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Global existence of solutions to multiple speed
systems of quasilinear wave equations

in exterior domains *

FiAf  # (Makoto Nakamura )
ALK - 5% (GSIS Tohoku University)

1 Introduction

The goal of this paper is to prove global existence of solutions to quadratic quasilinear Dirichlet-
wave equations exterior to a class of compact obstacles. As in Metcalfe-Sogge [23], the main
condition that we require for our class of obstacles is exponential local energy decay. Our result
improves upon the earlier one of Metcalfe-Sogge [23] by allowing a more general null condition
which only puts restrictions on the self-interaction of each wave family. In Minkowski space, such
equations were studied and shown to have global solutions by Sideris-Tu [30], Agemi-Yokoyama

(1], and Kubota-Yokoyama [18].

We use Klainerman’s commuting vector fields method [16]:

80 =6t, Qij =x,-8j—a:j8,~, 1 SZ#] S 3, L=t8t+ Z xjaj.
1<5<3
L is called the scaling operator. We denote {8;}o<j<3 by @, {€j}1<izj<s by @, {0,9} by Z,
and {L, Z} by T. For functions u, u’ denotes du. These operators have the commuting relations

with d’Alembertian O :
00 =Q,0, OL=(L+2)0, IQ=9L &L= (L+1);: (L1)

Using Z, we can earn one weight by Klainerman-Sobolev inequality :

* A note on the joint work with Jason Metcalfe and Christopher D. Sogge [22]



Lemma 1.1 [16] [18, Lemma 2.4] [28, Lemma 8.3] Suppose that h € C*®(R3). Then, for R > 2,

Iz (Rejai<riny S CRTH Y 19908kl 2 (-1 <|e<ri2)- (L.2)
lal+]8]<2
We describe our assumptions on our obstacles X C R3. We shall assume that K is smooth and

compact, but not necessarily connected. By scaling, without loss of generality, we may assume
Kc{zeR®: |z| <1}, 0€ K\dK.

The only additional assumption states that there is exponential local energy decay with a possible

loss of regularity. That is, if u is a solution to

Cu(t, z) = 0, (t,z) € Ry x R3\K
u(t,)|ox =0 (1.3)
'U,(O, ) = f7 6tu(0a ) =9, supp f Usupp g C {RS\’C’ 11'] < 4}a

then there must be constants ¢, C > 0 so that

' (8 M L2 (ersvi o <o) < Ce™* Y (18560, )la- (1.4)
laf<1

Throughout this paper, we assume this local energy decay estimate for K.

Lax, Morawetz and Phillips have shown (1.4) without a loss of regularity, namely |a| = 0 in

the RHS, when K is star-shaped in [19] (see also [20, Theorem 3.2]).

Morawetz, Ralston and Strauss have shown (1.4) without a loss of regularity (|a| = 0) when K
is bounded connected and nontrapping in [25, (3.1)]. Here if the lengths of all rays in By (0)\K
are bounded, then waves are not trapped and (1.4) holds without a loss of regularity. They also
treat the multi-dimensional cases. See Melrose [21] for further results. Ralston [26] has shown

that (1.4) could not hold without a loss of regularity when there are trapped rays..

Ikawa has shown (1.4) with an additional loss of regularity, namely |a| < £ with £ > 1 in
the RHS, when K is trapping. He has shown (1.4) with £ = 6 when K consists of two disjoint
strictly convex bodies in [9], and (1.4) with £ = 2 when K consists of sufficiently separated

several disjoint strictly convex bodies in [10]. Since we have the standard energy preservation

' (¢, M r2@aviey = 1140, ) L2wevx)
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(see (3.3) with v = 0), we can reduce the estimate (1.4) with an additional regularity, £ > 1, to
the estimate for £ = 1 with different constants ¢ and C by the interpolation. Therefore we can

treat the above obstacles by the condition (1.4).

We note that we do not require exponential decay; in fact, O((1 + )"'7%~™) with § > 0 and
m > 0 may be sufficient with a tighter argument, where we need 1+ ¢ for the integral ability
and m is the number of L we need in our argument (see the argument below (4.4) to bound
the~ct/?). Currently, the authors are not aware of any 3-dimensional example that involves

polynomial decay, but does not have exponential decay.

We consider quadratic, quasilinear systems of the form

Ou = F(du,0%u), (t,z) € Ry x R}\K
u(t, -)lox =0 (1.5)
U(O,°)=f, atu(oa)r‘g
Here [ denotes a vector-valued multiple speed d’Alembertian :
Ou = (Dclul,D02u2,...,DCDuD), F=(F,-..,FP), D>1, (1.6)
where
O, =07 —ciA, 1<I<D.
We assume that the wave speeds c; are positive and distinct:
0<ey <---<ep.
Straightforward modifications of the argument give the more general case where the various
components are allowed to have the same speed.
We shall assume that F(du,0?u) is of the form
FI(0u, 8%u) = Z AJI.,{KajuJE)kuK + Z B},;QKajuJaka,uK, 1<I<D. (1.7)
1<J,K<D 0<4,k,1<3
0<j,k<3 1<JL,KLD

For the energy estimates, we require the symmetry condition:

