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Small global solutions for
the nonlinear Dirac equation

Shuji Machihara! Makoto Nakamuratand Tohru Ozawal
L
BREB LGP T3

1 Introduction

In this note we study the Cauchy problem for the nonlinear Dirac equation (NLD) in
space-time R1t™ :

n

O = (iAo + ) A;05) + Al(Aotp|9) [P~/ %, (1.1)

J=1

¥(0) = ¢,

where ¢ : R'*"* — CN® js a function of (¢,z) € RxR"®, ¢ : R* — C¥® js a given Cauchy
data, A € C and p > 1 are constants, 8, = 9/0¢t,8; = 0/0z; with space variable z =
(Z1,...,2n), (-|-) denotes the inner product in CN®. A, ..., A, denote the N(n) x N(n)
matrices satisfying A;A4; + A;A; = 26;;1, where &;; is Kronecker’s delta and I is the unit
matrix. N(n) is an integer depending on the space dimension n.

There are several ways to construct the set of matrices satisfying the anticommutation

relation above. The set of (Ag”), e ,A&") ) for n dimensional case can be derived from
(AFY . A"Y) for n—1 dimensional case inductively.
_1 40 _ (01 w_(1 0
Example 1 Forn=1, Ay’ = (1 O)’ Al = (O _1)-
(n-1)
() _ 0 A . m _ (I 0
Forn > 2, Aj = <A§"_I) JO >, ij=0,....,n—1, Ay’ = (0 _r)

Then N(n) = 2".

Example 2 Forn=1, Aél) = ((1) (1)) , Agl) = (
Forn=4m+2, AV =A™ j=0,...,n—1, AP =iAl... 40D

(n—1)
Forn=4m+1,4m+3,A§.")=( O K )',j=0,...,n—1, A(")._..(I 0).
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Forn = 4m + 4, Ag-") = Ag-""l), j=0,...,n—1, A = A(()"_l) . -ASI":IU.
Then N(n) = 2l+0/2 yhere [a] denotes the largest integer which is less than or equal
to a.

We consider the global existence of solution with small data for NLD. The case of
n = 3 have been already studied in [3], [7]. Our basic tool for the proof is Strichartz
estimate for Klein—-Gordon equation which works for the space-time norm L{B,, ¢ > 2,
where B, denotes suitable Besov spaces on R™. These estimates have been studied for
q > 2, though the estimates for ¢ = 2 i.e. L2B, have been excluded until lately and
play an important role for our results. First study on the estimate for ¢ = 2 was given
by Lindblad and Sogge [6] and Ginibre and Velo [4] independently in 1995 for the wave
equation. Keel and Tao [5] proved the end point estimate in 1998 for wave and Schrédinger
equations. For Klein-Gordon equation, estimate on ¢ = 2 can be found in [7]. In this
note we give estimates applicable to more general norm in space variables.

Before stating our results, we shall give a scaling approach in this problem. For
instance let us consider the massless case of NLD:

Op =Y A0 + M (Aotp|p)| P~V 2. (1.2)
j=1 :

We scale the function % in the form

Wy (t,@) = 7 TY(vt,yz), 7> 0. (1.3)

Then we see that 1, is a solution of (1.2) if and only if ¢ is a solution of (1.2). We take
the initial data belonging to the homogeneous Sobolev space H*,

[y (O)llgrs = v*~™/ 2+~ (0) | - (1.4)

Therefore we may think s(p) :=n/2 —1/(p— 1) as a critical exponent for NLD.
Now we give our results.

Theorem 3 Let n,p, ¢ satisfy the following conditions:

1) n=1, p>5  lgllsg, <1, s=1/2+1/(p—1),

(2) n=2, 3<p<5 |dlleg, <1, s=1/2+1/(p-1),

B n=2, p>5  |¢lgw <1,

(4) n=3, p=3, lollge <1, s>1,.

(5) n=3, p>3,  |Blgw» <1,

(6) n2>4, p=3, |l¢||3;§13) <1, -

M n>4,  p>3  |¢lmw <1, (s0) <(P-1)/2 ifp+# odd).

