-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Harmonious Representation of PDF's by Two Distinct Tsallis
Title Distribution Functions (Anatomy of Turbulence : Flow
Structure and Its Function)

Author(s) | Arimitsu, Toshihiko; Arimitsu, Naoko

Citation O00O0O0DOO0OD0O0 (2004), 1406: 119-135

Issue Date | 2004-12

URL http://hdl.handle.net/2433/26116

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39175292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

oboooooooooO 1406 0 2004 0 119-135

119

Harmonious Representation of PDF’s
by Two Distinct Tsallis Distribution Functions

T. Arimitsu* (B YE8E)

Institute of Physics, University of Tsukuba (LK #13E)

N. Arimitsu! (FJEEF)
EIS, Yokohama National University (B{REK BRH¥)

1 Introduction

In this paper, we will show that a harmonious representation of PDF’s by means of two
distinct Tsallis-type distributions provides us with a description for experimentally or -
simulationally observed PDF’s in the highest accuracy compared with other multifractal
model such as the log-normal model [1, 2, 3] and the p model [4, 5]. In order to perform a
transparent comparison, the framework of the multifractal analysis (MFA) [6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20] is rephrased in its most sophisticated fashion in which
the tail part of PDF, giving the probabilities of events larger than its standard deviation,
is written down once the multifractal spectrum for the spatial distribution of singularities
is specified (see (45) below), whereas the center part, giving the probabilities of events
smaller than its standard deviation, is assumed to be analyzed by the Tsallis-type PDF
for the variable itself [16, 18, 19] (see (47) below). The various PDF’s extracted out from
the DNS conducted by Gotoh et al. [21, 22], and the PDF of fluid particle accelerations
observed by Bodenschatz et al. in their Lagrangian measurement of particle accelerations
[23, 24, 25] will be analyzed with the help of the multifractal spectrums for the log-normal,
the p model and the harmonious representation. :

2 General Framework

2.1 Degree of Singularities

For high Reynolds number Re > 1, or for the situation where effects of the kinematic
viscosity v can be neglected compared with those of the turbulent viscosity, the Navier-
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tarimitsu@dnj.ynu.ac.jp
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Stokes equation

%’% +(@-V)i=-V <%) + vV, (1)
of an incompressible fluid is invariant under the scale transformation [26, 27, 5]
P A, @ — X3E, t— Ao P _, y20/3P @
P p

where the exponent « is an arbitrary real quantity. The quantities p and p represent,
respectively, mass density and pressure. '

MFA of turbulence rests on the scale invariance of the Navier-Stokes equation for high
Reynolds number, and on the assumption that the singularities due to the invariance
distribute themselves, multifractally, in physical space. Let us consider the fluctuation

0z = |z(® + £n) — z(o)| (3)

of a physical quantity  between two points separated by the distance £,, which satisfies
the scaling law

2l = |22 = 5 0003 )
with
4, -n

where 4, = 6™ (6 > 1, n = 0,1,2,---). In the following in this paper, we will put
d = 2 that is consistent with the energy cascade model. We are measuring distance by
the discrete units

£, = 0,4. (6)

The non-negative integer n can be interpreted as the multifractal depth. However, we will
treat it as positive real number in the analysis of experiments. Then, we see that the
derivative

= = Jim =, @)
with the nth difference
,  Ozy

for the characteristic length £, diverges for a < 3/¢ [28].
Examples are the velocity fluctuation

Sup = [u(® +£,) — u(e)] (9)

of a component u of velocity field @, and the pressure (divided by the mass density)
difference

Jpn = (10)

Do _ Pl
p( + £) p()
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The scale invariance provides us with

Oy, o :
and 5
Ipn| = -(—5% = 53(!/3 | (12)

giving, respectively, ¢ = 1 for the velocity fluctuation and ¢ = 2 for the pressure fluc-
tuation. The velocity derivative and the fluid particle acceleration may be estimated,
respectively, by

W' = lim up, (13)
and by
|a] = nlggo an (14)

where we introduced the velocity derivative
u, = — : (15)
and the acceleration (or the pressure derivative)

