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The dispersion relation, the field distribution, and the lifetime of the radiational eigenmodes in two-
dimensional photonic crystals composed of metallic cylinders were calculated for theE polarization by means
of the numerical simulation of the dipole radiation based on the finite-difference time-domain~FDTD! method.
The convergence and the central processing unit time were compared with the plane-wave expansion method.
The opaque frequency ranges in the transmission spectra calculated by the method of Pendry and MacKinnon
corresponded quite well to the band gaps and the antisymmetric modes found in the photonic band diagram.
The dispersion relation and the symmetry of the eigenmodes obtained by the numerical calculation were
consistent with the prediction of the group theory and the analytical expression by the long-wavelength
approximation.
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I. INTRODUCTION

The dispersion relation and the density of states of the
radiation field in photonic crystals are substantially different
from those in free space.1–4 When their crystal structure is
appropriately designed and the amount of the spatial modu-
lation of their dielectric constant is large enough, frequency
ranges called photonic band gaps can appear in which no
electromagnetic eigenmode is allowed to exist. Optical prop-
erties of atoms and molecules embedded in such photonic
crystals can also be quite different from those in free space
or uniform materials. For example, if the transition fre-
quency of the embedded atoms lies in the photonic band gap,
no optical transition is allowed and spontaneous emission of
photons is completely forbidden. In the very beginning of the
extensive investigation of photonic crystals, Yablonovitch
pointed out these types of drastic changes of the optical
properties and their possible application to light-emitting
devices.5

In most theoretical investigations reported so far, the di-
electric constants of the photonic crystals were assumed to
be independent of frequency. When we deal with transparent
materials whose optical transition frequencies are far from
those of the relevant radiation field, this assumption is rea-
sonable. However, when we deal with materials whose reso-

nant polarization plays an important role in their optical re-
sponse, we cannot neglect the frequency dependence of their
dielectric constants.

To our knowledge, a small number of numerical works
have been reported related to this problem. Kuzmiak and
co-workers treated two-dimensional photonic crystals com-
posed of metallic cylinders with a dielectric constant of the
Drude type by means of the plane-wave expansion
method.6–8 Nojima calculated the dispersion relation of ex-
citon polaritons in a one-dimensional photonic crystal.9 The
calculation was performed by searching the zero points of
the determinant of the coefficients obtained by the plane-
wave expansion. Yannopapaset al. reported the dispersion
relation and transmission spectra of fcc lattices composed of
metallic spheres.10 The calculation was performed by the
transfer matrix method based on the vectorial Korringa-
Kohn-Rostoker~KKR! formalism.11,12 In this case, spherical
waves were used as a basis set, and good numerical accuracy
was attained with a small number of spherical waves. The
same holds for a two-dimensional array of circular cylinders,
since we may use cylindrical waves as the basis set.13 How-
ever, in general cases in which we cannot assume a spherical
or cylindrical symmetry for the components of the crystal,
we have to apply a more general method such as the plane-
wave expansion in spite of its slow convergence.
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Since spheres and cylinders are the simplest structures to
be analyzed, they have been treated by the plane-wave ex-
pansion method as well. As Kuzmiaket al. reported for the
two-dimensional array of metallic cylinders, in contrast with
the frequency-independent case, the eigenvalue equation sat-
isfied by the expansion coefficients is not linear withv2/c2,
wherev is the angular frequency of the radiation field andc
is the light velocity in free space. So they had to linearize the
eigenvalue equation by taking a larger basis set, which re-
sulted in a heavier computational task. In the case of theE
polarization for which the electric field is parallel to the cyl-
inder axis and perpendicular to the two-dimensional plane,
the linearization procedure needed triple plane waves. In the
case of theH polarization for which the magnetic field is
parallel to the cylinder axis, quadruple plane waves were
necessary. Usually the central processing unit~CPU! time for
the diagonalization of a matrix is proportional to the cube of
its dimension, and hence to the cube of the number of the
plane waves. So the computaional task was 27 times heavier
for the E polarization and 64 times heavier for theH polar-
ization than the frequency-independent case. Extension of
this method to three-dimensional systems and more compli-
cated systems such as those containing structural defects
seems difficult, as a much larger number of plane waves are
necessary for an accurate calculation.

