may impose an
additional boundary condition on the electromagnetic field, 2y°+ w%
which reduces the spatial region dealt with in the numerical =8 5 - (23
calculation considerably and leads to the decrease in the 2y ~o
CPU time.

By substituting these values in E@L7) for eachw;, we

th;g;&;g;‘frijﬂt g;ettﬁgdf;::;ut;i f;_ t;gg:r?d?ntthzi(é?;irtigcalculated the spectra of the dipole radiation and obtained the

constant is not known. This is a very important and practicaresonance frequencies. Some results are listed in Table |

feature of the present method. For example, let us assun)(éhere the eigenfrequencies obtained by the metallic and the

that we know the values of the complex dielectric constant a§em|c0nductorllke .dlelectrlc_ constarjts are compared. As is
§rl‘early seen, the difference is amazingly small and less than
t

certain frequencies by experimental observations. Thus wi 3% for thi le. This i *evid for the fact
have a certain number of the pairs of the frequency and thg > "° or this example. This IS apparent evidence for e fac
at we can extend our method to the case in which the

complex dielectric constanfw; ,¢;}. The key idea is that the . : X .
use of the response function given in Ed) is necessary to analytical form of the dielectric constant is not known.

describe the non-steady-state of the radiation field after the

abrupt introduction of the oscillating dipole & 0 and that [ll. RESULTS AND DISCUSSION
the radiation field after a long period that can be regarded as _. . . . : :
in a steady state is well described by the dielectric constant at Figure 1 shows the dispersion relation of the simple cubic

the oscillation frequency alone. This implies that the choic att'C? cton]lplo?’se(tj of ﬁldaa_lectrlc; ?p_?ﬁre V‘(’j'th E[hed d'elteCtrt'ﬁ
of the analytical form of the dielectric constant is not impor- constant o at each fatice point. The ordinate denotes the

tant when we calculate the radiation field at a given angula ormalized e|genfr¢quency, \{vh@eandc denote the Iattlc_:e
frequencyw; and a given dielectric constamf. For ex- constant and the light velocity in free space, respectively.
ample, by cjhoosingu o, &, and y appropriately for The abscissa denotes the wave vector between theint,

) T L N

eachw; so thateg(w;) =¢j, the radiation field in the realistic (0,0,0, andX point, (m/a,0,0), in the first Brillouin zone.

system, which is not described by an analytical expression o-’f-he symmmetry of the magnetic field of each band is also

the dielectric constant, can be calculated by the prese own, which is an irreduciblt_a _reprgsentation of 1Dg,
method. point group. The unit cell was divided into 8B0X 80 parts

As a demonstration of this remarkable feature. we Calcu_and one period of the oscillation was divided into 320 steps
lated the eigenfrequencies of the metallic system describeld order to dlsc_reuze Maxwe!l S equations. The further .de'
above by using the dielectric constant of a semiconducto rease of the size of the spatial qnd temporal meshes did not
given in Eq.(16). For o<, , we denote ring about an apparent change in the resonance frequencies
T oRe as will be shown later. The symmetries shown in this figure

were obtained by examining the field distributions of the

em(wj)=gj=gj +isj. (20) eigenmodes. They are consistent with the prediction of the
We took group theory based on the reduction of the reducible repre-
sentations given by the linear combination of plane waves in
free space, which was described in detail in Ref. 23.
® _Y and o = \/?w_ 21) Figure 2 shows the convergence properties for the FDTD
T \/E L 27 and the plane-wave expansion meth6tshere the abscissa

denotes the cubic root of the number of the spatial mesh,

From Eq.(16), we have 3N, for the former and that of the basis plane wavéhl,

for the latter. The eigenfrequencies were evaluated at the
middle point between thE and X points. The eigenfrequen-
- , (22 cies obtained by the FDTD method are represented by solid
\/ESJ circles, whereas those obtained by the plane-wave expansion

:(Sj,+|8j|)wT
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FIG. 3. The CPU time necessary for the numerical calculation
for one wave vector in the first Brillouin zone as a function of the
number of the mesh points or the number of the plane wavés
E The supercomputefHitachi SR 8000 in Hokkaido University
Computing Center was used. In the numerical calculation, one node
0.3 : . . . . that consisted of eight CPU’s was used with the FORTRAN 90

r X compiler that enabled parallel computing in the node.