BIJK _ gKJI _ glJK
ikl = DPjel = Djig -
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To obtain global existence, we also require that the equations satisfy the following null condi-

tion which only involves the self-interactions of each wave family :

> Aligiee =0 whenever &=+ +¢d), I=1,...,D, (1.8)
0<j,k<3

> Bil&&& =0 whenever &=ci(l+¢€5+€2), I=1,...,D. (1.9)
0<7,k,1<3

The terms which satisfy the above null conditions are treated by the following estimates :

Lemma 1.2 /30, 33] If the semilinear null condition (1.8) holds, then

3 A%Bjuakv‘ < oltulldv] + [oullTv] c<cit =) ul| 0], (1.10)
0<TRes (r) (t+r)
Suppose that the quasilinear null condition (1.9) holds. Then,
2 —
Y B}I{aluajakvl < ¢Lullo®l + |8ulloTo] - fert — r) |9u||8%0]. (1.11)
0<jk,i<3 {r) {t+r)

We refer to compatibility conditions. For the solution u of (1.5), the functions {8/u(0,z)};>0
are called compatible functions. The compatible functions are functions of spatial variables
and & u(0,z) are expressed by {02 f}ai<j and {059} ai<j—1- We say that the compatibility
conditions of order s are satisfied if 3tiu(0,:c)|3,c =0 for all 0 < j < s (See [12, Definition 9.2}).
Additionally, we say that (f,g) € C* satisfies the compatibility conditions to infinite order if

the compatibility conditions are satisfied to any order s > 0.

We can now state our main result:

Theorem 1.3 Let K be a fized compact obstacle with smooth boundary that satisfies (1.4).
Assume that F(Ou, 8%u) and O are as above and that (f,g) € C*(R3\K) satisfy the compatibility
conditions to infinite order. Then there is a constant €g > 0, and an integer N > 0 so that for

all € < gy, if

o Kaaeflo+ D iz Heloggll, < e (1.12)

la|<N laj<N-1
then (1.5) has a unique solution u € C*®([0,00) x R3\K).

This paper is organized as follows. In the next section, we will collect some preliminary
results which are frequently used in this paper. We put several sections for energy estimates, L?
estimates in space and time, and Sobolev embeddings, respectively. We will show the continuity

argument in the last section to prove Theorem 1.3.
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2 Preliminaries

We use the following Poincaré inequalities to bound u by u' near the obstacle:

lull 2ok jzi<r) < CRIVUllL2®3\K,2)<R) If ulox =0, (2.1)
where Cp is a constant dependent on R > 1 (cf. [4, (7.44)]).
We also use the following elliptic regularity : for any fixed M >0

> lI8gull 2@k ai<r) < Cr( D 1102 VUl L2@e\k i< R41)
2<lal<M+2 jal<M

+ Z 105 Aull 2 (re\k,jz)<r+1))  (2:2)
ja|<M

if ulgx = 0 (cf. [4, Theorem 8.13]).

Here we briefly sketch the elementary method to treat the nonlinearity.
Lemma 2.1 Let u € C*®((0,00) x R3\K). Suppose u has the bound

T 120 2l <

2.3
(o< =T 1+t (2:3)
| Mg

for some constants My > 0 and Cy > 0. Then for any M > 0 and po > 0, there exists a constant
C such that we have

Sl < o Y IR0 Ol
ptal<M ptla|<M
u<po #<po
oY el Y e el
Mo+1<|a|<M—Mo+1 Mo+1<|a|<M—My—1
o Y @Ol Y e VOl
ptla|<M—-Mo+1 laj]<M -1

1<p<po

+C Y @z Wl Y, e VA ()]s (24)

ptlo|<M/2+2 pt|a|<M-1
1<pu<po—1 1<p<po—-1

Here 0 can be replaced by Z in the above inequality.
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Proof of Lemma 2.1 : We use the following estimates:

> e W)z
ptla|<M
u<po
> | L*8%u' LY 85/ ||,

p+lal+v+|BI<M
utv<po

S s Y 18P oo + > 10%0' 8% |2 (2.5)
ptle|<M 1B1<Mo Mo+1<|a|<M—-Mo~1
u<po Mo+1<|B|<M—-Mo~1

+ > > | L0 88|

ptja|<M—Mo—1 Mo+1<|8|<M -1
1<p<uo

+ > S Lk L 0P o,
ptlal<M/2 v+|B| <M -1
1Su<uo—1 1<v<puo—1

N

N

Since we have by (1.2)

IL#0%d (tz)] < (2)7h D 1 Z2PLR0% (¢, )l 2o -1< <o)
[Bl<2

(z)71/2 > () "2 LF ZP4 |,
v+|B|<pt+lal+2

IN

we obtain the required result using (2.3). O

3 Energy Estimates

Since we are considering the quasilinear wave equation, we need associated energy estimates
as follows. Let v = {’Y”’jk}lgI,JgD,ogj,k53 be any smooth functions on [0,00) x R3\K. We

consider O, which is defined by

D 3
(D,Yu)l(t, z) = (8 - Al (t, z) + Z Z ’y”’jk(t,x)ajaku‘](t, z), 1<I<D.
J=1jk=0

And we define the energy form associated with O., as follows :