One of the present authors and his collaborator reported
another method based on the numerical simulation of the
dipole radiation by means of the finite-difference time-
domain ~FDTD! method.14 Originally, this method was ap-
plied to the problem of point defects in a two-dimensional
square crystal, and an excellent agreement between the the-
oretical calculation and the experimental observation was
shown.15 Later, it was applied to point defects in a hexagonal
crystal,16 line defects in a square crystal,17 and the evaluation
of the quality factor in the presence of dielectric loss.18 In
this method, the electromagnetic field radiated by an oscil-
lating point dipole is calculated as a function of the oscilla-
tion frequency. The eigenfrequency is obtained as a reso-
nance frequency, i.e., as a peak frequency of the radiation
spectrum. The emitted field at the resonance frequency gives
the eigenfunction. The CPU time for this method is essen-
tially proportional to the number of the representative points
on the spatial mesh used for the discretization of Maxwell’s
equations, which is in marked contrast to the case of the
plane-wave expansion method for which the CPU time is
proportional to thecubeof the number of the plane waves. In
addition, the FDTD algorithm is especially suitable for the
vector processing and parallel computing, and so, the CPU
time can be reduced greatly by using a computer with a
vector processor or a parallel machine. Therefore, the nu-
merical simulation of the dipole radiation is superior to the
plane-wave expansion method when large and/or compli-
cated systems are analyzed. For example, we can deal with a
larger supercell than that usually assumed in the plane-wave
expansion method when we calculate the eigenfrequencies
and the eigenfunctions of localized defect modes. Thus the
impurity-band effect can be eliminated.16 Three-dimensional
systems can also betreated, as was shown by the excellent
calculation by Hwanget al.19 The spatial symmetry of the

eigenmodes is rigorously taken into account as well by im-
posing an appropriate boundary condition when we solve the
difference equations derived from Maxwell’s equations. The
lifetime of the eigenmodes can be obtained by evaluating the
temporal decrease in the accumulated radiation energy after
switching off the oscillation of the dipole.

In this study, we analyzed the radiation field in two-
dimensional metallic systems. The present work consists of
two papers. This paper~Paper I! deals mainly with the prin-
ciple and accuracy of our numerical method. The conver-
gence and the CPU time of our method will be compared
with the plane-wave expansion method. The dispersion rela-
tion, the field distribution, and the lifetime of the radiational
eigenmodes in two-dimensional square crystals composed of
metallic cylinders calculated for theE polarization will be
presented and compared with the prediction of the group
theory. The transmission spectra calculated by the method of
Pendry and MacKinnon20 will be compared with the disper-
sion relation, and good correspondence between them will be
shown. In the following paper~Paper II!,21 we will deal with
theH polarization of the same system and show the presence
of eigenmodes with extremely small group velocites due to
the localized nature of surface plasmons. This feature will be
further clarified by comparing their eigenfrequencies and
eigenfunctions with the Mie resonance states for a single
metallic cylinder.

II. THEORY

Let us explain our method here. We consider the radiation
process of an oscillating dipole moment that is embedded in
the photonic crystal. We begin with the following two equa-
tions ~MKS units!:

“3E~r ,t !52m0

]

]t
H~r ,t !, ~1!

“3H~r ,t !5
]

]t
$D0~r ,t !1Pd~r ,t !%, ~2!

whereE(r ,t), H(r ,t), and m0 denote the electric field, the
magnetic field, and the magnetic permeability of free space,
respectively. In Eq.~2!, Pd(r ,t) stands for the oscillating
dipole moment:

Pd~r ,t !5md~r2r0!exp~2 ivt !, ~3!

wherem and r0 are the magnitude and the position of the
dipole moment, andd is Dirac’s delta function.D0(r ,t) de-
notes the electric displacement due to the regular dielectric
structure of the photonic crystal. It is generally given by the
convolution integral of the electric field and the dielectric
response functionF(r ,t):

D0~r ,t !5«0E
2`

`

dt8F~r ,t2t8!E~r ,t8!, ~4!
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where«0 is the permittivity of free space.F(r ,t) is given by
the Fourier transform of the dielectric constant«(r ,v),
which is now a function of frequency as well as the spatial
coordinates:

F~r ,t !5
1

2pE2`

`

dv «~r ,v!exp~2 ivt !. ~5!

Note thatF(r ,t) should satisfy the causality, i.e.,

F~r ,t !50 for t,0, ~6!

which implies that«(r ,v) does not have a pole in the upper
half of the complexv plane.

