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Abstract

In this talk I give an overview of the work done during the last 15
years in collaboration with the late Adrian Patrascioiu. In this work
we accumulated evidence against the commonly accepted view that
theories with nonabelian symmetry - either two dimensional nonlinear
$\sigma$ models or four dimensional Yang-Mills theories - have the property
of asymptotic freedom (AF) usually ascribed to them.

1 Introduction

Our present view of nature is based on reductionism: bulk matter consists
of atoms, which consist of electrons and nuclei; nuclei consist of protons and
neutrons, which in turn consist of quarks and gluons. This simple idea that
something ‘consists’ of something smaller becomes increasingly inadequate
as we go down; certainly the statement that the proton consists of three
quarks has to be taken with a big grain of salt: depending on the energy
applied, it also seems to consists of three quarks and an arbitrarily large
number of quark-antiquark pairs as well as gluons. But most of all, all these
‘constituents’ do not exist as particles in the usual sense: they cannot be
isolated and do not fit Wigner’s definition of a particle as the embodiment
of an irreducible representation of the Poincar\’e group.

lTalk presented in the Seminar at RIMS of Kyoto University: Applications of RG
Methods in Mathematical Sciences, Sep. 10 to 12, 2003
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The catchword to describe the last property is ‘confinement’ and the
theory that is supposed to embody it is Quantum Chromodynamics (QCD),
based on Yang-Mills theory, enriched with fermion (quark) fields. Lattice
gauge theory at strong coupling shows indeed this property of confinement
and a huge body of lattice simulations has given us confidence that QCD
has a very good chance to describe correctly the spectrum of hadrons. Of
course the lattice is an artefact and one would like to get rid of it by taking
the sO-called continuum limit. The way to do this is to search for a critical
point of the lattice theory, in which the dynamically generated length scale
diverges in lattice units.

It is part of the conventional wisdom and stated in numerous textbooks
that this critical point is located at vanishing (bare) coupling, and that the
continuum limit hence enjoys a property called asymptotic freedom (AF),
meaning that the effective interaction strength goes to zero with increasing
energy. This prediction is based on computations done in perturbation theory
(PT), but so far a proof does not exist.

Similar predictions have been made about twO-dimensional nonlinear $\sigma$

models with nonabelian symmetry group, which in many ways can be con-
sidered as toy models for QCD. But it should be stressed that even for this
toy version AF has neither been proved nor disproved mathematically - to
do so remains an important challenge for mathematical physics.

In fact Patrascioiu and the author have questioned the textbook wisdom
and over the years we have accumulated a lot of evidence, both analytic
and numerical, in support of a conjecture contradicting the conventional
picture, namely that both four-dimensional Yang-Mills theory and its twO-
dimensional toy analogues, considered as lattice statistical systems, have a
critical point at a finite value of the lattice coupling strength, which then
corresponds to a non-Gaussian fixed point of the Renormalization Group
(RG).

In this lecture I will focus on the twO-dimensional toy version, which
is easier to study. Concretely I will consider $O(N)$ models (classical spin
models) which are defined as follows: we consider configurations of classical
spins $\vec{s}$ on a simple square lattice $\mathbb{Z}^{2}$ , i.e. maps

$\mathbb{Z}^{2}\ni x\vdasharrow\vec{s}(x)\in \mathbb{R}^{N}$ , $||\tilde{s}$(x) $||=1$ ; (1)
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for any finite subset A of the lattice $\mathbb{Z}^{2}$ a Hamiltonian is given by

$H_{\Lambda}=- \sum\vec{s}(x)$ $\vec{s}$(y); (2)
(xy)

On the configurations restricted to $\Lambda$ , $H_{\Lambda}$ induces a Gibbs measure
$\frac{1}{Z_{\mathrm{A}}}e^{-\beta H}$A $d\mu_{0}(\{\overline{s}\})1$ (3)

As usual, one has to take the thermodynamic limit $\Lambda\nearrow \mathbb{Z}^{2}$ . The mass gap
is then defined as the inverse correlation length