)
an = % (16)
n

corresponding to the characteristic length £,. Note that the acceleration & of a fluid
particle is given by the substantive time derivative of the velocity:

ot >

a=—+ (- V)i 17

5+ @ 9) 17)
We see that the velocity derivative and the fluid particle acceleration become singular for
a < 3 and a < 1.5, respectively, i.e.,

[u'] o Elir_r)lofg"‘/s)_l — 00 (18)
and
|a] o lim £2e/9-1 5 o0, (19)
The energy-dissipation rate e, satisfies
%" = go-1 (20)

due to the scale invariance, giving ¢ = 3. Therefore, it becomes singular in the limit
n— oo for a < 1, i.e.,

lim 2 « lim 227 - oo (21)
n-3c0 gy N0
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The real quantity « is introduced in the scale transformation (2) that leaves the Navier-
Stokes equation (1) of incompressible fluid invariant with an arbitrary real exponent o

when the Reynolds number 5t

Re = i}j——“ (22)
is large. du;, and £, represent, respectively, the rotating velocity and the diameter of the
largest eddies in turbulence. The largest size of eddies is, for example, about the order of

mesh size of a grid, inserted in a laminar flow, that produces turbulence downstream.

2.2 Singularity Distribution

MFA starts with an assignment of the probability, to find a singularity specified by the
strength o within the range o ~ o + da, in the form [5, 10]

"
P"(0)da = \/ /(o) 1n &| ("‘"2)7! ] g1-tte) g, (23)

Here, f(c) represents an appropriate multifractal spectrum defined in the range o, <
a < @max. Note that f(a) does not dependent on n because of the scale invariance.
The multifractal spectrum is related to the mass exponent 7(§), defined by

<(E")> = ag 5,70+ (24)

with
|f" ()
A3g = 4| T, 25
=N (o) )
through the Legendre transformation [5):
fle) =ag +7(q) (26)
with i
a=o05;=— ;Ez‘q) (27)
and i (@)
__df(a

The average (- --) is taken with P™(a), and ag = az—p = {@).
The scaling exponent (, of the mth order velocity structure function, defined by

([un|™) o< 8,5, (29)

is related to the mass exponent by

Cm'=1—-'r(

m
3

) . (30)
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This is derived with the help of (11) and (20) as
m m/3 €n m/3 1-7(m/3)
(Junl™) = 677 ( () = a7, (31)

2.3 Observable Probability Density Functions

The probability II(") (zp)dz, to find a physical quantlty Z, in the range z, ~ z, + dz, is
assumed to cons1st of two parts

H(")(a:n)d:vn = H(") (zn)dzy + AH;") (zn)dzp (32)

with the normalization .
/_ ol @) = 1. (33)

The first term represents the contribution by the singular part of the quantity x,, stemmed
from the multifractal distribution of its singularities in physical space. This is given by

1-— 27(")

53 (an]) dlza] = ——2* P™(a) dor (34)

with the transformation of the variables (4), i.e
|Za| = 62(1/3' (35)

Here, we introduced fy(n) by
(") /dxn|$n|mAH(n) (x") (36)

The second term AH( )(2n)dz,, represents the contribution from the dissipative term in
the Navier-Stokes equatlon, and/or the one from the errors in measurements. The dissipa-
tive term has been discarded in the above investigation for the distribution of singularities
since it violates the invariance under the scale transformation. The contribution of the
second term provides a correction to the first one. Note that we are dealing with the sym-
metrized part of PDF’s by assuming that the large deviation stemmed from the singular
first term contributes to symmetric part of PDF’s.

Needless to say that each term in (32) is a multiple of two probability functions, i.e.,
the one to determine the portion of the contribution among two independent origins, and
the other to find ,, in the range z, ~ z, + dz,. Nore that the values of z, originated in
the singularity are rather large representing intermittent large deviations, and that those
contributing to the correction terms are small in comparison with its deviation.

