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SyNRAC: A Maple package for solving
real algebraic constraints

屋並仁史
YANAMI HITOSHI*

(株) 富士通研究所
FUJITSU LABORATORIES LTD.\dagger

Abstract

We present a Maple package called SyNRAC. This package is aimed at becoming a comprehensive
toolbox for solving real algebraic constraints derived from various engineering problems. The current
version of SyNRAC provides quantifier elimination for up to the quadratic case and basic simplifiers of
formulas, as well as an environment dealing with first-Order formulas over the reals on Maple.

1 Introduction
We presented Maple-package SyNRAC for solving real algebraic constraints in 2003 [1]. SyNRAC

stands for a Symbolic-Numeric toolbox for Real Algebraic Constraints and is aimed to be a comprehensive

toolbox composed of a collection of symbolic, numerical, and symbolic-numeric solvers for real algebraic

constraints derived from various engineering problems.

In this paper we show the current status of development of SyNRAC. In the previous version of SyNRAC

[1] the following algorithms were available. a special QE by the Sturm-Habicht sequence for a sign definite condition,

. a special QE by virtual substitution for linear formulas,. some naive simplifications of quantifier-free formulas.

Besides, the current version of SyNRAC provides the following:. an environment dealing with first-Order formulas over the reals,

. a special QE by virtual substitution for quadratic formulas,

. some new standard simplifiers of formulas.

Since we firstly presented SyNRAC, we have introduced some new operational symbols and fixed a notation

system for expressing formulas. We are now developing our tool under the basis of the new environment.

The QE algorithms previously equipped have also been reimplemented after the latest setting. These new
features greatly extend the applicability and tractability of SyNRAC for solving real algebraic constraints

This work was partially supported by CREST, the Japan Science and Technology Agency, Japan.
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in engineering. The current notation for first-Order logic over the reals is much easier to read than
the previous one. This helps users describe mathematical formulas for various types of real algebraic
constraints. A special QE method for quadratic formulas widens the application areas of SyNRAC in
actual problems (see [2]). The simplifiers can reduce the size of a given formula. This contributes not
only to improve recognition of formulas but also to remarkably increase the efficiency of special QE
procedures based on virtual substitution.

Furthermore, using SyNRAC as a kernel, we are now pushing the further development of design tools
based on computer algebra (in particular, $\mathrm{Q}\mathrm{E}$) in various application fields: One successful attempt is
the development of a toolbox for parametric robust control design on MATLAB [3] based on the authors’
previous work concerning $\mathrm{Q}\mathrm{E}$-based robust control design [4, 5, 6, 7].

2 A new environment for first-Order formulas over the reals

When we say a real algebraic constraint, what we have in mind is a first-Order formula over the reals.
We describe what type of formulas we are dealing with and how they are expressed in SyNRAC.

An atomic formula is an equality or inequality $f(x_{1}, \ldots,\mathrm{x}\mathrm{n})$ $\rho g(x_{1}, \ldots,\mathrm{x}\mathrm{n})$ , where $f$ and $g$ are
polynomials in a finite number of indeterminates over $\mathbb{Q}$ and $\rho$ is one of the relational operators $\{=,$ $\neq$

$,$

$\leq,$ $<\}$ . A $fo$ rmula is a string obtained by appropriately arranging atomic formulas, logical operators, or
$\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}/\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}$ quantifiers. Here is an example of existential formulas with respect to $x$ , $y$ , and $z$

$\exists x\exists y\exists z$ ( $f_{1}\Lambda f_{2}\mathrm{A}(h_{1}\vee h_{2})$ A $f_{3}$ ) $\Rightarrow\neg$ ($g_{1}$ A $g_{2}$ ) :

where $f_{:}$ , $g\dot{.}$ , and $h_{\mathrm{i}}$ are atomic formulas.
To express a formula in SyNRAC, we need to prepare and fix notational symbols for $\exists$ , $\forall$ , $\mathrm{A},$ $\vee$ , $\neg$ , and

so forth. In the earlier stages of implementation, we were using relational and logical operators bundled
in Maple. As we proceeded, it turned out that some of the Maple’s operators are unsuitable for our
purpose.