In order to treat the particular problem discussed by
Kuzmiak et al.,6–8 we consider a photonic crystal that con-
tains metallic components and assume a dielectric constant
of the Drude type in the metal:

«m~r ,v!5«`F12
vp

2

~v1 id!~v1 ig!
G , ~7!

where«` is the dielectric constant at sufficiently high fre-
quencies,vp is the plasma frequency,g is the relaxation
rate, andd is a positive infinitesimal. In Eq.~7!, we took into
account the imaginary part of the dielectric constant in order
to fulfill the Kramers-Kronig relation and hence the causal-
ity. Then Eq.~5! leads to

F~r ,t !5«`d~ t !1
«`vp

2

g
@12exp~2gt !#u~ t !, ~8!

whereu(t) is a unit step function. From Eqs.~4! and~8!, we
obtain

1

«0

]

]t
D0~r ,t !5«`

]

]t
E~r ,t !1«`vp

2E
0

`

dt8e2gt8E~r ,t2t8!

~9!

in the metallic region. On the other hand, we assume that the
dielectric constant is frequency independent outside the
metal, i.e.,

«~r ,v!5«b~r !. ~10!

Thus we have

D0~r ,t !5«0«b~r !E~r ,t !. ~11!

In the FDTD calculation, we discretized Eqs.~1! and ~2!
to obtain difference equations,22 and solved the latter nu-
merically with initial conditionsE50 andH50, and bound-
ary conditions

E~r1a,t !5exp~ ik•a!E~r ,t !, ~12!

H~r1a,t !5exp~ ik•a!H~r ,t !, ~13!

wherek is a wave vector in the first Brillouin zone anda is
the elementary lattice vector. The latter conditions extract the
contribution to the radiated electromagnetic field from par-
ticular eigenmodes with the specified wave vector. We can
thus calculate the resonance frequency as a function ofk,

i.e., we can obtain the dispersion relation. By the boundary
conditions, Eqs.~12! and~13!, it is enough to treat a unit cell
in the numerical calculation, and we do not need additional
boundary conditions such as the absorbing boundary condi-
tion, which is often necessary when we treat a finite volume
by the FDTD calculation.22 This fact resulted in a small CPU
time. The computation of the integral in the second term on
the right-hand side of Eq.~9! may seem time-consuming at a
first glance. But it is not, since the kernel has a simple form.
When we denote the electric field at timet5pDt by E(p)(r ),
whereDt is the interval of the temporal mesh points andp is
an integer, the integral is approximated by

F(p)~r !5 (
q50

p

Dte2qgDtE(p2q)~r !. ~14!

F(p)(r ) can easily be calculated, since we have the following
recursive equation:

F(p11)~r !5DtE(p11)~r !1e2gDtF(p)~r ! ~15!

with F(0)(r )50. So, the increase in the numerical task com-
pared with the case of frequency-independent dielectric con-
stants is not serious, and it is actually several tens of percent.

In the next section, we will first present the band structure
of a three-dimensional simple cubic lattice composed of di-
electric spheres with a frequency-independent dielectric con-
stant and compare the convergence and the CPU time with
the case of the plane-wave expansion method. Here we dealt
with the frequency-independent case since the plane-wave
expansion method is impractical for the frequency-dependent
case. Next we will present the band structure and the field
distribution of the two-dimensional square lattice composed
of metallic cylinders for theE polarization. We will show
that the eigenmodes for theE polarization have their replicas
in free space, and the group-theoretical assignment of their
symmetries based on the reduction of the reducible represen-
tations given by the linear combination of plane waves in
free space is satisfactory. We will also show that the long-
wavelength approximation gives an appropriate description
of the band structure of the metallic system in the low-
frequency region.

Let us conclude this section by giving three remarks.
First, our method is not restricted to dielectric constants of
the Drude type. If we would like to treat semiconductors, for
example, we may assume the following dielectric constant:

«s~v!5«`

vL
22v22 ivg

vT
22v22 ivg

, ~16!

wherevT (vL) is the transverse~longitudinal! exciton fre-
quency andg is the relaxation rate. In this case, the response
function is given as follows:

F~ t !5«`d~ t !1 i«`

vL
22vT

2

2VT

3$e2(G1 iVT)t2e2(G2 iVT)t%u~ t !, ~17!

where
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G5
g

2
~18!

and

VT5AvT
22

g2

4
. ~19!

We can deal with other cases as long as the assumed
frequency-dependent dielectric constant satisfies the causal-
ity or the Kramers-Kronig relation.