3 D 3 D 3
eb(u) = (Bpul)? + Zc%(akuj)z + 22271J’0k80u18kuJ - Z Z ATk gl Gpu?  (3.1)

k=1 J=1k=0 J=1j,k=0
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D
eo = eo(u) = Y ej(u)
I=1
We define the other components of the energy-momentum vector. For I = 1,2,---,D, and

k=1,2,3, let

D 3
el = el(u) = —229pu Opu’ +2 Z Z fy”’jkaoulaju‘]

J=13=0
D
ej=ej(u) =) e, j=1,2,3
I=1
D 3 D 3
Ri(u) =2 Z Z(Bovl‘]")k)aoulaku" - Z Z (807U’jk)3ju13ku‘f
J=1k=0 J=13,k=0
D 3
Ri(u) =2 ) (8" 7*)8ou! 80’
J=13=0
D
-3 Al
I=1k=0

Then we have the following most fundamental energy estimates (See [32], p13) :

Lemma 3.1 Suppose that the functions y'/7% satisfy the symmetry conditions

1J,jk

NI Tk = Ik — yI3kS for 1< 1,7<D, 0<j5,k<3. (3.2)

For any function u in C%((0,00) x R3\K), the following equation holds:

Oreg + div(ey, e2, €3) = 20,u - O u + R(u). (3.3)
Proof of Lemma 8.1: By direct computation, we have

3 D 3
Boeé = 280u18§u[ +2 Z c%@kulaoakul + 28pu! Z Z 110k 3, 8w’
k=1 J=1k=0

D 3 D
+2) ) AU o’ - ) Z v 135 (00u’ Bu’ + 8ju'BBku’) + Ry (3.4)
J=1k=0 J=1j,k=0

and

3 3
Z ('ike,IC = —260u1c§Au1 -2 Z c%BkuIaoakuI
k=1 k=1

D 3 3 D 3 3 3
+28OUIZZE'7I ’Jka Apu’ +22227”’j1°306ku13ju"+ZR£. (3.5)

J=1j=0 k=1 =1 j=0 k=1 k=1
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We obtain the required result using the symmetry condition (3.2). a

We use (3.3) to show the energy estimates for L#Z%u. However, direct application causes
derivative losses from div(e;, ez, €e3) since L, €, 8; don’t preserve the Dirichlet condition. To
avoid it, we cut L near the obstacle and construct the energy estimates for 6{ u. Let n € C°(R3)
be a smooth function with n(z) = 0 for |z| < 1 and n(z) = 1 for |z| > 2. We define L by

L =1td, + nror. By simple calculation, we have for any pu > 0

It =1t + Z Cu,j,aXu,j,a(m)Ljagaza Xpja € C§° (RB)a Supp Xuja C B2(0), (3.6)
j+lal<p-1

where {C}, j»} are constants dependent on lower indices.

Our first task is to show the energy estimates for f/”(’}f u. We put

Brsolt) = Brapa@)®) = [ 3 eal*0fu)(t,2) do.
gt

The estimate for Ejr,,(t) is given by the following lemma. And the energy estimates for

L#9%u follows from it due to the elliptic regularity :

Lemma 3.2 Assume that the perturbation terms v!77% satisfy (3.2) and the size condition

D 3
> D WD)l L, <8 (3.7)

1,J=1j,k=0
for & sufficiently small. Then for any M > 0 and po > 0, there ezists a constant C = C(M, po, K)
so that for any smooth function u in [0, 00) x R3\K with u(t, z)|zcax = 0, the following estimates
hold.

> IO () S CEL +C Y 14Tt ). (3.8)

btal<M ptjo|<M-1
u<po w<lpo



16

AEYE (1) < C 3 15,1400ult, 2+ Ol (¢ MeoErf, (8 (3.9)
p+j<M
p<po
< ¢ S IrFeOyult, Yz + CI(h MleoErl s, (0
ptlel<M
p<po
+C Y (P 8%y (t, ) (I 222 8%u(t, ) 2
p1+ a1 +uz+eazl<M
p1+p2<po

potaz|<M-1

+C > LHV (4, @) | L2 el <2)-

ptla|l<M
u<lpo—1

When we apply Gronwall’s inequality to (3.9), we need the following lemma to bound the last

term in (3.9).

Lemma 3.3 For any M > 0 and o, there exists a constant C = C(M, pg, K) such that for any
smooth function u in [0,00) x R3\K with the Dirichlet condition u(t,z)|zcox = 0 the following

estimate holds.

3 / 1L#0°u (5, ) p2(aienyds <€ 3 @) (L6°u)(0, )z

p+isM u+i<M+2
u<po ulpo
+ > / / |IL*0%G (T, )|l L2(|ly| —(s—7)|<10)dTdS
u+]a|<M+1
u<po

+ Y /HL“B"EIu(s )l L2(y<qyds-  (3.10)

pt+|a|<M+1
p<po

For the energy estimates for L¥Z%u, we need the following estimates. Begin by setting
Yt uo(t) = / > eo(LFZ°u)(t,z) da. (3.11)
lal+usM
1<po
We, then, have the following lemma which shows how the energy estimates for L*Z%u can be

obtained from the ones involving L¥3%u.