$m( \beta)=\xi^{-1}=-\lim\underline{1}\ln\langle\vec{s}(0)\cdot\vec{s}(x)\rangle$ . (4)
$|x|arrow\infty|X|$

The textbooks state that there is a fundamental difference between the
models with $N=2$ (abelian symmetry) and $N>2$ (nonabelian symmetry),
namely, whereas for $N=2$ we have

$\mathrm{m}\{\mathrm{P}$ ) $=0$ for $\beta\geq\beta_{\mathrm{K}\mathrm{T}}$ , (5)
for $N>2$ on the contrary

$m(\beta)>0$ for all a $>0$ . (6)

The first part of the statement, which goes back to the seminal paper of
Kosterlitz and Thouless [1], has in fact been proven by Prohlich and Spencer
[2] long ago. The second part, on the other hand, remains unproven to date
and it represents an important open problem of mathematical physics to
either prove and disprove it. Its importance for the understanding of twO-
dimensional ferromagnets is obvious, but maybe even more important is its
analogy to the problem of mass generation in four dimensional Yang-Mills
theory or QCD. QCD as a valid theory of strong interactions requires a mass
gap due to the short range nature of the nuclear forces, and it needs a mass
scale (‘string tension’) describing the strength of the confining force.

2 Lattice construction of Quantum Field The-
ories

Let me briefly revisit the principles of constructing a massive (euclidean)
Quantum Field Theory as a continuum limit of a lattice statistical model.
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We assume that the thermodynamic limit of a theory on the lattice $\mathbb{Z}^{D}$ has
been taken already and yields an infinite volume translation invariant Gibbs
state. In the high temperature (strong coupling) regime $\beta<<1$ there is
exponential clustering as can be shown using convergent cluster expansions.
So the system produces its own dynamical scale, the correlation length $\xi$

defined in (4).

We now change scale, using 4 as the standard of length; so the lattice
appears now as the rescaled version of $\mathbb{Z}^{D}$ , namely $a\mathbb{Z}^{D}$ with $a=1/\xi$ . I
want to stress that therefore the lattice spacing is not a freely chosen
parameter of the model, but a dynamically determined quantity.

In particular a continuum limit $aarrow 0$ requires $4arrow\infty$ , i.e. it requires the
existence of a critical point. By taking the correlation length as the standard
of length, one will produce a massive continuum limit (mass 1 by our choice).

Returning now to the $2DO(N)$ models, the procedure means that the
continuum limit of the spin correlation functions is given by

$S_{a_{1},\ldots a_{\mathfrak{n}}}$ $(x_{1}$ , . . . , $x_{n})= \lim_{\betaarrow\beta_{\mathrm{c}}}Z(\beta)^{-n/2}\langle s_{01}(x_{1}\xi), \ldots, s_{a_{\hslash}}(x_{n}\xi)\rangle \mathrm{c}$ (7)

where $\beta_{\mathrm{c}}$ denotes the critical value of 4 (finite or infinite) and $\mathrm{Z}(/3)$ is a field
strength renormalization that has to go to 0 for $\betaarrow\beta_{\mathrm{c}}$ , if the continuum limit
is to be a nontrivial Quantum Field Theory - because in the continuum limit
the correlation functions (Schwinger functions) has to blow up at coinciding
points. A simple possible choice for $Z(\beta)$ is

$Z( \beta)=\frac{\chi}{\xi^{2}}$ , (8)

(cf. for instance [3]) where $\chi$ is the susceptibility of the spin model:

$\chi=\sum\langle$ j(0) . $s\vec{(}x)\rangle$ . (9)
zEZ2

While the construction of the continuum limit works whether $\beta_{\mathrm{c}}$ is finite
or infinite, a finite value for the $O(3)$ model has the crucial consequence that
it is not aymptotically free:

$\beta_{e}<\infty\Rightarrow \mathrm{N}\mathrm{o}\mathrm{A}\mathrm{F}$ ! (10)

This follows from the bounds in [4] and as has been stressed in [5].
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It should be noted that the construction of the continuum limit in $4D$

Yang-Mills theory follows the same principle; instead of the correlation length
4 one may take $1/\sqrt{\sigma}$ where $\sigma$ is the string tension giving the slope of the
confining potential - it is believed that these two scales are equivalent, i.e.
their ratio tends to a finite value as the continuum is approached. In any
case, with this choice of scale (assuming it exists) one obtains a confining
continuum limit. In this sense one may say that the ‘confinement problem’
has been solved by lattice gauge theory.