To meet our demands, we have introduced a user-defined operator $\ =^{1\rangle}$ and replaced it for the Maple’s
equality symbol $‘=’$ . To maintain consistency, the other relational operators such as $<>,$ $<=,$ $<$ are all
redefined by adding ‘&’ at the forefront of the respective commands. Some of them are just an alias for
the Maple’s corresponding command. Logical operators and quantifier symbols have also been redefined
in the same way as in Tables 1 and 2. In SyNRAC, the atomic formula $x^{2}-2^{2}y-3z^{2}\leq xy-6yz-z+7$

is expressed in

$(\mathrm{x}^{\wedge}2-2*\mathrm{y}^{\wedge}2-3*\mathrm{z}^{\wedge}2)$ &<= $(\mathrm{x}*\mathrm{y}-6*\mathrm{y}*\mathrm{z}-\mathrm{z}+7).2)$

The example formula above is expressed in the following:

&Ex ( $[\mathrm{x},\mathrm{y}$ ,zl , $(f_{1}$ &and $f_{2}$ &and $(h_{1}$ kor $h_{2})$ &and $f_{3})$ ftimpl &not $(g_{1}$ &and $g_{2})$ )

The operators fcand and &0r can also be used as a prefix operator, taking a list of operands as an
argument. The expression &and $([f_{1}, f_{2} , . . . \mathrm{f} f_{n}])$ is equivalent in SyNRAC to $f_{1}$ &and $f_{2}$ &and $\ldots$

&and $f_{n}$ .
$1)\mathrm{A}$ Maple user can form a neutral operator symbol by using fename (the ampersand character $‘ k$ ’ followed by one or more

characters).
$2)\mathrm{T}\mathrm{h}\mathrm{e}$ polynomials both sides should be enclosed within parentheses since taame has higher priority in Maple than the

basic arithmetic operators. In the examples in the present paper, we leave them out when too convoluted.
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Table 1: The logical operators in SyNRAC

Notation ftand &not $\overline{\ }$impl

$\mathrm{O}\mathrm{p}\underline{\mathrm{e}\mathrm{r}\mathrm{a}}\mathrm{t}\mathrm{o}\mathrm{r}$

$\mathrm{A}$

$\ \mathrm{o}\mathrm{r}-\vee$
$\ \mathrm{n}\mathrm{o}\mathrm{t}\neg$

$\Rightarrow$

$-\ \mathrm{r}\mathrm{e}\mathrm{p}\mathrm{l}\Leftarrow$ $\ \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\Leftrightarrow$

Operator $\wedge$ $\vee$ $\neg$ $\Rightarrow$ $\Leftarrow$ $\Leftrightarrow$

–

–

Notation kand &or- &not $\overline{k}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}$ &repl &equiv

Table 2: The quantifiers in SyNRAC
Operator $\exists x_{1}\cdots\exists x_{n}\varphi$ $\forall x_{1}\cdots lx_{n}/$)

–

Notation &Ex $([x_{1}, \ldots \mathrm{x}\mathrm{n}],\varphi)$ a11$([x_{1}, \ldots \mathrm{x}\mathrm{n}], /2)$

Operator $\exists$x1.. $\exists$x$n\varphi$
$\forall$x1.. $\forall$x$n\varphi$

$\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-$

$l$Ex([x1, ... ,$\overline{x_{n}}]-$, $\varphi$) $\ \mathrm{A}11([x_{1}, \ldots , x_{n}], \varphi)$

According to these notational rules, QE algorithms has been $(\mathrm{r}\mathrm{e})\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}$ in SyNRAC. In addition,
several basic utility functions on formulas are provided in SyNRAC, for example, functions for counting
the number of atomic formulas, extracting atomic formulas from a formula as a list, and so on. Moreover,
some computations for the disjunctive normal $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}^{3)}$ are also available.