Lemma 3.4 Assume (3.2), (3.7) and

17 (8 Moo = Z Z 8y 7% (2, - lloo < 0 (3.12)

1,J=1j,k,1=0
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for sufficiently small 6. Then,

OYary < CVyloo S 1I0,LFZ%(t, -)l2 (3.13)
lal4uMm
u<lpo
OV MooYatuo +C D IIE#0%U (s, )| 32(ai<2)
la|4+u<M+1
< pio
1/2
< o210 ILFzeOu, -l
la|+p<M
u<po
+ > [(LH Z2%1) (L#2 2°26%u) |2}
w1+l |[+petlaz|<M
p1+p2<po
pet+|as|<M-1
+CIY' (8, MooYrtuo +C D I1L#8%W (s, )| 32(jai<r)
|a|+p<M+1
u<po

4 Local energy estimates and L? estimates in space and time

First we derive local energy estimates for inhomogeneous wave equations near the obstacle.

Lemma 4.1 Let K satisfy the local energy decay (1.4). Let u be the solution of

Ou=F, supp,F(t,z) C By4(0)
u(0) = f, 0wu(0) =g, supp fUsupp g C B4(0).

Then for any M > 0 and po > 0, the following estimates holds :

> ILRO (£, ) | pa(aicny < Ce™ ST 110200, )| 2 (i<t
u+IgISM ja|<M+1
n<uo

. ,
+C / e =2 N L0 F (s, leds + Y |LFOF(E, Ylee (42)
0 utlal<M+1 pt|o|<M-1
B<po #<ko

Proof of Lemma 4.1 : First we show (4.2) for g = 0 using induction. The estimate for M = 0
follows from (1.4) and the Duhamel priciple. Let’s assume that the estimate for M > 0, and we
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consider the case M + 1. We have

>0l eqag<ny S D 10%W L2 (pai<a) + Y 18] 8%ullzz(el<a
ol <M+1 lal<M lal a2
12

+ Y N0%ullLe(e)<ay.  (4:3)
la|=M+2

The first two terms in the RHS are treated by induction since d;u satisfies the Dirichlet condition.

Applying (2.1) and (2.2) to the last term, we have
S 18%u®)lLagai<ay S 10 llz2gei<sy + D 10567l L2(ei<s) + > 1185 0ull L2(ai<s)-
loa|=M+2 lo]<M loj<M
Again by induction, we obtain the required estimate for M + 1. Here we can replace c/2 with c

in (4.2) when po = 0.

Next we show (4.2) for g > 1 by induction. Let’s assume that (4.2) holds for M and po. We

consider the case pg + 1. Since we have

S I ey S Y. MEFOW l2qacy + Y, 110K | L2 (iai<a)y  (44)
ptlo|<M ptlal<M wtlel <M
u<pot+l Bw<po 1<u<po+1

it suffices by induction to show the last term in the RHS is bounded by the RHS in (4.2). If we

use (4.2) for pg = 0 for 8t7 u which satisfies the Dirichlet condition, and we use that the~ct/2 ig

bounded, then we obtain the required estimate. |
We need weighted L? estimates. Put
57 = {0,7] x R\K}
to denote the time strip of height 7' in Ry x R3\K.

Lemma 4.2 (1) (Boundaryless case [13, Proposition 2.1]) There exists a constant C > 0 so

that for any function u in [0,00) X R3, the following estimate holds.

T
(log(2 + 1)) /2|(@) " "*u | c2o.myxmrey < C Y, 10°u(0, )llz + C /0 IDu(t, - )llzdt.  (4.5)
le|<1

(2) (Ezterior domain case [14, (6.8), (6.9)]) There ezists a constant C so that for any function
u in [0,00) x R3\K with the Dirichlet condition u(t,)|zcox = 0, the following estimate holds.



Forany M >0 and uo >0

(log2+T))72 3" &) PLr™ a5y < C . (I(L#0%u)(0, )12

le]+u<M lo|+u<M+2
u<po u<pio
+C [2#0°0u(t, Yz dt+C Y |LFOOull sy
0 la|+u<M+1 lal+u<M
1w<po B<po

and

(log2+T)™ 2 N (&) 2L 2% || po(syy < C D IILFZ%u(0,2)| 1

lel+ps<M la+u<M+2
#<po u<uo
+C / S jorezout b dt+C Y 10LE 2% sy
O aj+usM+1 la|+u<M
w<io H<po

5 Pointwise Estimates

We consider pointwise estimates in this section.

Lemma 5.1 Let F, f and g be any functions.

(1) (Boundaryless case) Let u be a solution to

(82 — A)u(t,z) = F(t,z), (t,z) € [0,00) x R
(O,Z‘) = f(m)v atu(oam) = g(ﬂ?)

Then
1+t +|z)|ut,z)| < C Z 2y 8] ,L* Z%u)(0,z)]| .2
utle|<3
p<1,5<1

+cf/ S |LEZ%F(s,y) z";‘*.

u+\ai<3

(2) (Esterior domain case) Let u be o solution to
(02 — Au(t, ) = F(t,z), (t,2) € [0,00) x RI\K
u(t, z)|geox = 0
w(0,z) = f(z), Bu(0,z) = g(z).