In all these cases ($2D$ nonlinear $\sigma$ models and $4D$ gauge theories) the con-
tinuum limit has no free parameter corresponding to a choice of the coupling
constant, there is only a scale (multiple of $\xi$) that may be chosen. This is the
famous ’dimensional transmutation’ that is normally ascribed to properties
of the perturbation theory for these models; we see that it is a much simpler
and more general fact.

3 Arguments for Asymptotic Freedom
All arguments are based on perturbation theory (PT). This is a formal low
temperature expansion in powers of $1/\beta$ $=g.$ For the $O(N)$ models it predicts
the flow of the running coupling to be governed by the Callan-Symanzik $\beta$

function
$\beta_{\mathrm{C}\mathrm{S}}(g)=-\frac{N-2}{(2\pi)^{2}}g-\frac{N-2}{(2\pi)^{3}}l^{2}+O(g^{3})$ , (11)

see [6] $)$ .
PT is in principle just the application of Laplace’s method for the deriva-

tion of asymptotic expansions for sharply peaked integrands. But one should
be wary because we are dealing with infinite systems and the usual theorems
(see for instance [7, 8]) do not apply. The idea is the following: the Gibbs
factor $\exp(-\beta H_{\Lambda})$ for $\beta>>1$ will be sharply peaked around the ground
state configuration of $H_{\Lambda}$ . The ground state of an $O(N)$ model is simply any
configuration in which all spins ar equal:

$\uparrow\uparrow\uparrow\uparrow\ldots$ $\mathrm{i}\uparrow$ (12)

The expansion is produced by treating the configurations as small fluctua-
tions around such a ground state. For a finite system $(L<\infty)$ this procedure
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is clearly correct; but in an infinite system $(\mathrm{L}=\infty)$ there will always be large
fluctuations according to the Mermin-Wagner theorem [9, 10, 11]. So this
means that PT should be considered as a priori dubious.

Traditionally one has simply done the expansion in a finite volume (or
with some other infrared regulator) and then considered the limit of the
expansion coefficients as termwise as the the thermodynamic limit is taken (or
the regulator is removed). In 1980 Bricmont et al [12] actually showed that
for invariant observables in the $O(2)$ model, this formal procedure produces
a valid asymptotic expansion for expectation values in the infinite volume.
Nothing of that sort has been achieved for $N>2.$

But confidence was boosted by the finding of Elitzur [13] and later David
[14] that for $N>2$ the termwise limit exists. This is generally (but with-
out justification) assumed to mean that one obtains indeed the correct low
temperature asymptotic expansion by $\mathrm{P}\mathrm{T}$ .

But the problem cannot be settled by looking at the termwise limits.
The structure of the problem is as follows: let $A$ be some observable; then
for $L<\infty$ we have

$\langle A\rangle_{L}=\sum_{n=0}^{M}c_{n}(L)\beta^{-n}+$ Rm $(\mathrm{P}, L)$ (13)

with
$|R_{M}(\beta, L)|\leq K_{M}(L)\beta^{-M-1}\ulcorner$ (14)

Elitzur and David showed that $\lim_{Larrow\infty}c_{n}(L)$ exists, but to justify PT one
would have to prove uniform bounds on $K_{M}(L)$ .

