

Title	Geometry of finite-dimensional maps (Set Theoretic and Geometric Topology and Its Applications)
Author(s)	Kato, Hisao
Citation	数理解析研究所講究録 (2005), 1419: 82-86
Issue Date	2005-02
URL	http://hdl.handle.net/2433/26305
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Geometry of finite-dimensional maps (Pasynkov の定理の精密化)

筑波大学・数理物質科学研究科・加藤 久男 (Hisao Kato)

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

Abstract. In [2 and 3], Pasynkov proved the following theorem: If $f: X \to Y$ is a map of compacta such that f is a k-dimensional map and dim Y = p ∞ , then the set of maps g in the space $C(X, I^{p+2k+1})$ such that the diagonal product $f \times g : X \to Y \times I^{p+2k+1}$ is an embedding is a G_{δ} -dense subset of $C(X, I^{p+2k+1})$. In this paper, furthermore we investigate the geometric properties of finite-dimensional maps and finite-to-one maps. We prove that if $f: X \to Y$ is a map as above, then for each $0 \le i \le p + k$, the set of maps g in the space $C(X, I^{p+2k+1-i})$ such that the diagonal product $f \times g : X \to Y \times I^{p+2k+1-i}$ is an (i+1)-to-1 map is a G_{δ} -dense subset of $C(X, I^{p+2k+1-i})$. The case i=0 implies the result of Pasynkov. Also, if Y is a one point set, our result implies the following Hurewicz's theorem: If dim $X = n < \infty$ and $0 \le i \le n$, then the set of maps g in the space $C(X, I^{2n+1-i})$ such that $g: X \to I^{2n+1-i}$ is an (i+1)-to-1 map is a G_{δ} dense subset of $C(X, I^{2n+1-i})$. As a corollary, we have the following representation theorem of finite-dimensional maps: For a map $f: X \to Y$ of compacta such that $0 \le k < \infty$ and dim $Y = p < \infty$, f is a k-dimensional map if and only if f can be represented as the composition $f = g_{p+2k+1} \circ \dots \circ g_{p+k+2} \circ g_{p+k+1} \circ g_{p+k} \circ \dots \circ g_1$ of maps g_i (i = 1, 2, ..., p + 2k + 1) paralell to the unit interval I such that g_i is an (i+1)-to-1 map for each i=1,2,..,p+k and g_{p+k+1} is a zero-dimensional map.

$$X = X_0 \xrightarrow{g_1} X_1 \xrightarrow{\dots} \dots \xrightarrow{g_{p+k}} X_{p+k} \xrightarrow{g_{p+k+1}} X_{p+k+1}$$

$$\xrightarrow{g_{p+k+2}} X_{p+k+2} \xrightarrow{\dots} X_{p+2k} \xrightarrow{g_{p+2k+1}} X_{p+2k+1} = Y$$

1 Introduction.

All spaces considered in this paper are assumed to be separable metric spaces. Maps are continuous functions. Let I = [0,1] be the unit interval. By a compactum we mean a nonempty compact metric space. Let X and Y be compacta. Then C(X,Y) denotes the space of all maps $g:X\to Y$ with the usual sup-metric. Note that C(X,Y) is a complete metric space.

A map $f: X \to Y$ is a k-dimensional map $(0 \le k < \infty)$ if for each $y \in Y$ dim $f^{-1}(y) \le k$, where dim Z denotes the topological dimension of a space Z. If a map $f: X \to Y$ is a k-dimensional map, we write dim $f \le k$. A map $f: X \to Y$ is a k-to-1 map if for each $y \in Y$, the cardinal number $|f^{-1}(y)|$ of $f^{-1}(y)$ is equal to or less than k.

In [2 and 3], Pasynkov proved that if $f: X \to Y$ is a k-dimensional map from a compactum X to a finite dimensional compactum Y, then there is a map $g: X \to I^k$ such that dim $(f \times g) = 0$. Also, he proved that if $f: X \to Y$ is a map of compacta such that f is a k-dimensional map and dim $Y = p < \infty$, then the set of maps g in the space $C(X, I^{p+2k+1})$ such that the diagonal product $f \times g: X \to Y \times I^{p+2k+1}$ is an embedding is a G_{δ} -dense subset of $C(X, I^{p+2k+1})$.