Second, if thek vector in the first Brillouin zone chosen
for the photonic band calculation has a certain symmetry,
i.e., if the eigenmode fork should have a certain spatial
symmetry expected by the group theory, we may impose an
additional boundary condition on the electromagnetic field,
which reduces the spatial region dealt with in the numerical
calculation considerably and leads to the decrease in the
CPU time.

Third, the present method can be extended to the case that
the analytical form of the frequency-dependent dielectric
constant is not known. This is a very important and practical
feature of the present method. For example, let us assume
that we know the values of the complex dielectric constant at
certain frequencies by experimental observations. Thus we
have a certain number of the pairs of the frequency and the
complex dielectric constant,$v j ,« j%. The key idea is that the
use of the response function given in Eq.~4! is necessary to
describe the non-steady-state of the radiation field after the
abrupt introduction of the oscillating dipole att50 and that
the radiation field after a long period that can be regarded as
in a steady state is well described by the dielectric constant at
the oscillation frequency alone. This implies that the choice
of the analytical form of the dielectric constant is not impor-
tant when we calculate the radiation field at a given angular
frequencyv j and a given dielectric constant« j . For ex-
ample, by choosingvT , vL , «` , and g appropriately for
eachv j so that«s(v j )5« j , the radiation field in the realistic
system, which is not described by an analytical expression of
the dielectric constant, can be calculated by the present
method.

As a demonstration of this remarkable feature, we calcu-
lated the eigenfrequencies of the metallic system described
above by using the dielectric constant of a semiconductor
given in Eq.~16!. For v j,vp , we denote

«m~v j !5« j5« j81 i« j9 . ~20!

We took

vT5
v j

A2
and vL5A3

2
v j . ~21!

From Eq.~16!, we have

g5
~« j81u« j u!vT

A2« j9
, ~22!

«`5« j

2g21vT
2

2g22vT
2

. ~23!

By substituting these values in Eq.~17! for eachv j , we
calculated the spectra of the dipole radiation and obtained the
resonance frequencies. Some results are listed in Table I
where the eigenfrequencies obtained by the metallic and the
semiconductorlike dielectric constants are compared. As is
clearly seen, the difference is amazingly small and less than
0.3% for this example. This is apparent evidence for the fact
that we can extend our method to the case in which the
analytical form of the dielectric constant is not known.

III. RESULTS AND DISCUSSION

Figure 1 shows the dispersion relation of the simple cubic
lattice composed of a dielectric sphere with the dielectric
constant of 13 at each lattice point. The ordinate denotes the
normalized eigenfrequency, wherea andc denote the lattice
constant and the light velocity in free space, respectively.
The abscissa denotes the wave vector between theG point,
~0,0,0!, and X point, (p/a,0,0), in the first Brillouin zone.
The symmmetry of the magnetic field of each band is also
shown, which is an irreducible representation of theC4v
point group. The unit cell was divided into 80380380 parts
and one period of the oscillation was divided into 320 steps
in order to discretize Maxwell’s equations. The further de-
crease of the size of the spatial and temporal meshes did not
bring about an apparent change in the resonance frequencies
as will be shown later. The symmetries shown in this figure
were obtained by examining the field distributions of the
eigenmodes. They are consistent with the prediction of the
group theory based on the reduction of the reducible repre-
sentations given by the linear combination of plane waves in
free space, which was described in detail in Ref. 23.

Figure 2 shows the convergence properties for the FDTD
and the plane-wave expansion methods,24 where the abscissa
denotes the cubic root of the number of the spatial mesh,
A3 N, for the former and that of the basis plane waves,A3 M ,
for the latter. The eigenfrequencies were evaluated at the
middle point between theG andX points. The eigenfrequen-
cies obtained by the FDTD method are represented by solid
circles, whereas those obtained by the plane-wave expansion

TABLE I. Comparison between the eigen-angular-frequencies
of the lowest symmetric band on theD point calculated with the
metallic response function (M ), Eq. ~8!, and with that of the semi-
conductor (S), Eq. ~17!. The wave numberk and the angular fre-
quencyv are normalized with the lattice constanta and the light
velocity c. See text for details.

ka/2p va/2pc (M ) va/2pc ~S!