04

FIG. 1. The dispersion relation for the three-dimensional simple
cubic lattice composed of a dielectric sphere at each lattice poiniigenfrequencies can be calculated with very lakgeThe
The ordinate denotes the normalized frequency waerrdc stand  convergence is really satisfactory as shown in Fig. 2. The
for the lattice constant and the light velocity in free space, respec€PU time for both methods is compared in Fig. 3. Since the
tively. The abscissa denotes the wave veclorThe dispersion  CPU time depends on the source program, the compiler, the
relation was calculated fdc between thd™ point, (0,0,0), and the  grchitecture of the computer, and so on, this figure should be
X point, (w/a,0,0), in the first Brillouin zone. The symmetry of cqnsjdered to just give an estimation of the CPU time. How-
each band for the magnetic field is also shown, which is an irreducéven it is apparent that the FDTD method is much superior
ible representation of th€,, point group. The following param- than the plane-wave expansion method when we need accu-
eters were assumed for the numerical calculation: the dielectric COMte calculation with largél or M.

stant of the spheres is 13.0, that of the background is 1.0; the ratio .
of the radius F<))f the sphere to the lattice cons?tant is 0.3:1.0. Next. let us present. the res“gi% for the metallic systems.
According to Kuzmiak et al, we analyzed two-

. , dimensional photonic crystals composed of a square array of
method are represented by open circles. As we will see latefy,atalic cylinders with a radius,,. The following param-
the plane-wave expansion method is impractical whkis,  oiors were assumed; /a=0.472(crystal 1 or 0.0564(crys-
say, greater than 4000. Thus we plotted data obtained witf, 2, e.=1.0, wpal2mc=1.0, andy=0.0lw,, wherea
M=<4096 in Fig. 2. It is apparent that the convergence ajyenotes the lattice constant. We will restrict our discussion
w_a/27rc> 0.4 is not satisfactory for the plane-wave expan-,5 ;sual to the case that the wave veddies in the two-
sion method even wheM =4096. On the other hand, the ginensional -y) plane. In this case, Maxwell's equations
CPU time for the FDTD method is relatively small and the 56 gecoupled into two polarization components. One is the

E polarization for which the electric field is perpendicular to
1.0 the x-y plane and the other is thé polarization for which
the magnetic field is perpendicular to tkey plane. We treat

0.8 %S A, the E polarization in this Paper. Thid polarization will be
Y

E treated in Paper II.
E In the actual calculation, we discretized the wave equation
for E, that was obtained from Egél) and(2) by eliminating
Hyx andH, and solved it. This simplified treatment for tke
E polarization did not reduce the accuracy of the numerical
calculation, since the wave equation 6y is not very sin-
0.0 gular due to the fact thaE, and its derivatives of the first
0 10 20 30 40 50 60 70 80 order are continuous. The two-dimensional unit cell was di-
YN or¥M vided into 40< 40 parts for crystal 1 and 120120 parts for
FIG. 2. The convergence behavior of the FDTD metisalid ~ CryStal 2, and one period of the oscillation was divided into
circles and the plane-wave expansion methogen circles The 160 steps for crystal 1 and 480 steps for crystal 2 in order to
ordinate is the normalized frequency. The abscissa denotes the céliscretize the wave equation. The further decrease in the size
bic root of the number of mesh pointsor that of the plane waves Of the spatial and temporal meshes did not bring about an

M. The same parameters as for Fig. 1 were used for numeric@pparent change in the resonance frequencies. The lifetime
calculation. of the eigenmodes was evaluated by observing the temporal

s

0.6

0.4 E

0.2
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B(2)

1.5 B, 1
0.8
1.4 A=~ @
B( _Bl(2) 0.4
1.3 A3) A2 0.2
4 0
. 1.2 1 -0.2
g R 1.1 E 0 0.4
~ A2 A1) Wl x/a 1 0.6
1.0 11 0.8
(@E/M bE/T ©) By(1)/ X 5
09 A 1
081> A1) Adl 9B,(1) FIG. 5. The distribution of the electric field ¢&) the E mode at
0.7 the M point, (b) the E mode at thd” point, and(c) theB;(1) mode
M r X at theX point. The maximum of each electric field is normalized to

) . . . . unity. For the doubly degeneraiemodes, only one eigenfunction
FIG. 4. The dispersion relation of the two-dimensional squarejs shown. The other eigenfunction can be obtained by a rotation by

photonic crystal composed of metallic cylindécsystal 3 fortheE  90°. For all eigenmodes, the eigenfunctions show their peculiar
polarization calculated by means of the numerical simulation of thesymmetries.

dipole radiation. The ordinate is the normalized frequency where
a, andc stand for the angular frequency of the radiation field, the |, this equationf is the filling factor of the metallic cylin-

lattice constant of the crystal, and the light velocity in free spaceyers: f=0.7 for crystal 1 andf=0.01 for crystal 2. From
According to the previous calculation by Kuzmiadt al (Refs. Egs '(24) a.nd (25), we obtain ' '