The mth moment of the structure functions for the variable |zy|,

(o™ = [ dolanl™15 en), €0
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reduces to
(l2al™) = 2y5m + (1 = 2957) aom 65 (38)
with the corresponding scaling exponents
m

For ¢ = 1, (4m reduces to the scaling exponents (,, of the mth order velocity structure
function.
We now derive the PDF, Hf,,") (&), defined by the relation

1157 (€n) dén = 1Y (20) den (40)
or by )
[(€) dén = 11§ (a1) da, | (41)

for the variable ,

S S (42)
Vlza?) 3/ ((=h)?)

both of the fluctuation z, and of the derivative z] normalized by their own standard

deviations. This PDF is to be compared with the PDF’s obtained by observations. The

variable is related with o by

€n

|n] = Endo/3—r1? (43)
with 1
b = () s—C (n)

It is reasonable to imagine that the origin of intermittent rare events is attributed to
the first singular term in (32), and that the contribution from the second term is negligible.
We then have, for &, < |&]| < €P** (equivalently, amin < |o| < a*),

: (44)

(n)
~(n n 1-—2y n
I (1ol) dlén] = T§3(Ieal) dlea| = —42 P™(a) da (45)

with -
max é‘nézamin/s"'(2¢/2_ (46)

Note that £} ~ 1 as can be seen below when we analyze experiments. This tail part
represents the large deviations, and manifests itself the multifractal distribution of the
singularities due to the scale invariance of the Navier-Stokes equation when its dissipative
term can be neglected.

On the other hand, for smaller values, the contribution to the PDF comes, mainly, from
thermal fluctuations or measurement error. For smaller values of the variable, |&,]| < &
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(equivalently, o* < |a|), we assume that the PDF has the Tsallis-type structure with a
new entropy index ¢’ [16, 18]

ﬁgbn) (&n)dn = [ ?%(mn) + All n)(mn)] dzn

, 2 1/(1-¢)
= ﬁg‘){l—(l )(ii%gﬂ [(2—") —1]} dn (47)

where

_ 3(1—2 (n) VI (e
prn) _ e, RARACD) | (48)
2¢§n\[27r| In &,
This center part is responsible to smaller fluctuations of the variable, compared with its
standard deviation, stemmed from the dissipative term violating the scale invariance. The
entropy index ¢’ can be dependent on the distance of two measuring points separated by
L.
The two parts of the PDF, (45) and (47), are connected at

&= En5n¢a*/3—Cz¢/2 (49)

under the conditions that they have the common value, fIfi,"), and the common log-slope,
—(¢ + 3f'(a*))/¢€;, there. The value a* is the smaller solution of

G _ g2

5 3 +1- f(a)=0. (50)

The point & has the characteristics that the dependence of I:I,(ﬁ") (&) on n is minimum for
large n (see Fig. 4 in [11]).
With the help of (45) and (47), we obtain AH(") (z,), and have the analytical formula

KM L(ﬂ)
27(71) $m (1)
1+ K — Lg;jg
where
R il NTAICH]
m ¢ 27| In 4, |
1 ot 1/(1-¢')
x/ dz |z|™ |1 —( )¢+3f( )( -1) (52)
2¢
L, = \/ |f"(a0 ||1n5 | v"‘“‘“" do 6, me9/3-1(@), (53)
The flatness F{™ of the PDF for the variable z, is given by
n n ¢
Fn) = «Iznl » — «64» 27( )+ (1 ( ))a4¢6 ¢ (54)

Qleal?)? (295 + (1-27;“3)a2¢6 i
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For later convenience, we introduce here the quantity &, = E—ndn‘mo/s_mﬂ-

3 Harmonious Representation

In the harmonious representation of MFA, we adopt the Tsallis-type distribution function

7,8, 9, 10]
n 1 o— o 2 n/(1-q)
P (g) = - [1 - (—A—aﬂ) ] (55)
with
. 29X
(Ba) = =y (56)

Here, g is the entropy index introduced in the definitions of the Rényi [29] and the Tsallis
entropies [30, 31]. The range of & iS Gumin < @ < Qax With

Clmin = 09 — AQ, Omax = 0 + Acu. (57)

The normalization condition ma
/ da P™(a) =1 (68)

min

gives the partition function in the form
ZM™ = Aa B(1/2,1+n/(1—q)) (59)

where B(a, b) is the Beta function.