In this paper, furthermore we investigate the geometric properties of finitedimensional maps and finite-to-one maps. We prove that if $f: X \to Y$ is a map of compacta such that f is a k-dimensional map and dim $Y = p < \infty$, then for each $0 \le i \le p+k$, the set of maps g in the space $C(X, I^{p+2k+1-i})$ such that the diagonal product $f \times g: X \to Y \times I^{p+2k+1-i}$ is an (i+1)-to-1 map is a G_{δ} dense subset of $C(X, I^{p+2k+1-i})$. Note that the restriction $g|f^{-1}(y): f^{-1}(y) \to$ $I^{p+2k+1-i}$ is an (i+1)-to-1 map for each $y \in Y$. Also, note that the case i=0implies the result of Pasynkov, and our proof in this paper is different from the proof of Pasynkov (see [3]). Also, if Y is a one point set, our result implies that if dim $X = n < \infty$ and $0 \le i \le n$, then the set of maps g in the space $C(X,I^{2n+1-i})$ such that $g:X\to I^{2n+1-i}$ is an (i+1)-to-1 map is a G_{δ} -dense subset of $C(X, I^{2n+1-i})$. As a corollary, we have the following representation theorem of finite-dimensional maps: For a map $f: X \to Y$ of compacta such that $0 \le k < \infty$ and dim $Y = p < \infty$, f is a k-dimensional map if and only if f can be represented as the composition $f = g_{p+2k+1} \circ ... \circ g_{p+k+2} \circ g_{p+k+1} \circ g_{p+k} \circ \circ g_1$ of maps g_i (i = 1, 2, ..., p + 2k + 1) parallel to the unit interval I (for the definition, see section 3) such that g_i is an (i+1)-to-1 map for each i=1,2,..,p+k and g_{p+k+1} is a zero-dimensional map.

$$X = X_0 \xrightarrow{g_1} X_1 \xrightarrow{\cdots} \dots \xrightarrow{g_{p+k}} X_{p+k} \xrightarrow{g_{p+k+1}} X_{p+k+1}$$

$$\xrightarrow{g_{p+k+2}} X_{p+k+2} \xrightarrow{\cdots} X_{p+2k} \xrightarrow{g_{p+2k+1}} X_{p+2k+1} = Y$$

Note that the maps g_i $(p+k+2 \le i \le p+2k+1)$ are 1-dimensional maps.

2 Main theorem.

A map $h: X \to Y$ is a (p, ϵ) -map $(\epsilon > 0)$ if for each $y \in Y$, there are subsets $A_1, A_2, ..., A_p$ of $h^{-1}(y)$ such that $h^{-1}(y) = \bigcup_{i=1}^p A_i$ and diam $A_i < \epsilon$ for each i. Let $f: X \to Y$ be a map and $A \subset X$. Then $f|A: A \to Y$ is a strict embedding for f if f|A is an embedding and $f^{-1}(f(A)) = A$. Note that $f|A: A \to Y$ is a strict embedding for f if and only if $A \subset \{x \in X | f^{-1}(f(x)) = \{x\}\}$.

In this paper, we need the following key lemma of Toruńczyk [4, Lemma 2].

Lemma 2.1. Let $\epsilon > 0$. Suppose that $f: X \to Y$ is a map of compacta with $\dim f = 0$ and $\dim Y = p < \infty$. For each i = 1, 2, ..., l, let K_i and L_i be closed

disjoint subsets of X. Then there are open subsets E_i of X separating X between K_i and L_i such that $f|(Cl(E_1) \cup ... \cup Cl(E_l))$ is a (p, ϵ) -map.

The next proposition was proved by Pasynkov in [2] (see also [4, Corollary 1] and [1, p. 48]).

Proposition 2.2. If $f: X \to Y$ is a k-dimensional map from a compactum X to a finite dimensional compactum Y, then the set of maps g in $C(X, I^k)$ such that dim $(f \times g) = 0$ is a G_{δ} -dense subset of $C(X, I^k)$.

The following lemma is easily proved.

Lemma 2.3. Let X and Y be compact aand A a closed subset of X. Let C(X,Y;A,p) be the set of all maps $g:X\to Y$ such that g|A is a p-to-1 map. Then C(X,Y;A,p) is G_{δ} in C(X,Y).

Theorem 2.4. If $f: X \to Y$ is a map of compacta such that f is a k-dimensional map and $\dim Y = p < \infty$, then for each $0 \le i \le p + k$, the set of maps g in the space $C(X, I^{p+2k+1-i})$ such that the diagonal product $f \times g: X \to Y \times I^{p+2k+1-i}$ is an (i+1)-to-1 map is a G_{δ} -dense subset of $C(X, I^{p+2k+1-i})$. Hence the restriction $g|f^{-1}(y): f^{-1}(y) \to I^{p+2k+1-i}$ is an (i+1)-to-1 map for each $y \in Y$.

3 Finite-dimensional maps and compositions of maps parallel to the unit interval.

A map $f: X \to Y$ is said to be embedded in a map $f_0: X_0 \to Y_0$ (see [2 and 3]) if there exists embeddings $g: X \to X_0$ and $h: Y \to Y_0$ such that $h \circ f = f_0 \circ g$. A map $f: X \to Y$ is parallel to the unit interval I (see [2 and 3]) if f can be embedded in the natural projection $p: Y \times I \to Y$. In [2 and 3], Pasynkov proved the following theorem: If $f: X \to Y$ is a map such that dim f = k and dim $Y < \infty$, then f can be represented as the composition $f = h_k \circ ...h_1 \circ g$ of a zero-dimensional map g and maps h_i (i = 1, 2, ..., k) parallel to the unit interval I (see Proposition 2.2).