6—8), the following parameters were used for numerical calculation:
rm/a=0.472 (f=0.7), wherer,, denotes the radius of the metallic 55 5
cylinders, ..~ 1.0, wpa/2wc=1.0, andy=0.01v, in Eq. (7). The PR LS L 26
dispersion relation was drawn for highly symmetric points in the 1+(e,—1)f"
first Brillouin zone of the two-dimensional crystalt’(0,0),
X(/a,0), andM (ar/a,w/a). The spatial symmetry of each eigen- Substituting the assumed parameters for crystal 1 into this
mode forE, is also shown in this figure, where the number in equation, the cutoff frequency is obtained as 0.84. This value
parentheses is given in order of the ascending frequency when theie fairly close to the numerical result. Equatit26) also tells
is more than one mode of the same symmetry in the analyzed frais that the eigenfrequency takes the smallest value df the
guency region. point and increases parabolically with smiall
. . Figure 5 shows three typical examples of the eigenfunc-

decrease in the accumulated electromagnetic energy aftgpns, that is,(@) the E mode at theM point, (b) the E mode
200 cycles of the oscillation of the dipole moment. The totalgt the point, and(c) the B;(1) mode at theX point. The
electromagnetic energy after switching off the oscillationymaximum of each electric field is normalized to unity. Note
showed an exponential decay and we could obtain the lifethat these eigenfunctions have the correct symmetries.
time easily. _ o Kuzmiak et al. reported a very curious observation for the

The dispersion relation for crystal 1 thus obtained is precase off=0.1 in that these modes had exactly zero ampli-
sented in Fig. 4 where the symmetry of each eigenmode i,des. They concluded that these modes were some artifacts
also shown. In this figure, the number in parentheses is givegs the calculation and were not of real existeAcEhis as-
in order of the ascending frequency _When there is more thagertion is, however, completely wrong, as is evident from
one mode of the same symmetry in the analyzed spectrglig 5 The appearance of these modes is natural and consis-
region. The symmetry assignments are consistent with thgnt with the group theory since tiiemode at theM point,
prediction of the group theory that was obtained by the comso; example, connects with th& (symmetri¢ and B (anti-

parison with the irreducible representations of the radiatioréymmetric) modes on theS point, which is expected from
field in free spacé’ This fact implies that the radiational pe compatibility relatior??

eigenmodes for the polarization in this frequency range are  Next, Figs. 6 and 7 show the transmission spectra of crys-
essentially modified plane waves. Note that the_re is no eigeny| 1 with eight lattice layers calculated by the Pendry-
mode forwa/27c<0.745. We can show that this cutoff fre- \jackinnon method® The incident plane wave was assumed
quency is Con5|’stent Wlth the Iong-\_/vavelengt_h approximayg pe propagated in the (1,01 ¢X) direction and the (1,1)
tion of Maxwell's equations. In this approximation, the (1_\) direction, respectively. In Table II, the opague fre-
dispersion relation is given by quency ranges where the transmittance is less than 0.1 are
compared with the band gaps and the frequency ranges
. (24) where only antisymmetricK) modes exist. Note that the
£ antisymmetric modes do not couple to the plane wave com-
ing from outside of the photonic crystal at normal incidence
Pecause of the mismatching of the spatial symmetry, and
they do not contribute to the transmittarfcé® So, we refer

fo o2 to the_m as uncoupled modes. Figure 8 shows the lifetime of
e~1+(s,—1)f— zp (25) the five lowest eigenmodes. It depends strongly on the

2 amount of the field distribution in the metallic region.

wheree denotes the spatial average of the dielectric consta
and is given by
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1.0 TABLE 1l. Comparison between the band structure and the
! A transmission spectra.
0.8 f A !
g UVV\‘W V Direction Band gap B mode Opaque range
g 0.6 i ) \ r-X 0.814-1.028 0.811-1.032
g 04 1.260-1.280 1.275-1.286
z F \ 1.474 1.483
0.2 F r'-M 0.873-1.090 0.871-1.093
\4 1.415-1.458 1.415-1.454
0.0 N Cutoff 0.745 0.752
0.7 1.1 1.3 1.5
wa
27 by the plane-wave expansion mettfosince the radiational

FIG. 6. The transmission spectrum in tie0) direction calcu- eigenmodes for th& pola.nzatlon are essentially njodmed.
lated by the Pendry-MacKinnon method. The abscissa denotes tHane waves as we mentioned previously and their descrip-
normalized frequency. The same parameters as for Fig. 4 were usé@n by the linear combination of plane waves was a good
for numerical calculation except that was set to be zero. The approximation. However, this feature cannot be expected in
number of the lattice layers was assumed to be eight. more general cases. As a matter of fact, khpolarization of
the two-dimensional metallic system is a typical example, for
OIwhich the localized nature of surface plasmons brings about

a completely different feature that is difficult to deal with by

and 10. In the long-wavelength approximation, the Cutoffthe plane-wave expansion. This problem will be treated in