The distribution function (55) is derived by adopting the measure of the Renyi en-
tropy [29] or of the Havrda-Charvat-Tsallis (HCT) entropy [31, 30] with an appropriate
constraint. In spite of the different characteristics of the entropies, i.e., extensive and
non-extensive, the distribution functions P(™(a) giving their extremum have the com-
mon structure. ! Note that since the Renyi entropy and HCT entropy reduce to the
Boltzmann-Gibbs entropy in the limit ¢ — 1, the probability density function (55) de-
rived from these entropies reduces to the Boltzmann-Gibbs distribution function in the
limit.

The multifractal spectrum f(e) is given by [7, 8, 9, 10]

e 1 (75)] 2

which, then, produces the mass exponent

fl@)=1+

} o 2X@? 1 ~ .
(@) =1— g + _ 5 [1 — log, (1 + \/Cq)] (61)
1+,/C; 1-4
1Within the present formulation, the decision cannot be pronouncéd which of the entropies is under-
lying the system of turbulence.
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Figure 1: Multifractal spectrum f(c) with u = 0.240 (¢ = 0.391).

with
C;=1+23(1-¢)Xn2. (62)

The typical shape of the multifractal spectrum and of the generalized dimension Dy defined
through

7@ =(1-9Dq (63)
are given, respectively, in Fig. 1 and Fig. 2.
2..
le
1 L
0 |||||||| lasia 111 Liso il 1at1i 1001 =
-200  -100 0 100 200

Figure 2: Generalized dimension D; with p = 0.240 (¢ = 0.391).

We have
o =-LO LG (69
with ' 2gX
ag = ap — = C’q’ (65)
hence >
a3q=\J\/CTq(1+ 3 : (66)
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The scaling exponents (;, for the mth order velocity structure function, defined by
(39) with ¢ = 1, reduce to [7, 8, 9, 10]

oym 2Xm? 1
Cm = - -
3 9 (1 + Cm/S 1- q

[1—log, (1+ /Crys)] - (67)

The formula (67) is independent of n, which is a manifestation of the scale invariance.

05
Sl X
115}
{04
1.1
105
1

0.2 4 0.3 ) P 03
Figure 3: (a) The p-dependence of ay and X. Squares and circles are the points where
the self-consistent equations are solved. (b) The u-dependence of ¢. Circles are the points
where the self-consistent equations are solved.

The dependence of the parameters oy, X and ¢ on the intermittency exponent u is
determined, self-consistently, with the help of the three independent equations, i.e., the
energy conservation:

<%> =1, equivalently, 7(1)=0 (68)
the definition of the intermittency exponent u:
, .
<(%"’) > =4.#, -equivalently, p=1+17(2) (69)
and the scaling relation: 2
1 _1_1 (70)
1-¢ a- a4 :

with @y satisfying f(as) = 0. The average (---) is taken with P(™(a). Within the
range 0.13 < p < 0.40 where most of the experiments are covered, these self-consistent
equations are solved, numerically, with respect to u to give [14]

ao = 0.9989 + 0.5814y, (71)

?The scaling relation is a generalization of the one derived first in [32, 33] to the case where the
multifractal spectrum has negative values.
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X =1.198u (72)

and
g = —1.507 + 20.58u — 97.1142 + 260.4u° — 365.4u* + 208.34°. (73)

They are given in Fig. 3. It is interesting to compare the first two with the corresponding
equations for the log-normal model (¢ = 1) given in senction 4, i.e., ap = 1 + 0.5¢ and
X =p.

The explicit form of the PDF (45) for & < |€,] < &®* turns out to be

3 2q7/(1-9)
ﬁfpn)(gn) — ™ én 1— 1-¢g (3ln |En/£n,0|) .

STl 1T TR 38K byl ()

The entropy index ¢ should be unique once a turbulent system with a certain Reynolds
number is specified.

4 Log-Normal Model

In the log-normal model [1, 2, 3], one consider the ratio €,/€;—1 (n = 1,2, - -) as indepen-
dent stochastic variables, and apply for n > 1 the central limit theorem to the summation
of their logarithms,

1 n € 1 6, -
\/na%z::lln(ejil): mzln(?)ﬂ/p(l.—a)ln& (75)

to have the Gaussian distribution function

P(n) (OC) — / 2:02 e—n(a—-aofﬂaz (76)

for the range —oo0 < o < co. Here, we used the scaling relation (20) between €, and o.
Then, we have the multifractal spectrum and the mass exponent in the forms

(@ — ap)?