Then NLD has a solution ¥ € C(R; X), where X denotes the space of data indicated
above.
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Remark The cases (4), (5) were proved in [7], 3] respectively.

We close this section by introducing some notation. For any r with 1 < r < 00, L" =
L7 (R") denotes the Lebesgue space on R". For any s € R and any r with 1 < r < oo, H?
[resp. H?] denotes the inhomogeneous [resp. homogeneous] Sobolev space. For any s € R
and any r,m with 1 < r,m < oo, B;,, [resp. B;,] denotes the inhomogeneous [resp.

homogeneous| Besov space. We make abbreviations such as H® = H3, He = Hg, and
LB = LY(R; B). Occasionally we use < to mean < C, where C is a positive constant.

We give some properties for Sobolev and Besov spaces which seem to be important
for following argument (see [1]).

Hy —Hf, Bg,— Bf (1.5)
with a —n/p= 3 —n/q, azﬂ.
Hy — By, [resp. By, — Hy] (1.6)

with p < 2 [resp. p > 2].
B21H322— a"‘"BgJ (1.7)

w1th a > 3. We often use the embedding
Bga,1 — L. (1.8)

2 Proof

We employ a contraction argument to obtain the solution. For this purpose, we prepare
two lemmas, Strichartz estimate and interpolation estimate for L> norm.

For simplicity we set f(y) = A|(Ap|¥)|P~V/%4p, and w = (1 — A)Y/2. The solutions
for NLD satisfy the following integral equation (see [7]):

W(t) = U(t) + / Ut — &) f(b(t))dt (2.1)

with U(t) := costw + (idg + > A;0;)w ! sintw. We investigate the operator U(t). We
give the following lemma which is often called Strichartz estimate.

Lemma 4 Let k = 1,2. The following estimate holds.
W ullromiszg) < lullsg,, (2.2)

where 0 < 1/¢<1/2, 0<1/r<1/2-2/(n—1+8)q, (n+6, q);é(3 2) and

n n-1-61 n
——— L g——= 2.
3 n-itég ° 7 0 (23)

for0<6<1.
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From (2.2), we have the homogeneous estimate as follows,

t Ut —t)f(tdt
0

< [T IWOUEO IO limapt

< Il wssg - (2.4)

Remark (i) The estimate for k = 2 was proved in [7]. (i) We may replace K(t) = et
for U(¢t). (iii) From the condition (2.3), if we take § = 0 and substitute the inhomogeneous
norms by the homogeneous ones, i.e. B} — Br“ 7Bl — Bg %, then the estimates (2.2)
and (2.4) satisfy scaling invariance.

La(R;B;7)

Proof of Lemma 4
We concentrate on the case k = 1. From duality argument, it is sufficient to prove
that
|[ vcore|  SiPly, 9

Q
Bﬁ,oo

where ¢’ and ' denote the Holder conjugate of ¢ and r respectively. In fact in [7] we find

‘/‘: U(—t' )i x F(t')dt'

<2y x Fll g 0 (26)
L2

where {¢x}$ is the Littlewood-Paley dyadic decomposition on R" and g,7,0 are as in
Lemma 4. We take supremum of k on both sides to obtain (2.5).

We use the following Gagliardo-Nirenberg type interpolation inequality ([3] or see (8]
for more general cases).

Lemma 5 The following estimate holds.
£l S NNl 11 Hﬁa (2.7)

where 1 < p,g< o0, 0 <a,B<00, 0<d<1, a>n/p, B<n/g dla—n/p)+(1-
6)(B—n/q) =0.

Proof of Theorem 3
We define the complete metric space ® = ®(p, s,k, M) for NLD as
® = {y € L°(R; B3;) N P71 (R; L%); Yllzgesy, + WMl 10 < M} (2.8)

We find a unique solution of NLD in & for sufficiently small data ¢ and M. For any
s € R, k=1,2 and g, r, o satisfying the condition in Lemma 4, we have from (2.1), (2.2)
and (2.4),

19/l speze S Nblig, + 1 (¥)lzsmy,
S liglisg, + 141 Lp-le”?PHLrB;,k- (2.9)
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So we concentrate on the L2~ L® norm. We apply Lemma 4 to estimate it in LIB%°.
t pply .k

(1) n=1. For any p > 5, we take k = 1 and
(5,9,7,0,60) = (1/2+1/(p~1),p - 1,00,1/2+ 1/(p— 1),4/(p - 1)) (2.10)

and use BY, ; < L* to obtain the theorem.