21
frequency is given bywa/27rc=0.1, which is very close to Paper II
the numerical result, 0.097. Figure 10 shows a very interest-
ing behavior of the lifetime of the lowest band. It varies IV. CONCLUSION
more than three orders of magnitude wkh This feature ) ) ) i o )
originates from the variation of the field distribution. For _ 1he dispersion relation, the field distribution, and the life-
example, thd, mode on theVl point is antisymmetric about time of the radiational eigenmodes in the two-dimensional
the x andy axes. Its amplitude is thus equal to zero on thesdhotonic crystals composed of metallic cylinders were calcu-
axes. Because the electric field is continuous and the radid@ted by means of the numerical simulation of the dipole
of the metallic cylinders is small for crystal 2, the electric adiation based on the FDTD method. The CPU time for this

field is small everywhere in the metal. This is the reason whyN€thod is proportional to the number of the representative
the dielectric loss is small and the lifetime is long for e ~ POINts on the spatial mesh used for the discretization of Max-
mode. On the other hand, the, mode on thel' point is well's equations, which is in marked contrast to the case of

totally symmetric and it may have a large amplitude in thethe plane-wave expansion method for which the CPU time is

metallic region. This is the reason why its lifetime is much Proportional to thecubeof the number of the plane waves.
shorter than that of thB, mode. So, the present method is superior to the plane-wave expan-

Let us conclude this section by giving one remark. Thesion method when large and/or complicated systems are ana-

dispersion relation shown in Fig. 4 is similar to that obtained'Y2€d- This feature was demonstrated by the photonic band
calculation for a simple cubic crystal composed of dielectric

The dispersion relation and the lifetime of the lowest ban
for crystal 2 with a filling factor of 0.01 are shown in Figs. 9

spheres.
1.0 M
[ 3
0.8 10
g |
5 0.6 -...
g :
S 04
= [
0.2
0.0L E— £
0.7 1.1 1.3 1.5
wa
2nwc
FIG. 7. The transmission spectrum in tflel) direction calcu- FIG. 8. The lifetime of the lowest five eigenmodes of crystal 1.

lated by the Pendry-MacKinnon method. The abscissa denotes thehe same parameters as for Fig. 4 were used for numerical calcu-
normalized frequency. The same parameters as for Fig. 6 were uséation. The ordinate denotes the normalized lifetime in a logarithmic
for numerical calculation. scale.
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1.4 10°

(A® B,

2
B2 ! ]
12 10° B,(1)

wa
2rc
!

3 104_

27cT

A
7B, AQl) Al
10° E

A
M r X

M T X 10°

h FIG'_ 9. Thel dispersion rilation”(_)f thl‘? two-dimtlensfionill SQUar® k16, 10. The lifetime of the lowest eigenmode of crystal 2. The
photonic crystal composed of metallic cylindécsystal 2 for the E same parameters as for Fig. 9 were used for numerical calculation.

pplarlzatlo_n (_:alculated by means of the numerlcgl simulation of theI’he ordinate denotes the normalized lifetime in a logarithmic scale.
dipole radiation. The same parameters as for Fig. 4 were used for

numerical calculation except thay,/a=0.0564 =0.01). The curious observation reported by Kuzmiakal. that

some eigenmodes had zero amplitudes was denied by exam-

The dispersion relation for thg polarization obtained by ining the field distribution of the related eigenmodes. We
the present work was similar to that reported previously byfound that the lifetime of the eigenmodes depends strongly
Kuzmiak et al. The symmetry of the eigenmodes was con-on the field distribution, and its variation of more than three
sistent with the prediction from group theory considerationsorders of magnitude was observed.
that was obtained by the reduction procedure starting from
the plane-wave representation of the unperturbed wave func-
tions, which implies that the eigenmodes for tagolariza-
tion are essentially modified plane waves. The opaque fre- This work was supported by ERATO-JSExploratory
guency ranges in the transmission spectra calculated by tHeesearch for Advanced Technology of Japan Science and
Pendry-MacKinnon method corresponded quite well to theTechnology Corporation the Mitsubishi Foundation, and
band gaps and the frequency ranges of the antisymn{8ric the Grant-in-Aid for Scientific Research on Priority Area
modes. The cutoff frequencies coincided with the long-“Photonic Crystals” from the Ministry of Education,
wavelength approximation of Maxwell's equations as well. Science, Sports, and Culture.
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