3 Solving quadratic algebraic constraints over the reals
Here we briefly explain a special QE by virtual substitution of parametric test points that is applicable

to formulas in which the quantified variables appear at most quadratically (see [8] for details). We call a
formula whose atomic subformulas are at most quadratic (linear) with respect to its quantified variables
a quadratic (linear) formula, respectively.

Let
$\psi(p_{1}, \ldots,p_{m})$ $\equiv Q_{1}x_{1}$ .. . $Q_{n}x_{n}\varphi(p_{1}, \ldots,p_{m},x_{1}, \ldots,x_{n})$

be a lnear or quadratic formula, where $Q:\in\{\forall, \exists\}$ and / is a quantifier-free formula. By using the
equivalence $\forall x\varphi(x)\Leftrightarrow\neg(\exists x\neg\varphi(x))$ , we can change the formula into an equivalent one of the form
$(\neg)\exists x_{1}\cdots(\neg)\exists x_{n}(\neg)\varphi$ . The negation $‘\neg$’that precedes a quantifier-free formula can be easily eliminated
(use De Morgan’s laws and rewrite the atomic subformulas), which is not essential part of $\mathrm{Q}\mathrm{E}$ . Therefore
we may focus our attention on an eistential formula, i.e., a formula of the form $\exists x_{1}\cdots\exists x_{n}\varphi(p_{1}$ , $\ldots$ , $p_{m}$ ,
$x_{1}$ , $\ldots$ , $x_{n}$ ). Furthermore, it is sufficient to show how to eliminate $\exists x$ in $\exists x\varphi$ , since all the quantifiers in
the formula can be eliminated by removing one by one from the innermost one.

Now our main purpose is to eliminate the quantified variable $\exists x$ in

$l’(p_{1}$ , . . . , $p_{m})$ $\equiv\exists$x $/(p_{1}, \ldots,p_{m},x)$

with / $(p_{1}, \ldots,p_{m},x)$ quantifier-free and quadratic, and obtain an equivalent quantifier-free formula
$\psi’(p_{1}, \ldots,p_{m})$ . For fixed real values $q_{1}$ , $\ldots$ , $q_{m}$ for the parameters $p_{1}$ , $\ldots$ , $p_{m}$ , all the polynomials ap-
pearing in $\varphi(x)$ are linear or quadratic. Therefore, the set $M=\{r\in \mathbb{R}|\varphi(q_{1}, \ldots,q_{m},r)\}$ of real values
$r$ for $x$ satisfying $\varphi$ is a finite union of closed, open, or half-Open intervals over R. The endpoints of
these intervals are among +00 and the real zeros of atomic formulas in ?. Then candidate terms, say,
$t_{1}$ , ..., $t_{k}$ , for those zeros can be constructed by the solution formulas for linear or quadratic equations.

If ? does not contain any strict inequalities, all the intervals composing $M$ are either unbounded or
closed. In the closed case such an interval contains its real endpoint. So $M$ is nonempty if and only if

3)A formula is called a disjunctive nomal form if it is a disjunction (a sequence of $\vee$ ’s) consisting of one or more disjuncjs,
each of which is a conjunction (a sequence of $\wedge$ ’s) of one or more atomic formulas.
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the substitution of foo or of one of the candidate solutions $t_{j}$ for $x$ satisfies $\varphi$ . Let $S$ be the candidate
set $S=\{t_{1}, \ldots, t_{k}, 1 \mathrm{o}\mathrm{o}\}$ . Such a set is called an elimination set for $\exists x\varphi$ . We obtain a quantifier-free
formula equivalent to $\exists x\varphi$ by substituting all candidates in $S$ into ? disjunctively:

$\exists x\varphi\Leftrightarrow l$ $\varphi(x//t)$

tes

We note that there is a procedure assigning the expression $\varphi(x/t)$ obtained from $\varphi$ by substituting $t$ for
$x$ an equivalent formula [8]. We denote the resulting formula by $\varphi(x//t)$ .