0.1 0.750 0.752
0.2 0.764 0.766
0.3 0.785 0.786
0.4 0.805 0.805
0.5 0.814 0.815
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method are represented by open circles. As we will see later,
the plane-wave expansion method is impractical whenM is,
say, greater than 4000. Thus we plotted data obtained with
M<4096 in Fig. 2. It is apparent that the convergence at
va/2pc.0.4 is not satisfactory for the plane-wave expan-
sion method even whenM54096. On the other hand, the
CPU time for the FDTD method is relatively small and the

eigenfrequencies can be calculated with very largeN. The
convergence is really satisfactory as shown in Fig. 2. The
CPU time for both methods is compared in Fig. 3. Since the
CPU time depends on the source program, the compiler, the
architecture of the computer, and so on, this figure should be
considered to just give an estimation of the CPU time. How-
ever, it is apparent that the FDTD method is much superior
than the plane-wave expansion method when we need accu-
rate calculation with largeN or M.

Next let us present the results for the metallic systems.
According to Kuzmiak et al.,6–8 we analyzed two-
dimensional photonic crystals composed of a square array of
metallic cylinders with a radiusr m . The following param-
eters were assumed:r m /a50.472~crystal 1! or 0.0564~crys-
tal 2!, «`51.0, vpa/2pc51.0, andg50.01vp , where a
denotes the lattice constant. We will restrict our discussion
as usual to the case that the wave vectork lies in the two-
dimensional (x-y) plane. In this case, Maxwell’s equations
are decoupled into two polarization components. One is the
E polarization for which the electric field is perpendicular to
the x-y plane and the other is theH polarization for which
the magnetic field is perpendicular to thex-y plane. We treat
the E polarization in this Paper. TheH polarization will be
treated in Paper II.

In the actual calculation, we discretized the wave equation
for Ez that was obtained from Eqs.~1! and~2! by eliminating
Hx andHy and solved it. This simplified treatment for theE
polarization did not reduce the accuracy of the numerical
calculation, since the wave equation forEz is not very sin-
gular due to the fact thatEz and its derivatives of the first
order are continuous. The two-dimensional unit cell was di-
vided into 40340 parts for crystal 1 and 1203120 parts for
crystal 2, and one period of the oscillation was divided into
160 steps for crystal 1 and 480 steps for crystal 2 in order to
discretize the wave equation. The further decrease in the size
of the spatial and temporal meshes did not bring about an
apparent change in the resonance frequencies. The lifetime
of the eigenmodes was evaluated by observing the temporal

FIG. 1. The dispersion relation for the three-dimensional simple
cubic lattice composed of a dielectric sphere at each lattice point.
The ordinate denotes the normalized frequency wherea andc stand
for the lattice constant and the light velocity in free space, respec-
tively. The abscissa denotes the wave vector,k. The dispersion
relation was calculated fork between theG point, (0,0,0), and the
X point, (p/a,0,0), in the first Brillouin zone. The symmetry of
each band for the magnetic field is also shown, which is an irreduc-
ible representation of theC4v point group. The following param-
eters were assumed for the numerical calculation: the dielectric con-
stant of the spheres is 13.0, that of the background is 1.0; the ratio
of the radius of the sphere to the lattice constant is 0.3:1.0.

FIG. 2. The convergence behavior of the FDTD method~solid
circles! and the plane-wave expansion method~open circles!. The
ordinate is the normalized frequency. The abscissa denotes the cu-
bic root of the number of mesh pointsN or that of the plane waves
M. The same parameters as for Fig. 1 were used for numerical
calculation.

FIG. 3. The CPU time necessary for the numerical calculation
for one wave vector in the first Brillouin zone as a function of the
number of the mesh pointsN or the number of the plane wavesM.
The supercomputer~Hitachi SR 8000! in Hokkaido University
Computing Center was used. In the numerical calculation, one node
that consisted of eight CPU’s was used with the FORTRAN 90
compiler that enabled parallel computing in the node.
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decrease in the accumulated electromagnetic energy after
200 cycles of the oscillation of the dipole moment. The total
electromagnetic energy after switching off the oscillation
showed an exponential decay and we could obtain the life-
time easily.

The dispersion relation for crystal 1 thus obtained is pre-
sented in Fig. 4 where the symmetry of each eigenmode is
also shown. In this figure, the number in parentheses is given
in order of the ascending frequency when there is more than
one mode of the same symmetry in the analyzed spectral
region. The symmetry assignments are consistent with the
prediction of the group theory that was obtained by the com-
parison with the irreducible representations of the radiation
field in free space.25 This fact implies that the radiational
eigenmodes for theE polarization in this frequency range are
essentially modified plane waves. Note that there is no eigen-
mode forva/2pc,0.745. We can show that this cutoff fre-
quency is consistent with the long-wavelength approxima-
tion of Maxwell’s equations. In this approximation, the
dispersion relation is given by

v2

c2
5

k2

«̄
, ~24!

where«̄ denotes the spatial average of the dielectric constant
and is given by

«̄;11~«`21! f 2
f «`vp

2

v2
. ~25!

