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\S 1. Introduction

The formation of rough surfaces is arich phenomenon in natuoe.l) In astrict

sense, there is almost nothing of asmooth surface but arough one. Typical exam-

ples for the growing rough surfaces include crystal $\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{h},2\rangle$ viscous flow in porous
$\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{a}^{3)}$, mountain $\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{y}^{4)}$,and bacterial $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{n}\mathrm{y}^{5)}$.It is one of very important

problems in statistical physics to understand the growing mechanism of such sur-

faces. In 1985, $\mathrm{F}$ amily and Vicsek proposed the scaling hypothesis for the growing

rough $\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}.6$) Based on the scaling, alot of experimental and theoretical stud-

$\mathrm{i}\mathrm{e}\mathrm{s}$ , such as experiments mentioned above and Kardar-Parisi-Zhang $(\mathrm{K}\mathrm{P}\mathrm{Z})^{7)}$ equa$\cdot$

tion and Edwards-Wilkinson $(\mathrm{E}\mathrm{W})^{8)}$ equation, have been carried out to confirm the

Family-Vicsek scaling behavior.

The Family-Vicsek (FV) scaling is described as follows. Let us consider arough

surface which grows from the substrate of line seeds. Namely, for simplicity, we take

arough surface grown from one dimensional substrate in two dimensional space, i.e.,

$(1+1)$ dimensions. It is straightforward to extend the system to higher dimensions.

In general, the standard deviation $w(L, t)$ of height ffom the substrate is given as
$\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\mathrm{s}$,

$w(L, t)=$ (14)

where $L$ is the width of astrip of substrate, $t$ the time, $y_{i}$ the surface height at the
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substrate site $x_{i}$ . Here $\overline{h}$ is the average height given as

$\overline{h}=\frac{1}{L}\sum_{i}^{L}y_{i}$ . $(1\cdot 2)$

Various rough surfaces satisfy the relations

$w(L, t)\sim t^{\beta}$ , $(t\ll t^{*})$ , $(1\cdot 3)$

$w(L, t)\sim L^{\alpha}$ , $(t\gg t^{*})$ , $(1\cdot 4)$

where the scalin$\mathrm{g}$ relation $(1\cdot 3)$ means that the standard deviation $w(L,t)$ grows
with a power law of time in early stages of growth, while $(1\cdot 4)$ means that $w(L,t)$

saturates to a value at some characteristic time $t^{*}$ , md then it exhibits a power
law of $L$ in the late stages. This signifies that the growing rough surface is a self-
affine fractal. The exponents $\alpha$ and $\beta$ are called the roughness exponent and growth

exponent, respectively. Family and Vicsek thought that

$t^{*}\sim L^{z}$ , $z= \frac{\alpha}{\beta}$ . $(1\cdot 5)$

where $z$ is called the dynamic exponent.
AU these relations are unified systematically in the following $\mathrm{d}$ namic scaling

hypothesis:

$w(L, t) \sim L^{\alpha}\Psi(\frac{t}{L^{z}})$ , $(1\cdot 6)$

where the scaling fimction $\Psi(x)$ should satisfy the following behavior : $\Psi(x)=$

$x^{\beta}(x\ll 1)$ , $1(x>>1)$ . Using this dynamic scaling hypothesis (the Family-Vicsek

dynamic scaling), one can in principle obtain the exponents $\alpha$ and $\beta$ . However, it is
hard to use the Family-Vicsek dynmic scaling because it is very difficult to whe$\mathrm{a}\mathrm{i}\mathrm{n}$

the values of $w(L, t)$ experimentally and in some case even numerically in early stages
of growth. It follows then that values of the exponent $\beta$ for many growing rough

surfaces have not been obtained yet. Any other dynamic scaling approaches are
clearly needed to avoid such a difficulty, md obtain reliable values of $\beta$ for familiar
experiments of growing rough surfaces.

1.1. Alternative Approach to the $FV$ dynamic $scaling^{10)}$

Our purpose is to examine the scaling exponents $\alpha$ and $\beta$ by $\mathrm{m}$ altemative
approach to the FV scaling. The fact is, there is the crossover structure at the
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characteristic width $L^{*}$ on $w\mathrm{v}\mathrm{s}$ . $L$ plot. tend of $t^{*}$ , we make use of $L^{*}$ in the

FV scaling. Namely, the FV scaling is modified to the following fom of dynamic

scaling.