4 Reasons for doubt

I list a few facts that should be reason not to trust PT in the $O(N)$ models
for $N\geq 3,$

$\mathrm{o}$ I mentioned already that the Mermin-Wagner theorem requires large
fluctuations at all temperatures and so destroys the logical basis of $\mathrm{P}\mathrm{T}$ .
The intuitive reason for this fact lies in the existence of localized defects
of arbitrarily low energy, which disorder the system at all temperatures.
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We dubbed these defects ‘superinstantons’, because they will ‘beat’ the
instantons (which have fixed energy) at low temperature. They can
be simply described as follows: fix a spin at the origin to a certain
direction, say $\tilde{e}$

N , the unit vector in the $N\mathrm{t}\mathrm{h}$ direction; also fix all spins
at approximate distance $R$ from the origin to another direction $e^{\neg}$ . The
configuration of minimal energy with these boundary conditions (be)
is called superinstanton of size $R$ (and rotation angle $\arccos(\vec{e}_{N}( e^{\tau}))$ .
It turns out that the energy of such a superinstanton is

$\mathrm{E}(\mathrm{R})=O(R^{-1})$ in $D=1$

$E(R)=O(1/ \ln R)$ in $D=2$

$\mathrm{E}(\mathrm{R})=O(R^{0})$ in $D>2$ (15)

(see for instance [15]). A notable property of these excitations is that
they do not exploit the fact that the spin has $N$ components; they are
$O(2)$ like for all $N$ and all $D$ . They are local minima of the energy
(with the prescribed $\mathrm{b}\mathrm{c}$); in the continuum the $0(2)$ superinstanton
can be seen to be the conjugate harmonic function to the vortex that
plays such a fundamental role in the Kosterlitz-Thouless (KT) theory.

$\mathrm{o}$ Ambiguity of PT [16]:
The thermodynamic limit of $2DO(N)$ models ought to be independent
of be. This is plausible because of the Mermin-Wagner theorem, but it
is a definite fact in the massive phase (which for $N>2$ according to the
conventional wisdom is all there is) because of exponential clustering.
Nevertheless Patrascioiu and the author found some be that lead to PT
coefficients that differ from the standard ones (obtained with periodic
$\mathrm{b}\mathrm{c})$ in the termwise thermodynamic limit. These be were inspired by
the superinstantons and called superinstanton be (sibc). They are de-
fined essentially by enforcing a superinstanton of rotation angle zero. If
we consider $\mathrm{O}(\mathrm{N})$ invariant observables, sibc can be defined by fixing
the spin at the origin and all the spins at the boundary of a square to
a certain fixed direction.
It is inportant to realize that these are indeed legitimate be for the
model: in the thermodynamic limit the effect of the boundary spins
disappears, and fixing one spin in the center is inconsequential, since
we are considering invariant observables.
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For $N>2$ (but not for $N=2!$ ) PT at one-loop level (termise thermO-
dynamic limit), already produces an answer different from the standard
one if one uses sibc This means that at least one of the two results,
possibly both, are incorrect, since the true (nonperturbative) thermO-
dynamic limit is the same and an asymptotic expansion is unique, if it
exists.

$\mathrm{o}$ Richard’s truncated sphere model [17]:

If one modifies the $O(3)$ model by restricting the $z$ component of the
spin to satisfy the constraint $|\tilde{s}_{z}|<1$ $-\epsilon$ , the system becomes massless
at sufficiently low temperatures. This was shown by J.L.Richard by
the use of Ginibre’s correlation inequalities for the $x$ , $y$ components
and comparing the model to an $O(2)$ model.

But PT would tell a different (and untrue) story: $\mathrm{P}\mathrm{T}$ , expanding around
a ground state oriented towards the equator does not see the constraint
at all. It yields the Callan-Symanzik 4 function of the ordinary $O(3)$

model (11) and therefore, by the usual reasoning, says that the model
is aymptotically free and massive for all di

5 The case against $\mathrm{A}\mathrm{F}$ : discrete and continu-
ous models

It is interesting to make a ‘lattice approximation of the target space’ by
replacing for instance the 2-sphere $S_{2}$ of the $O(3)$ model with (the set of
vertices of) a platonic solid such as the icosahedron or dodecahedron. In
both of these cases the symmetry is also reduced from the continous $0(3)$ to
the discrete icosahedral subgoup Y.