19

(4.6)

(4.7)

(5.1)
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Then for any M >0 and o > 0

(L+t+le) Y [E*2%(ta) <C ), (@8] ,LFZ%u)(0,2)lLs

la]l+p<M Jtutlal<M+8
L<po ulpo+2, <1
dyd
+C’// |L*FZ*F(s,y)| yas
RAK 1a|+p.<M+7 vl
u<po+l
v X I FG s ds 62
|o|+u<M+4
u<po+1

Here and throughout {|y| < 4} is understood to mean {y € R}\K : |y| < 4}.

The proof of the above lemma for vanishing Cauchy data has been shown by Keel-Smith-Sogge
in [14, (2.3), (2.4) and (4.2)] and Metcalfe-Sogge in [23, (3.2)].

The following estimates are the special version to treat the inhomogeneity F' near the light
cones, which follows from the Huygens principle.
Lemma 5.2 Let F be any function.

(1) (Boundaryless case) Let u be a solution to

(02 — EA)u(t,x) = F(t,z), (tz)€0,00) x R3
u(0,-) =0, du(0,-) =0.

Assume
t
suppF C {(t,z);t > 1, _cli(]_ < |z| € 10¢cpt}.
Then
sup (1+t)|u(t,z)] < C sup / Z |L*Z*F (s,y)|dy. (5.3)
|z[<ert/2 0<s<t 'Ha|<3

(2) (Esterior domain case) Let u be a solution to

(02 — AAu(t,z) = F(t,z), (t,z)€[0,00) x RI\K
u(t, z)|zeaxc = 0
u(t,r)=0 for t<O.

Assume

6 t
suppF C {(t,z);t > 1V o % < |z| € 10cpt}.
1
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Then for any M >0 and po >0

sup (1+1t) »  |LFZ%(t,z)| <C sup/ |LFZF(s,y)|dy
|z|<cit/2 el <M 0<s<t JRA\K lal+u<M+7
uluo w<lpuo+1
+sup (1+s) Y [ILPO°F(s,y)llr2qyics). (5-4)
Oss<t o +pu<M+3
upo

We also need the following L% — L*® estimates to treat the inhomogeneity away from the
light cones, which are special (more elementary) version of Kubota-Yokoyama estimates (see

Kubota-Yokoyama [18, Theorem 3.4] for the boundaryless case).

Lemma 5.3 Let F, f and g be any functions.

(1) (Boundaryless case) Let u be a solution to

{ (82 - 2AYu(t,7) = F(t,7), (£7) € [0,00) x R?
U(O, I) = f(m)a 6tu(05x) = g(CE)

Assume

t
suppF C {(t,2);0 <t < 2, |z < 2} U{(t,2);|z| < fé— or |z| > 5ert ). (5.

(&S24
~——

Then for any 6 > 0, there ezists a constant C = C(6) such that

sup (L+8)u(t,z)| <C > [({&)8] ,L¥Z2%u)(0, )| 12
|z|<ert/2 ptlal<3
#<1,j<1
+C sup (1)2 70 (1 + s + [y)) ! 0| F(s,9)].  (5.6)

$>0
y€ER3

(2) (Ezterior domain case) Let u be a solution to
(82 — ABA)u(t,z) = F(t,z), (t,z)€[0,00) x RI\K

U(t7$)|mea)c =0
u(0,z) = f(z), Ow(0,z) = g(z).

Assume (5.5). Then for any 8§ > 0, M > 0 and po > 0, there ezists a constant C =
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C(0, M, uo, K) such that

sup (L+1) > JLAZ%(ta)|<C Y (@Y 8,1 2%0)(0,2) 1

|z <ert/2 p+lal<M j+u+la|<M+8
u<po ulpo+2, j<1
+C sup (P +s+ ) D [LFZF(s,y)l
A la|+u<M
YyER™ n<po

+C sup )P +s+ ) D [L#°F(s,y). (5.7)

s>0
4 lo|+p<M+4
YER\K #<uo

6 Sobolev-type Estimates

We need the following Sobolev inequalities. The first inequality is due to Klainerman-Sideris
[17], Sideris [28], and Hidano-Yokoyama [6]. The second one is the exterior domain analog of

the first one.

Lemma 6.1 Let ¢ >0, 0< 60 <1/2 be any constants.

(1) (Boundaryless case) For any function u € C§°((0,00) x R3)

(@) et —|z))' Ol (La) < € Y (L2 (D) +C Y It +le Z°0eult, 2)l e

u+|g|1§2 lef<1
u<

(6.1)

(2) (Exterior domain case) For any function u € C§°((0,00) x R3\K) with the Dirichlet

condition u|gx. =0, and any M >0, puo >0

@0t —J2))! 0 Y ILFZN (L) S C Y IDFZ% (1)l

ptlal<M ptle|<M+2
u<po u<po+1
+C >t + |z LA Z°0cu(t, o)1z
pto|<M+1
u<po

+CL+1) Y |14 (@) | oo(iaf<r)-  (6:2)
K<po
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Proof of Lemma 6.1 : By (3.14c) in [28], and (4.2) in [18], we have
()2 et — ) O (L 2) < C D 1Z2° )l + C Y (et — |a)220%u(t, )| 1z

lel<2 laj<1

for any 6 with 0 < 8 <1/2. By (2.10) and (3.1) in {17], we have

et = le))*ult,z)llz <C Y IIL#Z%U (8, 2) 1z + Cll(t + o)) Deult, 2)|l 2.
n+le]<1

u<l

Combining the above two estimates, we obtain (6.1). The proof of (2) can be found as (4.7) in

22]. O

7 A sketch of the proof of Theorem 1.3

In this section, we show a sketch of the proof of Theorem 1.3. To prove our global existence
theorem, we need a standard local existence theorem (See [7, Theorem 6.4.11] for the local

existence theorem for the boundaryless case).