(2) n=2. For any 3 < p < 5, we take k = 1 and
and use BY, ; < L* to obtain the theorem.

(3) n = 2. For any p > 5, we take k = 2 and 0 < § < 1 satisfying (1 — d)(p — 1) > 4.
From (2.7), we estimate

”w”z,g’-‘Loo S ”'/)“‘SL;”HH||¢“E16—6)(p—1>m—a- (2.12)
We take
('5’ q,7,0, 9) = (1—1/(1)_1), (1—-5)(17—1), 1/2—2/(1—(5)(})—1),3/(1—6)(})—1),0) (213)

to obtain the theorem.

(6) n>4, p=3. We take k =1 and
(s,9,7,0,8) = (n—1)/2,2,2(n - 1)/(n — 3), (n+ 1)/2(n — 1),0) (2.14)

and use B]77 < L* to obtain the theorem.

(7) n > 4. For any p > 3, we take k = 2 and 0 < § < 1 satisfying (1 — 8)(p — 1) > 2.
From (2.7), we estimate (2.12) and take

(,4,7,0,0) = (n/2=1/(p— 1), (1 = 8)(p — 1), (1/2-2/(1 = 8)(p — 1)(n — 1)),
(n+1)/1-8)(p—1)(n-1),0)

to obtain the theorem.

3 Application for nonlinear Klein—-Gordon equations

We apply the previous argument for the Klein—-Gordon equation with derivative coupling
(NLKG):

ORu— Au+mPu = Af(u), u(0)=ug, u(0)=u,, (3.1)
where u : R™*" — C is unknown, ug,u; : R* — C are given Cauchy data, m > 0 and
A € C are constants. We consider the nonlinear term f(u) of following types:

n

£) = 8(u?), 0:(w?), [[ @), By [[ G, (32)
=1

J Jj=1



where 1 < 7 <n.
We give the results only. For simplicity we set ¢ = (ug,u;) and ||¢|| By, = lluollms, +

“U1“B;,;1-

Theorem 6 Let n,p, ¢ satisfy the following conditions:

(1) n=1, p2>5, lolleg, <1, s=1/2+1/(p~1),

(2) n=2 3<p<5, |ols, <1, s=1/2+1/(p—1),

(3) n=2, p> 5, lollgsm < 1,

(4) n=3, p=3, lellgs <1, s>1,

(6) n=3, p>3, ol g < 1,

6) n>4, p=3, lell g <1,

(7) n24,  p>3, |ollgw <1, (s(p) <p ifp# integer),

(1) = (7) for f = 8;(wP), (4) —(7) for f = 0,(uP).

Then NLKG has a solution 1) € C(R; X), where X denotes the space of data ¢ indicated
above.

Remark In this case s(p) is scaling critical exponent for massless NLKG (m = 0).

Theorem 7 Let n,p, ¢ satisfy the following conditions:

1) n=1,  p25  elge <1, s=1/2+1/(p-1),
@) n=2 3<p<5 lelgn <1, s=1/2+1/(p-1)
(3) n= 27 p> 5) “(p”HS(PHl <K 17

(4) n=3, p=3, lollgee: €1, s>1,

(5) n= 3{ p> 37 H(»OHHS(P)‘H < 17

(6) n 2 4’ D= 3, “(’D”B;)(f)+1 < ]-7

(7) n>4, p>3, loll o+ < 1,

(1) = (7) for f =T;=1(Qju)?, pr+ - +pn =p, p; € Z+ U{0} or p; > max{1,s},
(4) = (7) for f = (B [I;_,(8;w)%, po+-+-+pn =p, p; € Z* U{0} or p; > max{1,s}.

Then NLKG has a solution v € C(R; X), where X denotes the space of data ¢ indicated
above.

Remark In this case s(p)+1 is scaling critical exponent for massless NLKG (m = 0).
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