The study of the dodecahedron model was begun already long ago, both
analytically and numerically in $[18, 19]$ and continued in [20]; a detailed
numerical study of the icosahedron model was carried out in [3]. The picture
that emerged is that the dodecahedron has a critical interval between its
massive high and low temperature phases (similar to the abelian $Z_{n}$ models
for large enough $n$), whereas the icosahedron model has an isolated critical
point $\beta_{c}$ . In both cases our main interest is in the (massive) continuum limit
arising by approaching criticality from the high temperature phase.
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Numerically we found evidence for symmetry enhancement from $\mathrm{Y}$ to
$O(3)$ in both cases, suggesting that the massive continuum limits of the
discrete models lie in the same universality class as the $O(3)$ model.

Concretely, we considered the following objects:

$\circ$ Renormalized spin-spin correlation in momentum space

$G_{r}( \frac{n}{\xi})\equiv\frac{\xi^{2}}{\chi}\langle\vec{s}(01s(77!))$ , (16)

where the data presented in [20] suggest

$\lim_{\xiarrow\infty}\hat{G}_{r}(p)|_{\mathrm{d}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{a}}=\lim_{\xiarrow\infty}\hat{G}_{r}(p)|_{o(3)}$ . (17)

$\circ$ Renormalized spin-spin correlation in $x$ space

$G_{r}( \frac{n}{\xi})\equiv\frac{\xi^{2}}{\chi}(s\vec{(}0)\cdot\vec{s}$(n) $)$ , (18)

where the data presented in [21] suggest

$\lim_{\xiarrow\infty}\hat{G}_{r}(x)|_{\mathrm{i}\mathrm{c}\mathrm{o}}=\lim_{\xiarrow\infty}G_{r}(x)|_{o(3)}$ . (19)

$\circ$ Renormalized 4-point coupling constant

$g_{R}=( \frac{g_{4}}{g_{2}^{2}}-\frac{5}{3})\frac{\xi^{2}}{\chi}$ , (20)

where the data in [21] give evidence for

$\lim_{\xiarrow\infty}g_{R}|_{\mathrm{i}\mathrm{c}\mathrm{o}}=g_{R}|_{o(3)}$ (21)

This suggests the overall conclusion that the dodecahedron, the icosahe-
dron and the $O(3)$ model all have the same massive continuum limit. This is
relevant for our main issue, because the discrete models cannot be expected
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to be asymptotically free. In fact the running coupling proposed by Liischer,
Weisz and Wolff [22]

$\overline{g}_{LWW}(z)$ $\equiv\frac{L}{\xi(L)}$ $(z= \frac{L}{\xi(\infty)})$ (22)

in the icosahedron model has found to have an ultraviolet fixed point [21]
$\overline{g}\approx.595\neq 0$ . (23)

So assuming the universality suggested by our does indeed hold, this
means that the $O(3)$ model cannot have $\mathrm{A}\mathrm{F}$ .

6 The case against asymptotic freedom: per-
colation

The strongest argument against AF developed by Patrascioiu and the author
is based on the analysis of certain percolation properties. The idea was
presented first already in 1991 and developed in a number of papers [23, 24,
25, 26]. Since the argument does not constitute a rigorous proof, a detailed
numerical study to bolster it was carried out much later [5].

The argument might seem tricky, but it involves some solid analytic re-
sults, on which the $\mathrm{h}\mathrm{e}\mathrm{u}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ arguments builds.

$\circ$ The first step are two modifications of the model that should not change
its universality class:

- We replace the square lattice $\mathbb{Z}^{2}$ by a triangular lattice $\mathrm{T}$; this is
achieved simply by adding extra bonds along one of the diagonals
of each elementary square. All the bonds carry the same Gibbs
factor, so the model is really living on an isotropic triangular lat-
tice. There is no question that this modification does not affect
the continuum limit, i.e. does not change the universality class.