Theorem 7.1 [12, Theorem 9.4] Let s > 7. Let (f,g) € H®* ® H*™! satisfy the compatibility
conditions of order s —1. Then (1.5) has a local solution v € C([0,T); H®), where T depends on
s and the norms of f and g. Moreover if || f||gs + ||gl|gs-1 is sufficiently small, then there ezists
C and T independent of f and g so that the solution of (1.5) ezists for 0 <t < T and satisfies

Sup_ leaju Mas-s < CUfllas + lgllas-1)-

0<t<

Let My be sufficiently large number which is determined later so that the following all argu-
ment holds. We assume the smallness of the data (1.12) with N = 2Mj. By the same argument
for (10.2) in [14], we can show that there exists C' independent of u such that

sup Y ) 0%u(t)l| 2o\ k> 5ept) < Ce- (7.1)
>0
la|l<N
This inequality and the Klainerman-Sobolev inequality (1.2) yield
sup Z (1 + |z))1H1el|8%u(t, )| < C'e (7.2)

|:c|>6th
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for some constant C’' > 0. Indeed, for z with |z| > 6cpt, if |z] — 1 > 5¢pt, then the result follows
from (7.1) and (1.2). If |z| — 1 < 5cpt, then the result follows from the standard embedding
H?(R3\K) < L*®(R3\K) since such z is in a bounded set.

And we also have

Y ey 2 5y oy s6epty < Cellog(l +1)Y2. (7.3)
laj<N-2

Indeed, by (7.2), the square of the LHS is bounded by

T
Ce / / z)~5/2 el 9oy dadt,
Z 0 [z|26cpt< ) 9%

la|<N-2
so that by the Schwarz inequality and (7.1), we obtain (7.3).

Fix a cutoff function x € C™(R) satisfying x(s) = 1 if s < 1/(12¢p) and x(s) = 0 if
s> 1/(6¢cp), and set
uo(t,z) =t z)ult,z), n(t,z) = x(t/|z)).

Then by (7.1) and (7.2), we have

Y @) 0% uolla + (1 + ¢ +1al) D (2)*18%uo| < Ce. (7.4)

la|<N la|<N-2

And, by (7.3), we have

> Iz) ¥4 la%u|l | < Cellog(l +T))"2.
la|<N-2

We put w = u — ug. Then we have
Ow = (1 — n)F(du, 8%u) — [0, nju
wlax = 0 (7.5)
w(t,z) =0, t<0
for 0 <t < T. Let v be the solution of
Ov = —[0,n]u
vlax =0 (7.6)

v(t,z) =0, t<0.
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Then we have u = ug + v + (w — v), and

L+t+fa)) D), I*Z%(o)+ > [L#Z%(, )2 < Ce. (7.7)

p+|e|<N-8 pt|a|<N-10

Indeed, by (5.2) and the fact |L#Z235n| < C|z|~!8!, the first term is bounded by

t
/ / (1+s)3 Z <y>|0[|a"u|dyd5,
0 J6cps<ly|<12cps

la|<N

which is bounded by the LHS of (7.1) by the Schwarz inequality. For the second term, we apply
(3.3) with v = 0. Then we have

Z at/CO(L“ZaU)dIE < C Z HL“BO‘ I”L2 (|z|<2)
p+|aj<N-10 pt+a|<N-9
+ | / (8,11 Z°)(OLF Z°v)dz|. (7.8)
p+|a|<N 10

The estimate for the first term and (1.1) show that the RHS is bounded by

e2(t) 24 ——

LFZ*((O, nju)|dy,
L+t Jocpt<iyl<izent |

p+|al<N-10
which is bounded by

£

= lal ey, 1d
i u .
(1 + t)3 Ath§|y1512th l( > l Y

laj<N-9

eX(t) 2 +
So that (7.1) shows that

Z \LFZ%' |2 < C Z /eo(L“Z“ )dz < Ce?,
u+la|<N-10 p+lal<N-10

which shows the estimate for the second term in (7.7) holds.

And we also have

Y @) LR 2o o,y < Cllog(1 + TH2. (79)
pt|al<N-2
Indeed, by (4.7), and (1.1), the LHS is bounded by

C(log(1 + 1) 1/2/ > IL*Zo(O, nu(t, ) |l2dt.
ptlel<N-1
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By the homogenuity of 1, we have

STorzeomutt, )l < COTN Y. L2 (4l asept<lai<izent)
pHal<N-1 prHal<N -1

+C(t) 7 Z 1L¥ Z%u(t, )|l L2 (6cpt<|z/<12¢pt)
pto|<N-1

< Ce(t)?,
where we have used (7.1). So that we obtain (7.9).