$w\sim L^{\alpha}(L\ll L^{*})$ , $(1\cdot 7)$

$w\sim \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}(L\gg L^{*})$ . $(1\cdot 8)$

Then (8) and (9) are unified into a single dynamic scaling $\mathrm{f}\mathrm{o}\mathrm{m}$ :

$w \sim t^{\frac{\alpha}{z}}f(\frac{L}{t^{\frac{1}{z}}})$ , $(1\cdot 9)$

$f(x)=\{$
$x^{\alpha}$ $(x\ll 1)$

1 $(x\gg 1)$ .
$(1\cdot 10)$

Take a few of log-log plots of $w(L, t)$ vs $L$ by suitable times to estimate the value of
$\alpha$ , and then we can examine the exponent $z$ by using our dynamic scaling through

data collapse.

Fig. 1. mustration of the rescale of modified FV scaling.

\S 2. $(1+1)-\mathrm{d}$ Eden model ||. well-known exmple

For example, we examine the Eden $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{9)}$ . The growth ffie is simple : Let us

start ffom the line seed. One of the perimeter sites of cluster is chosen randomly

with equal probability and is incorporated into the cluster as its member, and $\mathrm{t}\underline{\mathrm{h}\mathrm{i}}_{\mathrm{S}}$

process is repeated. Since the Eden model is $\mathrm{w}\mathrm{e}\mathrm{U}$-known model, it may be the most

appropriate one to check the validity of our altemative approach. Figure 2 shows

the log-log plots of $w$ vs $L$ at every interval of $t=20.0$ . The slope yield a value of
$\alpha$ , $\alpha\simeq 0.5$ . To examine a data collapse, we plot $\frac{L}{-_{\Gamma},tz}$

, against $t^{\frac{\alpha}{z}}$ for values of $\alpha$ and $z$ .
Figure 3 shows the estimation of data collapse. Our data tend to fah into a single
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Fig. 2. The log-log plots of $w(L, t)$ vs $L$ for the surfaces of the Eden model at every interval of

$t=20.0$ for System size $=500$ .

Fig. 3. Results of a data collapse for the Eden model with the logarithmic scale. $z=1.5$ , $\alpha$ $=0.5$ .

curve for the values of the exponent $\alpha\simeq 0.50$ and $z\simeq 1.50$ . Hence we obtain the
values of the exponents that coincide with the $\mathrm{w}\mathrm{e}\mathrm{u}$-known values of the exponents
of the Eden model. We conclude that the above fact that we can successfully apply
modified dynamic scaling hypothesis to the Eden model assures us of the validity of
it.
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\S 3. Directed Percolation Deppining model

Typical model of paper wetting experiment is Directed Percolation Deppining

(DPD) mode1.11),12) This model is proposed by Buldyrev et. al. and Tang et $\mathrm{a}1$ ,

independently. The growth rule is following. At first, for au sites we block a fraction
$p$ of the cells. Let us start h.ne seed. One of nearest neibour site of cluster is chosen

randomly without choosing the block site. To obtain no overhang-interface, we

impose the rule that $\mathrm{a}\mathbb{I}$ block sites below the cluster site become wet as well. Note

that, on this model, the scaling property is characterized by the directed percolation

(DP) problem. Then, for $p$ below a critical value $p_{c}$ the interface propagate without

stopping. This phase is called moving phase. On the other hand, for $p$ above $p_{c}$

the interface is pinning by DP cluster, pinning phase. Let us examine the roughness

exponent $\alpha$ of DPD model on moving phase. At $\mathrm{F}\dot{\mathrm{n}}$ $\mathrm{s}\mathrm{t}$ , we take the standard diviation
$w(L, t)$ as a function of the width of a strip of the substrate $L$ . Figure 4 shows the

log-log plots of $w(L, t)$ vs $L$ for the $p=0.40$ DPD surfaces. Figure 5 shows $w$ vs

$\wedge-$

$\lrcorner\hat{\yen}$

Fig. 4. The log-log plots of $w(L, t)$ vs $L$ for the surfaces of the DPD model for System size $=3000$.

$p=0.40\simeq p_{\mathrm{c}}=0.47$ .