- Next we introduce a constraint in the Gibbs measure that limits
the angle between neighboring spins to some maximal value:

$e^{-\beta H}$
$arrow$ $e^{-\beta H}\mathrm{d}$ $\theta(\vec{s}(x).\tilde{s}(!/)-c)$

$(xy\rangle$

(‘standard action’) $arrow$ (‘cut action’) (24)
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For large values of $\beta$ this change is completely innocuous, because
the standard action Gibbs factor will already make large angles
extremely unlikely. Our arguments will be completely indepen-
dent of the value of $\mathrm{d}$ , so one might assume that it is already fixed
at some large value. It turns out, however, that one can change
the point of view by putting $\beta$ $=0$ and varying the cut parameter
$c$ instead, since the presence of the constraint also has a ferro
magnetic ordering effect of the system. One finds indeed that the
correlation length increases with increasing $c$ and a critical value
of $c$ somewhere near 0.76 seems to exist.
We also performed a direct numerical test of universality between
this ‘cut’ model with $\beta$ $=0$ and the standard action model by mea-
suring the sO-called ‘step scaling function’ that gives the change
of the LWW coupling under doubling the scale as a function of
the LWW coupling itself. The data show quite good agreement
between the two models (see [5]).

$\circ$ An Ising model is imbedded in the $O(3)$ model by setting

$y_{x}\equiv$ sgn $s_{z}(x)$ (25)

as is done for the well-known cluster algorithms. Note that the def-
inition of the Ising spins is well-defined except on a set of measure
zero.

$\circ$ A correlated bond percolation model is set up following the original
work of Fortuin and Kasteleyn [27] and adapted to $O(N)$ models by
Wolff [28]:
Given a spin configuration, bonds (nearest neighbor pairs) are activated
with a conditional probability $p(\langle xy\rangle|$ { $\tilde{s}(x)x\in$ T} that is determined
by the change in the Gibbs factor when the $z$ component of one of the
spins is reflected:

$p(\langle xy\rangle|\mathrm{F}x)$ $x\in$ [ $\}$ $=\theta(\sigma_{x}\sigma_{y})[1-e^{(\beta\overline{s}(x)\cdot(R_{z}\mathit{5}(y)-\tilde{s}(y)))}]$ (26)

where
$\tilde{s}\vdasharrow R_{t}\tilde{s}=\tilde{s}-2\vec{e}_{z}(\tilde{e}_{z}\cdot\tilde{s})$ (27)

After activating the (xy) bonds independently with this probablity one
forms connected bond clusters; then one averages over all spin config-
urations with the Gibbs measure.
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A theorem that is essentially due to Fortuin and Kasteleyn [27] now
relates the expected size (Cfk) (i.e. number of vertices) of the bond
cluster attached to the origin to the susceptibility of the imbedded Ising
spins:

$\chi_{\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}}=\langle C_{FK}\rangle$ . (28)

This theorem has an important corollary:

(29)

$\circ$ The next step is to divide the 2-sphere into 3 regions:

- Equatorial strip $S_{\epsilon} \equiv\{s\vec{\in}S^{2}||sz|\leq\frac{\epsilon}{2}\}$

- North polar cap $p_{\epsilon}+ \equiv\{\vec{s}\in S^{2}|s_{z}>\frac{\epsilon}{2}\}$

- South polar cap $\mathrm{p}_{\epsilon}-\equiv\{\tilde{s}\in \mathrm{S}2|sz <-\mathrm{S}\}$

The idea is now to study clusters of Sc, $p_{\epsilon}+\cup P_{\epsilon}^{-}\equiv 7$ ,.
The activation probability for the bond (xy) is always 1 if $c>1- \frac{\epsilon}{2}$

.
and $\vec{s}$(x), $s(y)\in p_{\epsilon}+$ (or $\vec{s}$(x), $s(y)\in p_{\epsilon}-$ ) : because in this case flipping
one of the spins would violate the constraint. So we have