In this equation,f is the filling factor of the metallic cylin-
ders: f 50.7 for crystal 1 andf 50.01 for crystal 2. From
Eqs.~24! and ~25!, we obtain

v5Ac2k21 f «`vp
2

11~«`21! f
. ~26!

Substituting the assumed parameters for crystal 1 into this
equation, the cutoff frequency is obtained as 0.84. This value
is fairly close to the numerical result. Equation~26! also tells
us that the eigenfrequency takes the smallest value at theG
point and increases parabolically with smallk.

Figure 5 shows three typical examples of the eigenfunc-
tions, that is,~a! the E mode at theM point, ~b! the E mode
at theG point, and~c! the B1~1! mode at theX point. The
maximum of each electric field is normalized to unity. Note
that these eigenfunctions have the correct symmetries.
Kuzmiak et al. reported a very curious observation for the
case off 50.1 in that these modes had exactly zero ampli-
tudes. They concluded that these modes were some artifacts
of the calculation and were not of real existence.8 This as-
sertion is, however, completely wrong, as is evident from
Fig. 5. The appearance of these modes is natural and consis-
tent with the group theory since theE mode at theM point,
for example, connects with theA ~symmetric! and B ~anti-
symmetric! modes on theS point, which is expected from
the compatibility relation.25

Next, Figs. 6 and 7 show the transmission spectra of crys-
tal 1 with eight lattice layers calculated by the Pendry-
MacKinnon method.20 The incident plane wave was assumed
to be propagated in the (1,0) (G-X) direction and the (1,1)
(G-M ) direction, respectively. In Table II, the opaque fre-
quency ranges where the transmittance is less than 0.1 are
compared with the band gaps and the frequency ranges
where only antisymmetric (B) modes exist. Note that the
antisymmetric modes do not couple to the plane wave com-
ing from outside of the photonic crystal at normal incidence
because of the mismatching of the spatial symmetry, and
they do not contribute to the transmittance.25,26 So, we refer
to them as uncoupled modes. Figure 8 shows the lifetime of
the five lowest eigenmodes. It depends strongly on the
amount of the field distribution in the metallic region.

FIG. 4. The dispersion relation of the two-dimensional square
photonic crystal composed of metallic cylinders~crystal 1! for theE
polarization calculated by means of the numerical simulation of the
dipole radiation. The ordinate is the normalized frequency wherev,
a, andc stand for the angular frequency of the radiation field, the
lattice constant of the crystal, and the light velocity in free space.
According to the previous calculation by Kuzmiaket al. ~Refs.
6–8!, the following parameters were used for numerical calculation:
r m /a50.472 (f 50.7), wherer m denotes the radius of the metallic
cylinders,«`51.0, vpa/2pc51.0, andg50.01vp in Eq. ~7!. The
dispersion relation was drawn for highly symmetric points in the
first Brillouin zone of the two-dimensional crystal:G(0,0),
X(p/a,0), andM (p/a,p/a). The spatial symmetry of each eigen-
mode for Ez is also shown in this figure, where the number in
parentheses is given in order of the ascending frequency when there
is more than one mode of the same symmetry in the analyzed fre-
quency region.

FIG. 5. The distribution of the electric field of~a! theE mode at
theM point, ~b! theE mode at theG point, and~c! theB1(1) mode
at theX point. The maximum of each electric field is normalized to
unity. For the doubly degenerateE modes, only one eigenfunction
is shown. The other eigenfunction can be obtained by a rotation by
90°. For all eigenmodes, the eigenfunctions show their peculiar
symmetries.
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The dispersion relation and the lifetime of the lowest band
for crystal 2 with a filling factor of 0.01 are shown in Figs. 9
and 10. In the long-wavelength approximation, the cutoff
frequency is given byva/2pc50.1, which is very close to
the numerical result, 0.097. Figure 10 shows a very interest-
ing behavior of the lifetime of the lowest band. It varies
more than three orders of magnitude withk. This feature
originates from the variation of the field distribution. For
example, theB2 mode on theM point is antisymmetric about
thex andy axes. Its amplitude is thus equal to zero on these
axes. Because the electric field is continuous and the radius
of the metallic cylinders is small for crystal 2, the electric
field is small everywhere in the metal. This is the reason why
the dielectric loss is small and the lifetime is long for theB2
mode. On the other hand, theA1 mode on theG point is
totally symmetric and it may have a large amplitude in the
metallic region. This is the reason why its lifetime is much
shorter than that of theB2 mode.