In this section, furthermore we study the properties of finite-dimensional maps and compositions of maps parallel to the unit interval. In fact, we show that the zero-dimensional map g as in the above theorem of Pasynkov can be represented as a composition of some special maps parallel to I.

First, we prove the following proposition (Proposition 3.2) which is related to results of Uspenskij [6], Tuncali and Valov [5]. Our proof is similar to the proof of Theorem 2.4. We give the proof which is different from the proofs of Uspenskij, Tuncali and Valov (see [6] and [5]).

Lemma 3.1. Let X, Y and Z be compact aand $0 \le k < \infty$. Let T be the set of maps $g = u \times v : X \to Y \times Z$ in $C(X, Y \times Z)$ such that dim $v(u^{-1}(y)) \le k$ for each $y \in Y$. Then T is a G_{δ} -set of $C(X, Y \times Z)$.

Proposition 3.2. Let $f: X \to Y$ be a map of compacta such that f is a k-dimensional map and $\dim Y = p < \infty$. Let T be the set of all maps $h = g \times u: X \to I^k \times I$ in $C(X, I^{k+1})$ such that $\dim h(f^{-1}(y)) \leq k$, $\dim u((f \times g)^{-1}(y, t)) = 0$ for each $y \in Y$, $t \in I^k$, $\dim (f \times g) = 0$ and $f \times h$ is a (p + k + 1)-to-1 map. Then T is a G_{δ} -dense subset of $C(X, I^{k+1})$.

Corollary 3.3. Let $f: X \to Y$ be a map of compacta such that f is a k-dimensional map and $\dim Y = p < \infty$. Let $\tilde{E}(X, I^{p+2k+1})$ be the set of maps g in the space $C(X, I^{p+2k+1})$ such that (1) $f \times g$ is an embedding, (2) for each $1 \le i \le p+k$, $f \times (p_i \circ g): X \to Y \times I^{p+2k+1-i}$ is an (i+1)-to-1 map, and (3) for $h = p_{p+k} \circ g = g' \times u: X \to I^k \times I$, $\dim h(f^{-1}(y)) \le k$, $\dim u((f \times g')^{-1}(y,t)) = 0$ for each $y \in Y$ and $t \in I^k$, and $\dim (f \times g') = 0$, where $p_i: I^{p+2k+1} \to I^{p+2k+1-i}$ is the natural projection. Then $\tilde{E}(X, I^{p+2k+1})$ is a G_{δ} -dense subset of $C(X, I^{p+2k+1})$.

$$Y \times I^{p+2k+1} \xrightarrow{f \times g} X$$

$$\downarrow^{Pr}$$

$$Y \times I^{p+2k+1-i}$$

$$\downarrow^{Pr}$$

$$Y \times I^{k} \xrightarrow{Pr} Y$$

Now, we have the following representation theorem of finite-dimensional maps.

Theorem 3.4. Let $f: X \to Y$ be a map of compacta such that $0 \le k < \infty$ and dim $Y = p < \infty$. Then f is a k-dimensional map if and only if f can be represented as the composition

$$f = g_{p+2k+1} \circ \dots \circ g_{p+k+2} \circ g_{p+k+1} \circ g_{p+k} \circ \dots \circ g_1$$

of maps g_i (i = 1, 2, ..., p + 2k + 1) paralell to I such that g_i is an (i + 1)-to-1 map for each i = 1, 2, ..., p + k and g_{p+k+1} is a zero-dimensional map.

$$X = X_0 \xrightarrow{g_1} X_1 \xrightarrow{\cdots} \dots \xrightarrow{g_{p+k}} X_{p+k} \xrightarrow{g_{p+k+1}} X_{p+k+1}$$

$$\xrightarrow{g_{p+k+2}} X_{p+k+2} \xrightarrow{\cdots} X_{p+2k} \xrightarrow{g_{p+2k+1}} X_{p+2k+1} = Y$$

Remark. In the proof of Theorem 3.4, the maps g_i (i = 1, 2, ..., p + k) satisfy the condition that $g_i \circ \circ g_1$ $(i \le p + k)$ is an (i + 1)-to-1 map. In particular, g_i $(i \le p + k)$ is an (i + 1)-to-1 map.

References

- [1] M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151, (1996).
- [2] B. A. Pasynkov, On dimension and geometry of mappings, *Dokl. Akad. Nauk SSSR*, 221 (1975), 543-546.
- [3] B. A. Pasynkov, On the Geometry of Continuous Mappings of Finite-Dimensional Metrizable Compacta, *Proceedings of the Steklov Institute of Mathematics*, 212, 1996, p. 138-162.
- [4] H. Toruńczyk, Finite to one restrictions of continuous functions, Fund. Math. 75 (1985), 237-249.
- [5] H. M. Tuncali and V. Valov, On finite-dimensional maps II, *Topology Appl.* 132 (2003), 81-87.
- [6] V. V. Uspenskij, A remark on a question of R. Pol concerning light maps, Topology Appl. 103 (2000), 291-293.