$\langle C_{FK}\rangle$ : $\langle P_{\epsilon}^{+}\rangle$ (30)

$\circ$ The main result of $[23, 25]$ is the following:
If for some $\epsilon$ and some $c>1-\epsilon^{2}/2$ $S_{\epsilon}$ does NOT percolate,
then $\xi$ $=\infty$ .
The idea of the proof in intuitive terms is as follows: assume that $cS_{\epsilon}$

does not percolate, then there are two possibilities:

-7 $\epsilon$ percolates $\Rightarrow p_{\epsilon}+$ , $p_{\epsilon}-$ percolate: but this is impossible because
in $2D$ there cannot be two disjoint percolating clusters (actually
this is a ‘principle’, proven only for Bernoulli percolation and the
Ising model)

$-P_{\epsilon}$ does not percolate, but prevents percolation of $S_{\epsilon}$

$\Rightarrow p_{\epsilon}+$ , $p_{\epsilon}-$ form ‘rings’ of arbitrarily large size; neither $2^{+}$ nor
its complement percolate. Now by a lemma of Russo [29], if on
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a self-matching lattice (such as T) neither a set nor its comple-
ment percolate, the expected cluster size of both of them diverges:
$\langle P_{\epsilon}^{+}\rangle=\infty\Rightarrow\langle$c$F\mathcal{K}$) $=\infty\Rightarrow\xi=\infty$ , which completes the argu-
ment.

$\circ$ So the question remains whether it is possible for an equatorial strip $S_{\epsilon}$

to percolate for arbitrarily small $\epsilon$ and $c>1- \frac{\epsilon^{2}}{2}$ . This is a priori hard
to imagine. In any case, in $[25, 26]$ we gave an argument that leads to
masslessness even if we assume this implausible situation to occur:
Assume $S_{\epsilon}$ percolates. Then the same is of course true for any $S_{d}$ with
$\epsilon’>\epsilon$ . Taking $\epsilon’$ close to 2 one obtains an ‘ocean’ with only rare and
small islands corresponding to $P_{\epsilon}’$ . Focussing on the two components
$sx$ , $s\mathrm{y}$ , and taking $\beta$ very large, we have a low temperature $O(2)$ model
with fluctuating coupling on that ocean. One can arrange for the is-
lands to cover an arbitrarily small fraction of the lattice and at the
same time make the effective temperature for the $O(2)$ model arbitrar-
ily small. So one expects that one ends up in a massless Kosterlitz-
Thouless (KT) phase. The only problem is that the R\"ohlich-Spencer
proof has not been adapted for this situation.
Of course I should stress that I don’t think this situation ever arises;
I rather expect that at low enough temperature (large enough $c$) the
clusters of an arbitrarily small polar cap form rings of any size and have
divergent cluster size. This conforms to the superinstanton picture and
parallels the situation rigorously established for the ‘cut’ $0(2)$ model
(see [24, 30]).

$\circ$ Finally I want to briefly describe the extensive numerical study of the
percolation properties in [5]:
For simplicity we studied only the model with $\beta$ $=0,$ but varying cut
$c$ . A nonzero 4 would only order the system more; if it is massless at
$\beta$ $=0$ it would a fortiori be so for $\beta>0.$ We scanned the $(c, \epsilon)$ plane
and measured the ratio $r(L)=\langle P_{\epsilon}\rangle/\langle S_{\epsilon}\rangle$ as a function of the lattice
size $L$ . For fixed $0.78<\epsilon<1$ and varying $c$ betwqeen -0.1 and 0.9
three regions could be distinguished:

- For small $c$ , $r(L)$ increases rapidly with $L$ , indicating percolation
of $P_{\epsilon}-$ it should be noted that in this regime the clusters of $p_{\epsilon}+$

and $p_{\epsilon}-$ are allowed to touch.
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- For intermediate $c$ , $r(L)$ decreases rapidly with $L$ , presumably
converging to 0 and indicating percolation of Se. The boundary
between these two regions is a rather sharply defined value of $c$ ,
where $r(L)$ is practically independent of $L$

- for even larger $c$ , this $L$ dependence of $r(L)$ seems to disappear,
or even change direction again, but at most showing a very mild
increase with $L$ (maybe powerlike). We take this as an indication
that now neither of the sets $P\epsilon$ , $S_{\epsilon}$ percolates (which means by
Russo’s lemma that they both have divergent mean cluster size).