If $\varphi$ contains strict inequalities, we need to add to $S$ other candidates of the form $sl$ $\epsilon$ , where $s$ is a
candidate solution for some left-hand polynomial in a strict inequality and $\epsilon$ is a positive infinitesimal.

For improving the efficiency of this method, the following two points are crucial: (i) refining the
elimination set $S$ by a scrupulous selection of a smaller number of candidates in $S;(\mathrm{i}\mathrm{i})$ integrating with
sophisticated simplifications of quantifier-free formulas. SyNRAC now employs three types of elimination
sets proposed by Loos and Weispfenning [9]. Simplifications in SyNRAC are discussed in the next section.

Moreover, heuristic techniques for decreasing the degree during elimination are important for raising
the applicability of quadratic $\mathrm{Q}\mathrm{E}$ , because after one quantifier is eliminated for a quadratic case the degree
of other quantified variables may increase. Only simple degree-decreasing functions are implemented in
the current version of SyNRAC.

4 Simplification
The term simplification is used here for the process for changing a quantifier-free formula equivalently

into more concise one. When a quantifier is eliminated in a given formula with a special QE procedure,
its quantifier-free part usually gets larger. During a QE algorithm, formulas under manipulation tend
to get extremely large, deeply nested and highly redundant. That is why simplification procedures are
important. Utilizing simplification algorithms combined with a special QE algorithm contributes to
improve not only readability of the resulting formula but efficiency of the computation.

Dolzmann and Sturm [10] summarize the rule for simplifying the formula ‘
$f\rho_{1}0\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ $g\rho_{2}0’$ ,

where $f$ and 9 differ only by a constant $c$, and $\rho_{1}$ and $n$ are an (in)equality. They called these laws
ordering theoretical smart simplification when $\mathrm{c}=0,$ i.e., $f=g$ and additive smart simplification when
$c\neq 0,$ respectively.

Automatic formula simplifiers are implemented in $\mathrm{R}\mathrm{E}\mathrm{D}\mathrm{L}\mathrm{O}\mathrm{G}^{4)}$ and $\mathrm{Q}\mathrm{E}\mathrm{P}\mathrm{C}\mathrm{A}\mathrm{D}^{5)}$ (see $[13, 10]$ for pos-
sible simplifications). Several simplification rules including ordering theoretical and additive smart sim-
plification are implemented in SyNRAC, which boost the efficiency of our QE commands. These rules
dramatically work especially when an input formula contains lots of quantified variables to be eliminated.

5 Commands in SyNRAC
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$>$ read $\mathfrak{l}1$ synrac” ; with (combinat);

You can use qe.sdc to solve the formula $\mathrm{d}x$ $>0$ , $\mathrm{f}\{\mathrm{x}$) $>0$ , called the sign definite condition (SDC).
The first argument of $\mathrm{q}\mathrm{e}$ -sdc is polynomial $f$ and the second is the variable to be eliminated. The next
example shows how to use the command to solve the problem $\mathrm{i}x$ $>0$ , $a_{2}x^{2}+a_{1}x+a_{0}>0,$

$>$ qe-sdc $(\mathrm{a}2*\mathrm{x}^{\wedge}2+\mathrm{a}1*\mathrm{x}+\mathrm{a}0, \mathrm{x})$ :