Especially, we have shown that there exists a constant Cy > 0 such that
S {0 + v)ll2 + (log(2 + £) 72| (2) 20 (o + )l

|| <N-10

+sup(l + ¢ + |z})|T"*(uo + v)l} < Coe. (7.10)
z
The function w — v satisfies the equation :

O(w — v) = (1 — n)F(du, 8%u)
(w = v)|ox = 0 (7.11)

(w=0)(t,z) =0, t<0.

Since w — v has vanishing Cauchy data, it would be easy to handle when we apply the series

of L? and pointwise estimates to w — v. We show the global existence of u by the continuity

argument. Let us assume

(L+t+z) D 12%w—v)'| < Coe. (7.12)
la|<Mo

Then we can show that for 0 < pp < 3 and any constant o > 0, there exist positive constants
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Ay, and D, such that the following estimates hold :

> I(ZFOu) (2, -)]l2 + > IZ#0%U' (¢, )|l

p+|a]<N-10-8uo utla|<N—-10~8ug
u<luo BZpo
+e ! (log(2 +t))~1/? > (2) " /2046 (w = v) |l pags,)
ptHa|<N—10-8ug—2
Lo
+ 3 IL# 2% (2, -l
put+a)]< N—10—8uo—3
B<po
+ e (log(2 + 1))~ 1/2 > z) ~Y2L# 2% (w — || 2(s,) < Apoe(1 + 1) Proe+9),
p+|a|<N~-10-8ug—5
k<po

(7.13)

The above estimates (7.13) lead to the pointwise and Sobolev type estimates of high order

such as
e+t + |z|) > |LFZ%(w — )]
pta|<N-10-8x3—-13
w2
+ > |z ept — |z]yt? > |LFZ%!| < Ce(1 + t)?P3(e+9)  (7.14)
1<I<D p+|aj<N—-10-8x3+3

pn<2

for any 0 < 6 < 1/2. Using (7.14), we can show

Do Iz —v) |+ A +t+z) Y |Z2%w - v)| < Ce¥? (7.15)
ut|a|<SMo+9 laf<Mo
u<1
for some constants C' > 0. The last estimate shows that if we take ¢ sufficiently small, then we

can replace Cp in (7.12) with Cy/2, which means the boundedness of pointwise estimate and

moreover the energy of u such as

A+t+le) Y 2%+ > |ILFZ°|| < 2Cee.
jal<Mo utlo <Mo+9
1<l

Therefore we can conclude that the local solution is a global solution.

We give a sketch of the proof of the above estimates in the following. The new term which

appears in the exterior domain case compared with the boundaryless case is the first term in
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the LHS of (7.13). By cutting L near the obstacle, we can avoid the derivative loss which comes
from the boundary of the obstacle. We show (7.13) by an induction. We show for po > 0 and
OSMSN—IO—SMQ

Yo MW@ e+ D IEFO )l

ptle|<M ptlal<M
w<po p<lpo
+etlog2+1)H2 ST [{e)TVALEOM (w —v) llnxsy
ptlal<M-2
p<po
+ Y ILFZ )
pt|a|<M-3
u<pio
+ e Hlog(2 +t)) /2 Z ()2 LF Z% (w — )|l L2(sy) < AMpoe(l + t)PMono (£+0)
ptla|<M-5
u<po

(7.16)

asuuming the estimates holds when M and pq are replaced by M — 1 or ug — 1, where Aps,
and D,y ,, are positive constants. Let us focus on the first term in the LHS of (7.16). Let «y be

set by
Y ERa) = Y Y B o' (t9). (7.17)
1<J<D 0<;5<3
By (8.3), we have

% Y. {/eo(iﬂaju)dz}” <C S 10,2#8ull2 + ClY llw > {/eo L“&’u)dz}

ptle|<M p+i<M pti<M
u<pio u<uo L<po

(7.18)
Using the commuting property (1.1), the first term in the RHS of (7.18) is estimated by

> 8% 0yull2+ > I(LF 4 y)(L*2 02 0%u) o+ Y, I1#8% | L2 (jal<2),
ptla|<M pitiar|+pzt+les|<M ptle|<M
u<po p1+p2<po ulpo—1
pat|az|<M -1
(7.19)

where the last term is the additional term when I' hits the cut-off function 7 in L. The first two
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terms in (7.19) are estimated by

Do 0w Y Ly

le]<Mo ptlal <M
u<pip
+ Y @2l YD =) YLz
Mo+1<la|<M u+t|a|<M—Mo+2
1<pu<po
+ > K2y 2Lrze |y Y @) 2L#0% |y, (7.20)
ptle{<(M+1)/2+2 ptlafl<M
1<p<Lpo—1 1<p<po—1

where we have used (1.2) for the lower order regularity terms. The first term in (7.20) can be

estimated by (3.8) such as

Frad, ! C a, !
> el <O 3 W+ g Y I

ptlal<M u+j<M ptlal<M
u<po K<po B<po
+ Y 8% > | L# 0% ||2
Mo+1<jal<M ptle|<M—-Mo+1
1<u<po
+ Y IR YD L0, (7.21)
ptlal<M/2+2 ptle|<M
1<u<po—1 1<p<po~1

where we have used the standard Sobolev embedding H? < L% instead of (1.2). With the
second term in the RHS in (7.21) moved to the LHS for sufficiently small £, we also have the
estimate to bound the second term in (7.16) by the first term. Using the above estimates (7.18),
(7.19), (7.20) and (7.21), and applying the Gronwall inequality to (7.18), and (3.10) to the last
term in (7.19) similarly, we can consequently conclude that the term
> {/eo(i“(’}zu)dl‘}m,
pt+j<M

p<po

which bounds the first term in (7.16), is deduced from the induction on (7.16).