=1 77
flo) =1 2021nd (77)
and
_ _ 1, 5
(@) =1-0od+ 570" In 4, (78)
respectively. We see that
Q3g = 1. (79)

The dependence of the parameters o, and o on the intermittency exponent p is deter-
mined with the help of the two independent equations, i.e., the energy conservation (68)
and the definition of the intermittency exponent u (69). The parameters are specified by
means of y as ‘

a0=1+52‘- (80)
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and U
2 —_— —_—
0" = (81)
Then, we have \
(o — )
flo)=1- (82)
and
with the generalized dimension
Dy=1- /2, | (84)

which are the same as derived in [5]. We know that
g = ag — ug. (85)

The explicit form of the PDF (45) for & < |[£,| < oo is found to be

~r(n —(n) &n 3In ifn/gnOI)Z
{1, = -8 exp |- 071 86
o (60 =T e 1o |~ g2, (&)
The connection point is given by
3—-1
o =ay — V3 ou. (87)

3

5 P Model

The distribution function P™(a) for the p model [4, 5] is specified based on the binomial
multiplicative process in the form [6]

1 1

P (q) =
( ) Z(()n) [2yy(1 _ y)l—-y]n

with
__a+logy(1 — p)

B log,[(1 - p)/p]

1-p |
zm _ [T
0 on log, " (90)
forn>1. ,

The multifractal spectrum is given by

y = y()

and the partition function

f(@) = = {y(o) logz y(a) + [1 — y(a)] logz [1 — y(e)]}, (91)
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which leads to the mass exponent

7(q) = log [p? + (1 — p)7]. (92)
We have 2
Fag) = — - 93
@) = = W= PP v~ 0 )
with
= y(ag) = =2 (o4)
Yg = Y\aq _pq_l__(l_p)q,
__pllogyp+ (1 —p)?logy(1 — p) '
R pi+(1-p) ’ )
and then we obtain
Gon = zqu(]_ - p)é (96)
TP+ ()T
We see that, for p > 1/2,
Omin = — lng D, (97)
Qmax = — logy(1 — p). (98)
The dependence of p on the intermittency coefficient u is derived through its definition
(69) to give
1++/2¢ -1
p= Yo (99)
The explicit form of the PDF (45) for &, < |&,| < &7® reduces to
~ — (n E _ —n/2
11§V (€,) = 11 )!—5-:—1 {(1+26y)+* (1 — 26y)' %} (100)
with |
. 3 n(|€ni/|£n,0|) (101)

=YW= gl — p)/oH o

6 Comparison of Three models

The scaling exponents (n of velocity structure function reported by Gotoh et al. [21] are
analyzed in Fig. 4 by the method of the least squares (MLS) with the theoretical formulae
of the harmonious representation, of the log-normal model and of the p model, giving,
respectively, the values of the intermittency exponent yu = 0.240, 0.217 and 0.249.