( $-\mathrm{a}\mathrm{O}$ &<0 &and al &<0 &and $-4*\mathrm{a}\mathrm{O}+\mathrm{a}1" 2$ &<0 ) &0r
( $-\mathrm{a}\mathrm{O}$ &<0 &and -al $\iota<0$ &and -4$aO+al’’2 $l<0$ ) &0r
( $-\mathrm{a}\mathrm{O}$ &<0 &and -al &<0 &and $4*\mathrm{a}0-\mathrm{a}1^{-}2$ &<0 )

time $=0.02$ . bytes $=$ 123614
By using qe-lin command, you can solve the existential linear QE problem. This command takes two
arguments; the former is a list of quantified variables and the latter a quantifier-free formula. In the
following example, qe lin eliminates the two quantified variables in $\exists x\exists y$ ($y>2x+3$ A $x>0\Lambda y<s$)
and returns a condition with regard to $s$ .
$>$ qe_lin (&Ex ( $[\mathrm{x},\mathrm{y}1,$ y&>2*x+3 &and x&>0 &and y&<s));

$-1/2*\mathrm{s}$ &<-3/2

time $\mathrm{s}$ $0.03$ , bytes $\mathrm{s}$ 144686
The qe-quad command can deal with quadratic QE problems. You can solve the quadratic QE problem
$\exists x\exists y$ ($x^{2}-4x-5$ $\leq y$ A $3\leq x$ A $y\leq-5s$ $+6$) as follows:
$>\mathrm{q}\mathrm{e}_{-}$quad (&Ex ( $[\mathrm{x}$ ,yl , &and $[(\mathrm{x}^{\wedge}2-4*\mathrm{x}-5)\ <\Leftrightarrow \mathrm{y},$ 3&<\approx x, y&<=(-5*s+6)])) ;

$-14+5*\mathrm{s}\iota<\approx 0$

time $=0.03\mathrm{s}\mathrm{e}\mathrm{c}$ . bytes $=$ 233514
The two examples below show that if a decision problem is given, i.e., the input contains no free variables,
each command returns the true or false value. And if it is true, a sample point (one making the formula
true) is also returned.
$>$ qe-sdc $(\mathrm{x}^{-}5-\mathrm{x}^{-}2+3*\mathrm{x}-9,\mathrm{x})$ :

false
time $=1$ .11. bytes $=$ 8774262

$>$ qeJLin(&Ex ( $[\mathrm{x}.\mathrm{y}]$ . y&<2*x+2 and y&<\approx -3*x+12 and y&\succ $($ 1/3)*x+5) ) ;

true
1 sample point: $[\mathrm{x}. \mathrm{y}]$ . [52/25, 144/25]

time $\Xi$ $0.03$ , bytes . 155078
By calling the simple command, you can simplify quantifier-free formulas with ordering theoretical
and additive smart simplification.
$>$ simple((x&$<5$ &and x&<c kand x&>=10) kor (x&$<=3$ &and x&<=5 &and x&>=-5

&and x&03) &0r (x& $>7$ &and x&<=d) $)$ ;

( $-3\star \mathrm{x}l<=0$ &and $-5-\mathrm{x}$ $\iota<\cdot 0$ ) &0r ( $-\mathrm{x}$ &<-7 &and $-\mathrm{d}+\mathrm{x}$ &<=0)

time $\mathrm{z}$ $0.03$ . bytes $\not\in$ 44974
The simple command simplifies quantifier-free formulas by making use of simple atomic equations.

This command repeats the following two procedures: (i) solving the linear atomic equations with only one
variable in each conjunctive formula and substituting its solution for the variable as far as its influence
goes; (ii) calling the simple command and simplifying the resulting formula. These are redone until
such linear equations run out.
In the next example, $z$ in the input formula is firstly substituted by 3/2 except in the 4th atomic one,
and then by using the 1st equation in the resulting formula, $x$ is replaced by 3/5 in three places.
$>$ substsimple ( $5*\mathrm{x}\ \cdot 2*\mathrm{z}$ &and 9&>=3*y-x &and $\mathrm{x}+4*\mathrm{y}+\mathrm{z}\ >0$ &and $2*\mathrm{z}-3\ =\mathrm{Q}$

&and $5*\mathrm{x}+2*\mathrm{y}\ <=\mathrm{z}+3$):

$\mathrm{x}$ $\iota=3/5$ &and $-40*\mathrm{y}$ &{ 21 &and $\mathrm{z}\iota\approx 3/2$ &and $-3+$4y $\iota.<\cdot 0$

time $=0.00$ . bytes $=$ 97406
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6 Examples
We show two example problems from mathematical programming and solve them with SyNRAC.