Let us conclude this section by giving one remark. The
dispersion relation shown in Fig. 4 is similar to that obtained

by the plane-wave expansion method,6 since the radiational
eigenmodes for theE polarization are essentially modified
plane waves as we mentioned previously and their descrip-
tion by the linear combination of plane waves was a good
approximation. However, this feature cannot be expected in
more general cases. As a matter of fact, theH polarization of
the two-dimensional metallic system is a typical example, for
which the localized nature of surface plasmons brings about
a completely different feature that is difficult to deal with by
the plane-wave expansion. This problem will be treated in
Paper II.21

IV. CONCLUSION

The dispersion relation, the field distribution, and the life-
time of the radiational eigenmodes in the two-dimensional
photonic crystals composed of metallic cylinders were calcu-
lated by means of the numerical simulation of the dipole
radiation based on the FDTD method. The CPU time for this
method is proportional to the number of the representative
points on the spatial mesh used for the discretization of Max-
well’s equations, which is in marked contrast to the case of
the plane-wave expansion method for which the CPU time is
proportional to thecubeof the number of the plane waves.
So, the present method is superior to the plane-wave expan-
sion method when large and/or complicated systems are ana-
lyzed. This feature was demonstrated by the photonic band
calculation for a simple cubic crystal composed of dielectric
spheres.

FIG. 8. The lifetime of the lowest five eigenmodes of crystal 1.
The same parameters as for Fig. 4 were used for numerical calcu-
lation. The ordinate denotes the normalized lifetime in a logarithmic
scale.

TABLE II. Comparison between the band structure and the
transmission spectra.

Direction Band gap B mode Opaque range

G-X 0.814–1.028 0.811–1.032
1.260–1.280 1.275–1.286

1.474 1.483
G-M 0.873–1.090 0.871–1.093

1.415–1.458 1.415–1.454
Cutoff 0.745 0.752

FIG. 6. The transmission spectrum in the~1,0! direction calcu-
lated by the Pendry-MacKinnon method. The abscissa denotes the
normalized frequency. The same parameters as for Fig. 4 were used
for numerical calculation except thatg was set to be zero. The
number of the lattice layers was assumed to be eight.

FIG. 7. The transmission spectrum in the~1,1! direction calcu-
lated by the Pendry-MacKinnon method. The abscissa denotes the
normalized frequency. The same parameters as for Fig. 6 were used
for numerical calculation.
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The dispersion relation for theE polarization obtained by
the present work was similar to that reported previously by
Kuzmiak et al. The symmetry of the eigenmodes was con-
sistent with the prediction from group theory considerations
that was obtained by the reduction procedure starting from
the plane-wave representation of the unperturbed wave func-
tions, which implies that the eigenmodes for theE polariza-
tion are essentially modified plane waves. The opaque fre-
quency ranges in the transmission spectra calculated by the
Pendry-MacKinnon method corresponded quite well to the
band gaps and the frequency ranges of the antisymmetric~B!
modes. The cutoff frequencies coincided with the long-
wavelength approximation of Maxwell’s equations as well.

The curious observation reported by Kuzmiaket al. that
some eigenmodes had zero amplitudes was denied by exam-
ining the field distribution of the related eigenmodes. We
found that the lifetime of the eigenmodes depends strongly
on the field distribution, and its variation of more than three
orders of magnitude was observed.
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FIG. 9. The dispersion relation of the two-dimensional square
photonic crystal composed of metallic cylinders~crystal 2! for theE
polarization calculated by means of the numerical simulation of the
dipole radiation. The same parameters as for Fig. 4 were used for
numerical calculation except thatr m /a50.0564 (f 50.01).

FIG. 10. The lifetime of the lowest eigenmode of crystal 2. The
same parameters as for Fig. 9 were used for numerical calculation.
The ordinate denotes the normalized lifetime in a logarithmic scale.

KAZUAKI SAKODA et al. PHYSICAL REVIEW B 64 045116

045116-8