In Fig. 5, the PDF’s of the velocity fluctuations (closed circles) measured by Gotoh et
al. in their DNS at Ry = 380 [21] for three different measuring distances, r/n = fn/n =
2.38, 19.0, 1220 from the top set of pairs to the bottom set, are analyzed with the help
of the PDF’s [ (¢,) of the harmonious representation (solid line) and of the log-normal
model (dashed line). Here, n = (v3/€)!/* represents the Kolmogorov scale. The DNS data
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Figure 4: Analysis of the scaling exponents (,, of velocity structure function extracted
from the DNS conducted by Gotoh et al. by the present theoretical curve (solid line).
Those by K41 (dotted line), the log-normal model (dashed line) and the p model (dotted-
dashed line) are also shown for comparison.
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Figure 5: Analyses of the PDF’s of the velocity fluctuations (closed circles) for three
different measuring distances, observed by Gotoh et al. at Ry = 380, with the help of
the PDF’s [1((¢,) by the harmonious representation (solid line) and by the log-normal
model (dashed line) are plotted on (a) log and (b) linear scales. The PDF’s by the p model
(dotted line) are compared with the PDF’s by the harmonious representation (solid line).
Comparisons are displayed in pairs. The solid lines in each set of pairs are the same.
For better visibility, each PDF is shifted by —2 unit in (a) and by —0.2 in (b) along the
vertical axis. Parameters are given in the text. ’
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Figure 6: Analyses of the PDF’s of fluid particle accelerations, measured by Gotoh et al.
at Ry = 380 (circles in the top set) and by Bodenschatz et al. at Ry = 690 (circled in
the bottom set), by means of the PDF’s A™ (w,,) by the harmonious representation (solid
line) and by the log-normal model (dashed line) are plotted on (a) log and (b) linear
scales. The PDF’s by the p model (dotted line) are compared with the PDF’s by the
harmonious representation (solid line). Results are displayed in pairs. The solid lines in
each set of pairs are the same. For better visibility, each PDF is shifted by —2 unit in (a)
and by —0.4 in (b) along the vertical axis. Parameters are given in the text.

points are symmetrized by taking averages of the left and the right hand sides data. In each
set, a comparison of the PDF of the harmonious representation (solid line) with the PDF
of the p model (dotted line) is given. For the harmonious PDF’s (solid line), ¢ = 0.391
(1 = 0.240), and, from the top set to the bottom set, (n, ¢') = (20.7, 1.60), (13.6, 1.50),
(6.10, 1.20), &, = 1.10,1.23,1.43 (o* = 1.07) and £7** = 204, 38.2,6.63. For the PDF by
the log-normal model (dashed line), from the top set to the bottom set, (n, ¢') = (21.5,
1.70), (13.0, 1.63), (5.00, 1.24) and & = 1.19,1.34,1.51 (a* = 1.06). For the PDF by the
p model (dashed line), from the top set to the bottom set, (n, ¢') = (21.0, 1.60), (13.0,
1.62), (5.50, 1.20), & = 1.06,1.07,1.55 (o* = 1.08) and €™ = 19.3,7.70,3.31. The tail of
PDF of the p model stops at £°** which is smaller than the maximum value of measured
data point for each measuring distance. Note that every PDF’s are plotted on (a) log and
(b) linear scales.

In Fig. 6, the PDF’s of the fluid particle accelerations (closed circles) reported by Gotoh
et al. at Ry = 380 (top set) [22] and by Bodenschatz et al. at Ry = 690 (bottom set)
[23, 24, 25] are analyzed with the PDF’s 4™ (w,) of the harmonious representation (solid
line) and of the log-normal model (dashed line). The measured data points both on the
left and right hand sides of the PDF’s are shown altogether on one side by closed circles in
the figure. In each set, a comparison of the PDF of the harmonious representation (solid
line) with the PDF of the p model (dotted line) is given. For the harmonious PDF’s (solid
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line), from the top set of pairs to the bottom set, ¢ =0.391, 0.391 (1 = 0.240, 0.240),
(n, ¢') =(17.5, 1.70), (17.1, 1.45) w* = 0.622, 0.605 (a* = 1.01, 1.01), and w™* = 2530,
2040. For the PDF by the log-normal model (dashed line), from the top set to the bottom
set, (n, ¢') = (17.0, 1.50), (18.5, 1.04), w* = 0.644, 0.558 (o* = 1.00, 1.00), and w™*™* =
49.6, 76.6. For the PDF by the p model (dotted line), from the top set to the bottom set,
(n, ¢") = (19.0, 1.50), (18.5, 1.20) w} = 0.539, 0.547 (o* = 1.01, 1.01), and w®* = 54.1,
45.2. Note that every PDF’s are plotted on (a) log and (b) linear scales.

The values of n for all the PDF’s are determined by MLS by adjusting the integrand
fﬁHf,,") (¢€n) of the fourth moment both of data and of the theories. The values of ¢' for
all the PDF’s are obtained by MLS by fitting the theoretical PDF’s at the center part,
|&:] < &, with the observed PDF’s.
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