Example 1 First consider the following convex quadratic programming:
minimize $x_{1}^{2}+x_{1}x_{2}+2x_{2}^{2}$ ,
subject to $x_{1}+4x_{2}\geq 16,3x_{1}+2x_{2}\geq 18$, $x_{1}\geq 0$ , $x_{2}\geq 0.$

To obtain a description of the first-Order formula, we add an unqualified variable $z$ and express the
problem in

$\exists x_{1}\exists x_{2}$ ( $z$ $-(x_{1}^{2}+x_{1}x_{2}$ $+2x2)$ $\geq 0$ A $x_{1}+$ 4x2 $\geq 16$ A $3x_{1}+2x_{2}\geq 18$ A $x_{1}\geq 0$ A $x_{2}\geq 0$)

Eliminating the quantified variables $x_{1}$ and $x_{2}$ , we can obtain a condition on $z$ , from which we would
obtain the range of the objective function. Quantifier elimination procedure in SyNRAC outputs the
condition below in 1.78 $\mathrm{s}\mathrm{e}\mathrm{c}$ :

&0r ([46 $-\mathrm{z}$ &<\sim 0. &and ([567 – 16 $\mathrm{z}$ &<=0,
&or ( [(46 - z) & $\cdot$ 0, &and $( [46-\mathrm{z} \ <=0, -162 + \mathrm{z}\iota<\cdot 01 )$ ,
&and $($ -256 $+$ 2 $l<=0$ ,2659 –40 $\mathrm{z}$ &<=0] $)$ . 2659 – 40 $\mathrm{z}$ &<=01)]),
&and $($ [46 -

$\mathrm{z}$ &<=0, -256 $+\mathrm{z}$ &<\approx 01 $)$ ])

A little computation tells us that this formula is equivalent to $z\geq 46.$ Thus the minimum of the objective
function $x_{1}^{2}+x_{1}x_{2}+2x_{2}^{2}$ equals 46.

Example 2 Next we consider the following nonconvex programming:
minimize $x_{1}+3x_{2}$ ,
subject to $x_{1}^{2}+x_{2}-4x_{1}-$ $3$ $\geq 0$ , $x_{1}^{2}+2x_{2}-12x_{1}+32\geq 0$ , $x_{1}\geq 0$ , $x_{2}\geq 0.$

As in the first example, we rewrite the problem by using a slack variable $z$ into

$\exists x_{1}\exists x_{2}$ ($z-(x_{1}+$ 3x2) $\geq 0$ A $x_{1}^{z}.+$ $x_{2}-4x_{1}$ $-3\geq 0$ A $x_{1}^{z}.+$ 2x2 –12xi $+32$ $\geq 0$ A $x_{1}\geq 0$ A $x_{2}\geq 0$) $.$

Quantifier elimination procedure as well as simplification after QE outputs the condition below in 6.12
$\mathrm{s}\mathrm{e}\mathrm{c}$ :

-155 $+$ $25*42^{\wedge}$ (112) –
$\mathrm{z}$ &<=0

Thus the minimum of the objective function $x_{1}1$ $3x_{2}$ is $-155+25\sqrt{42}$ , or approximately 7.02.