The most technically important improvement in [22] is the estimate for the first term in (7.15).
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By (3.3) with v = 0, we have that the first term in (7.15) is bounded by

cYy 3 //3\’C aOL”Za -—U)I,DL"Z"‘(w—v)IMdyds

1<I<D |a[+u<M +9

+C Z / Z BOL"ZO‘ — )0, LY Z%(w — v) ngdo ds| (7.22)

|a|+l/<M0+9
v<1

where n = (n1,ng,n3) is the outward normal at a given point on K and (-, -) is the standard

Euclidean inner product on R”. Since K C {|z| < 1}, we have that the last term is bounded by

t
c// Yo L% (w —v)'(s,9)* dy ds.
0 J{z€RAK |2I<1} 411 < Mo +10
v<1

Since we also have that [0, L] = 20 and [0, Z] = 0 and that O(w —v) = (1 — n)Du, we see that
(7.22) is controlled by

C/ / ILVZQB(w - U)I| Z lLuZaDufl dy ds
R3\K la| +V<Mo+9 ‘QI+V<M0+9
<1
+ C/ / Yo |L¥0%(w —v)'(s,y)* dy ds. (7.23)
{eeRAI2I<1 414y < Mo +10
v<1

Since we have the bound

PR’ Zan T R D S A D DR 2 A U]

pt|a| < Mo+9 Jof +p<Mo+11 |od+u< Mo+10
u<l n<2 u<l
+ <(<:Is+— !y>|) Z !Lpzaa(ul)l Z ‘Lpzaa(ul)l
S R P |+ < Mo+10
u<l u<l
+ > Yoooqrezeow’) Y [L#ze0(N), (7.24)
(LE)A(LI) o] +4< Mo+9 lal+u<Mo+10
u<l p<l

where we have used that the null condition has the commuting property with I (see {30, Lemma

Z
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4.1]) and the estimates (1.10) and (1.11), the first term in (7.23) is bounded by

¢ -1 a (ers = ly|) 050 — o]
C/O ./R3\IC ((y) Z |LF Z%u| + gy Z |L*Z°8(w — v) |>

le]+v< Mo+11 la|+u<Mo+9
v<2 n<l1
Yoz w -+ Y |L“Z°‘u'|2)
ee|+u<Mo+9 lar|+u<Mo+10
u<1 p<t

+ Y Yo Fzeew-v) | Y |Fzeew’) S |1 Zeo(uF)|dyds
L<TLKLD |a|+p< Mo+9 le|+u<Mp+10 o] +p<Mo+10
p<l l}é} k<1

(7.25)

Applying (7.14) to the integral of the first term in (7.25), we have it is bounded by

t
Cs [ (X Iz w-n B Y Iz ds

|| +u<Mo+9 la|+u<Mo+10
u<1 u<1

(7.26)
which is O(e%) by (7.10) and (7.13). For the second integral in (7.25), we split R*\K into two
sets A7 and A9, and apply the second estimate in (7.14) for each cases, then we have the same

bounds of (7.26) for it. Here we note that 1 + ¢+ |z| ~ (¢cjt — |z|) when (¢,z) € AS. This

completes the proof of (7.15) for the the first term. Here we note that this estimate yields

R T T S SV V] (7.27)
o] < Mo+7
<C Y Izl + ) N+t |2)Z°0ulla + (1 + )l o ag<2)
la]+p<Mo+9 |a|<Mo+8
k<1
<C Y |I*Z%|)p + Ce,
o +u<Mo+9
U<l

where we have used (6.2), (7.10) and (7.12).

For the estimate for the second term in (7.15), we use the smooth functions p, 8 € C*®(R)
which satisfies p(r) = 1 for ¢;¢/5 <7 < 5¢p, and p(r) = 0 for 7 < ¢1/10 or r > 10cp, B(r) =1
for r > 2V (12/c1), and p(r) =0 for r <1V (6/c1). And we put

(¢, z) = B(t)p(|z]/1).
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The function ¢ has its support near the light cones. Applying (5.4) and (5.7) to the second term
in (7.15), we have

sup (1+t+|z|) E |1Z%*(w —v)| < C E |LFZ*(¢0(w — v))|dy
lz|<crt/2 la|< Mg la|+u< Mo+8
©<1
+C sup PP +s+ ) Y (1421 - ¢)0(w - )|, (7.28)
0<s<t
yE_R‘TKIC la|<Mo+5

which is bounded by
c > FZ%|p+CE°

ja|+p<Mo+9
p<l

where we have used (7.27). Since we have by (1.2)

sup (1+t+la) 3 122w—-v)]<C Y 12%w -0l (7.29)

|z|2e1t/2 la|<Mo la|<Mo+2

the estimate for the second term in (7.15) follows from that for the first term.
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