It turns out furthermore that for $c<0.76$ or so the intermediate region
of percolating $S_{\epsilon}$ seems to disappear altogether. To assess the credibil-
ity of these conclusions, one should note that we went to quite large
lattices (up to $L=$ 1280), but numerical results are of course never a
substitute for a proof.
We can combine the picture suggested by the numerical results into a
(semiquantitative) ‘percolation phase diagram’ (Fig. 1) taken from [5].

To corroborate our conclusion that for $c<0.76$ neither $P\epsilon$ nor $S_{\epsilon}$

percolates, we carried out a different analysis of the equatorial clusters
with width $\epsilon=$ 0.75; this time we compared them to the clusters of
$p_{\epsilon}+$, , chosen such that the polar cap has the same area as the equatorial
strip $S_{\epsilon}$ ; also both sets cover the same fraction of the lattice. The ratio
$r’(L)=\langle$pi $\rangle$ z $\langle$s$\epsilon\rangle$ is always larger than 1, presumably because the
polar cap has less boundary than the equatorial strip of the same area
(in agreement with a conjecture stated in [31]). For small $c$ (roughly
up to $c=0.4$) $r’(L)$ shows a rapid increase with $L$ , indicating that $P_{\epsilon’}$

forms rings (of all sizes) whereas the clusters of $S_{\epsilon}$ have finite mean size.
At $c\approx 0.4$ the behavior of $r’(L)$ changes: it is still growing with $L$ , but
now only powerlike. This can only indicate that both kinds of clusters
now form rings of arbitrary size; it rules out for all practical purposes
that $S_{\epsilon}$ percolates, which would require a decrease to 0 as $Larrow|$ $\infty$ .
The numerical results of this study are shown in Fig.2, taken from [5].

To sum up: our numerical study gives strong evidence that for suffi-
cently small $\epsilon$ (about $<$ 0.76) $S_{\epsilon}$ does not percolate for any value of $c$ .
This implies according to our results that for $c>1-0.76^{2}/2=$ 0.745
the correlation length $\xi=\infty$ . The real challenge is of course to give a
mathematical proof of this.
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Figure 1: Percolation phase diagram of the $O(3)$ model on the $\mathrm{T}$ lattice. $\mathrm{C}$

is the line $c=1-\epsilon^{2}/2$ ; above the dashed line $\mathrm{D}S_{\epsilon}$ percolates, above the
dotted line (Se) $<\infty$ .

7 Where do we stand?

Clearly, the problem of AF is still open

$\circ$ Textbook wisdom is insufficient to settle it positively

$\circ$ Counterarguments are not rigorous
$\circ$ Any progress towards proving or disproving AF is very desirable. For

this reason programs such the one of K.R.Ito [32], attempting to prove
AF by a controlled Renormalization Group approach, are very welcome.

$\circ$ Counterarguments are not rigorous
$\circ$ Any progress towards proving or disproving AF is very desirable. For

this reason programs such the one of K.R.Ito [32], attempting to prove
AF by acontrolled Renormalization Group approach, are very welcome.

A final remark: Solving the problem of AF for the $2D$ toy models which
were mostly discussed here would be a big step towards understanding it
also in $4D$ Yang-Mills theory and thereby also towards a solution of one of
the Million Dollar Problems posed by the Clay Mathematics Institute.
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Figure 2: The ratio of the mean cluster size of a polar cap of height 0.75 to
that of an equatorial strip of the same height
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