7 Conclusion
We have presented the current version of SyNRAC, which has added newly provides quantifier elim-

ination for the quadratic case and some standard simplifiers of formulas based on a new environment
for first-Order formulas over the reals on Maple. The new features greatly extend the applicability and
tractability of SyNRAC for solving real algebraic constraints in engineering. We are continually improv-

ing the efficiency of implemented algorithms and are going to implement other algorithms (including

symbolic-numeric algorithms) for solving real algebraic constraints into SyNRAC.
Now we note that based on SyNRAC the development of a toolbox for parametric robust control design

on MATLAB is ongoing.
We are aware that there is still a considerable way for $\mathrm{S}\mathrm{y}\mathrm{N}$ RAC to be a sophisticated symbolic-numeric

tool. Hence we will keep progressing to bridge the gap. Our goal is to develop innovative symbolic-numeric
methods and to build novel design tools via SyNRAC for various fields in engineering.

Acknowledgements The author thanks Volker Weispfenning for his helpful advice.

XXXVII-6



244

References
[1] Anai, H., Yanami, H.: SyNRAC: A Maple package for solving real algebraic constraints. In: Pro

ceedings of International Workshop on Computer Algebra Systems and their Applications (CASA)

2003 (Saint Petersburg, Russian Federation), P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657,
Springer (2003) 828-837

[2] Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In Matzat,
B.H., Greuel, G.M., Hiss, G., $\mathrm{e}\mathrm{d}\mathrm{s}.$ : Algorithmic Algebra and Number Theory. Springer, Berlin
(1998) 221-247

[3] Sakabe, K., Yanami, H., Anai, H., Hara, S.: A MATLAB toolbox for robust control synthesis by
symbolic computation. In: Proceedings of SICE Annual Conference 2004 (Sapporo, Japan). (To
appear)

[4] Anai, H., Hara, S.: Fixed-structure robust controller synthesis based on sign definite condition
by a special quantifier elimination. In: Proceedings of American Control Conference 2000. (2000)
1312-1316

[5] Anai, H., Hara, S.: Linear programming approach to robust controller design by a quantifier elimi-
nation. In: Proceedings of SICE Annual Conference 2002 (Osaka, Japan). (2002) 863-869

[6] Anai, H., Hara, S.: A parameter space approach for fixed-Order robust controller synthesis by
symbolic computation. In: Proceedings of IFAC World Congress on Automatic Control $\mathrm{b}’ 02$ . (2002)

[7] Anai, H., Yanami, H., Hara, S.: SyNRAC: a maple package for solving real algebraic constraints
toward a robust parametric control toolbox. In: Proceedings of SICE Annual Conference 2003
(Fukui, Japan). (2003) 1716-1721

[8] Weispfenning, V.: Quantifier elimination for real algebra–the quadratic case and beyond. Applicable
Algebra in Engineering Communication and Computing 8 (1997) 85-101

[9] Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36 (1993)

450-462 Special issue on computational quantifier elimination.

[10] Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. Journal of
Symbolic Computation 24 (1997) 209-231

[11] Collins, $\mathrm{G}.\mathrm{E}.$ : Quantifier elimination for the elementary theory of real closed fields by cylindrical
algebraic decomposition. In Brakhage, H., ed.: Automata Theory and Formal Languages. 2nd GI
Conference. Volume 33 of Lecture Notes in Computer Science., Gesellschaft ffir Informatik, Springer-
Verlag, Berlin, Heidelberg, New York (1975) 134-183

[12] Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination.
Journal of Symbolic Computation 12 (1991) $29\triangleright 328$

[13] $\mathrm{G}\mathrm{o}\mathrm{n}\mathrm{z}4\mathrm{l}\mathrm{e}\mathrm{z}$-Vega, L.: A combinatorial algorithm solving some quantifier elimination problems. In
Caviness, B., Johnson, J., $\mathrm{e}\mathrm{d}\mathrm{s}.$ : Quantifier Elimination and Cylindrical Algebraic Decomposition.
Texts and monographs in symbolic computation. Springer-Verlag (1998) 365-375

XXXV11-7