$t$ plot. In Figs. 4 and 5, we obtain the roughness exponent $\alpha\simeq 0.75$ and growth

exponent $\beta\simeq 0.85$ . In Figs. 4 and 5, there are the crossover structure. In $\mathrm{t}\underline{\mathrm{h}\mathrm{i}}_{\mathrm{S}}$

structure, we expect the exisitence of a characteristic length, which changes the

nature of interface from $\alpha>0.50$ into $\alpha=0.5$ , i.e. not self-affine interfaces. Next
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$p=0.40,$ cUittiebdowpc 0.47).

we try the data collapse by plotting the quantity $w/t^{\alpha/z}$ against $L/t^{\frac{1}{z}}$ by varying
$z$ and $\alpha$ . Figure 6 shows the results of the data collapse for DPD model with the

Fig. 5. The log-log plots

$\mathrm{o}\mathrm{f}w.(’ L,t)\lrcorner \mathrm{r}_{10}^{\iota}\check{l}\tau 0_{10’}^{\mathrm{z}}$

vs $t$ for the

$\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{t}10^{l}$

ces of the

$\mathrm{D}\mathrm{P}\mathrm{D}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1\tau 0^{l}$

for System size $=3000$.

$|$

logarithmic scale. bom Fig. 6, we obtain the value of $z\simeq 1.0$ and $\alpha\simeq 0.90$ . These

Fig. 6. Results of a data collapse for the $p=0.40$ DPD model with the lo arithmic scale. $z$ $=1.0$,
$\alpha=0.90$ .

values is different kom the values by “graph” method. This difference is fiom the
reason for the crossover structure in Figs. 4 and 5. This stmcture is out of vah.dity
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of the FV scaling hypothesis. But at least, owing to very nice data collapse we can

conjecture the existence of a kind of dynamic scaling in such interfaces.

\S 4. Multi-affinity for DPD model

If quenched noise leads to power-law distributed noise, so the interface has a

hierarchy of local roughness exponent. Just as multifractal, we call it multi-affine
$\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}.13)$ Determining multi-affinity, we measure the gth order correlation function

defined by the following:

$C_{q}(x, t)=\langle|h(x’, t’)-h(x’+x, t’+t)|^{q}\}_{x’,t’}$ . $(4\cdot 1)$

The scaling exponent $\alpha_{q}$ and $\beta_{q}$ is defined by the following $\mathrm{r}\mathrm{e}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ :

$C_{q}(x, 0)\sim x^{q\alpha_{q}}$ , $(4\cdot 2)$

$C_{q}(0, t)\sim t^{q\beta_{q}}$ . $(4\cdot 3)$

I $\alpha_{q}$ or $\beta_{q}$ are dependent of degree $q$ , we $\mathrm{c}\mathrm{a}\mathbb{I}$ its interface multi-affine. If these

exponents are independent of $q$ , its interface is self-a fEne. For example, we exmine

the DPD model on moving phase. Figure 7 shows the $q\mathrm{t}\mathrm{h}$ order correlation function

for DPD model. Since the slope on Fig. 7, i.e. aqi is dependent on $q$ , the interfaces

Fig. 7. The $q\mathrm{t}\mathrm{h}$ correlation function for $p=0.40\mathrm{D}\mathrm{P}\mathrm{D}$ model

of DPD model are multi-affine. Figure 8 shows the variation with $q$ of the roughness

exponent $\alpha_{q}$ .



218

07

$\mathrm{o}$

$0\epsilon$

$\mathrm{o}$

05

$\mathrm{g}’ 0\iota$ 0

$\mathrm{Q}$

os $\circ$

$\circ$

$0$

$\mathrm{o}$

$\mathrm{Q}$

$\mathrm{o}\mathrm{z}$ $\mathrm{a}$

0 ’
0 2 $l$ $\iota$ $\mathfrak{g}$ 70 42

$\mathrm{q}$

Fig. 8. The $\alpha_{q}$ spectrum for the DPD model.

\S 5. Conclusion

In summary, in order to examine the dynamic exponent $z$ , we find an alter-

native approach to the dynamic scaling hypothesis for the growing rough surface.

We have first investigated the self-affinity of the $\mathrm{w}\mathrm{e}\mathrm{u}$-known Eden model to check

the validity of the alternative approach. Next, we have numerically investigated the

self-affiity of the DPD model. We have found that the interface for DPD model

was not self-affine, but multi-affine. In future problems, we should investigate the

source of multi-affinity. Barab\’asi and Stanley proposed that power-law distributed

noise leads to $\mathrm{m}\mathrm{u}1\mathrm{t}\mathrm{i}- \mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{i}\mathrm{t}\mathrm{y}^{15)}$. So, we should measure the noise distribution in order

to discuss the Barab\’asi-Stanley suggestion, but it is now under investigation.
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