-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

The quarkonial characterization of weighted spaces and its
Title application (Partial Differential Equations and Time-Frequency
Analysis)

Author(s) | Tachizawa, Kazuya

Citation O00O0O0DOO0OD0OOd (2004), 1385: 136-143

Issue Date | 2004-07

URL http://hdl.handle.net/2433/25772

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/39174923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Oboo0oO0ooDoOonoO 1380 20040 136-143

136

The quarkonial characterization of weighted spaces
and its application

ek -8 - %% 8 —& (Kazuya Tachizawa)
Department of Mathematics, Hokkaido University

1 Introduction

In this paper we study the quarkonial characterization of weighted Sobolev spaces on
a bounded domain and its application to a generalization of the Sobolev-Lieb-Thirring
inequality and the estimate of the Hausdorff dimension of the attractor of a nonlinear
equation.

The decomposition of a function on a domain is studied by several mathematicians.
The atomic decomposition of a function is an example of such decomposition. But
in general the coefficients of the atomic decomposition are not linear functionals of
the function. Hence we use the quarkonial decomposition of a function which was
investigated by Triebel([7]). In the quarkonial decomposition the coefficients of the
decomposition are linear functionals of the function and given by the L?-inner product
with suitable functions. We need this property in applications to a generalization of
the Sobolev-Lieb-Thirring inequality on a domain.

In Section 2 we consider the quarkonial characterization of weighted Sobolev spaces
on R™ with Aj-weight. In Section 3 we give results on the quarkonial characterization
of weighted Sobolev spaces on a bounded domain £2. In Sections 4 and 5 we shall give
some applications.

We remark that Triebel also studied about the quarkonidl characterization of weighted
spaces with C*® weights which satisfy some conditions. Our method is a modification

of his results.

2 The quarkonial characterization of H*(w) and L?(w)

Let w be a nonnegative locally integrable function on R™. For 1 < p < oo we say

that w is an A,-weight, that is w € Ap, if w™/?~1 is locally integrable on R and w
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satisfies the inequality

—1—/wdx (—l—/w_l/(p—l)dz)p—l <C
Q| Jo Q| Jo B

for all cubes @ C R™. An example of A,-weight is given by w(z) = |z|* € A, where
-n<a<n(p-1). .
Let w € Ay and s > 0. We define H*(w) as the completion of C§°(R") with respect

to the norm

1/2
£l = { [ (0025 + @) (o) do "
where we define via inverse Fourier transform
(=A)*2f(z) = FH(€* ) ().
Let 9 € C*°(R™) be a function such that ¢ > 0,
(1) suppy C {z € R": |z| < 27}
for some r > 0, and

Y p@—-k)=1 if zeR"

keZn
For j € Ng=NU{0},k € Z", and 8 € N? we set

VP(z) = 2Py(z) and i (z) = 2V/%¢P(20z — k).

We call 'g/)fk(x) a quark(c.f.{7]).
For j € Z and k € Z"™ we define the cube
ki kLo ...,n}

ijz{(xla'“)mn) : 'Q%S%L'<—2-J—,+-27,

We can prove the following quarkonial characterization of H?(w).

Theorem 2.1 Let w € Az, p > r, and s > 0. Then there exist \Ilfk e S(R™) for
J € No,k € Z™, 8 € N such that for all f € H(w)
F=Y 2 (/Y50
BEND j=0 keZn

in H*(w) and

) . 1
Fll3re () & sup 22141 2%3| (£, WP )|? / wdz.
s (w) BeNg Z Z I( ik 1Q;x] o

§=0 kezZ™



138

Next we give a characterization of L*(w).
For w € L} ,(R™), w > 0, we define

loc
L(w) = {f: “f”i’«'(w) = /Rn[f|2wdx < oo}.
For j € No, k € Z*, and 3 € Ny we set
Wi (@) = 29 ((-A W) (P - k).

Theorem 2.2 Let w € Ay and p > r. Then there exist \Il?k,‘ll?,;l € S(R™) forj €
No, k € Z*, 3 € N? such that for all f € L*(w)

F= % S WEIE + (£ VA

BENE j=0 keZ™

in L*(w) and

- . 1
113y = sup 2257 3~ 12915, WP + 1 00 s | wla.
BeNg §=0 keZn Jk Qjk

For the proof of Theorems 2.1 and 2.2 we use the characterization of H*(w) by

Frazier-Jawerth’s ¢-transform([2]) and a modification of the argument in [7].

3 The quarkonial characterization of H}(Q,w) and
LA, w)
Let § C R* (n > 2) be a bounded C?-domain. We define
A(Q) ={we LL(Q) : ' €4, w=uw onQ}.

For w € A3(Q) we define HL(2,w) as the completion of C§°(£2) with respect to the

norm

1/2
1 £l z3@w) = {/Q(lvf(m)l2 + | f(z)|P)w(z) da:} .

Let d(z) = dist (z, Q). We consider the following condition.
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Condition (C) There exists a ¢ > 0 such that

[Pl @) do < [ V1) Pule)ds

for all f € C§°(92).

We give some examples of weights which satisfy the condition (C).
Example
1. w(z) = d(z)* where 0 < a < 1.

2. we AZ(Q) where there exist positive constants c;, c; and c3 such that
0<c <w(z) <cp forall z € Q satisfying dist(z, 9) < cs.

Let r be the number in (1). We can prove that there exist ¢;,co > 0 and J € Ny
which satisfy the following conditions. For all j € Ny, j > J, there exist lattices

2
X ez k=1,...,M;}cQ
such that
Bjk = {.T . l.’L‘ - ZkQ—jl < 2r—j} C Q, dist (Bjk, BQ) _>_ cl2‘j,
and
M;
Z Y(2z —4) =1 forall z € Q such that dist (z,00) > c2277
k=1

ForjeNy,j>J k=1,...,M;, [ € N} we define
P (@) = 29/%9° Dz — &)

and ij = Qjek.
We have the following quarkonial characterization of H}(Q, w).

Theorem 3.1 Letp > 1, w € Ay(Q) and w satisfy the condition (C). Then there exist
\ilfk €CP(Q) for BENT, €Ny, j > J k=1,...,M;, such that for all f € H} (R, w)

=SS

BENE j=J k=1

[N

in H}(Q,w) and
MJ

o
1y ~ sup 2080 S S 9837, &,

wdz.
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For w € LL,(Q), w > 0 we define
P00) = {1+ Wl = [ 1fPuds <oo),
ForjeNo,j > k=1,...,M;, B € Nj we set
ik (z) = 2297((-A)") @z - b).

Theorem 3.2 Let w € Ay(Q) and p > r. Then there erist \Ilf’k,‘ll‘e1 € Ce(Q) for
BeNEjENy,j>Jk=1,..., M, such that for all f € L*(Q,w)

f= ZZZ{ £ U005 + (F, 05095}

BeNE j=J k=1
in L*(Q,w) and
o M;j
I£1220.) ~ sup 22915'22{24J| T2 17 + 1(F, ¥5D 1) wdz.
j=J k=1 |Q.7k‘ ij

For the proof of Theorems 3.1 and 3.2 we use the Whitney decomposition of €2, the

localization of || f|| 41 (qw), and Theorems 2.1 and 2.2.

4 A generalization of the Sobolev-Lieb-Thirring in-
equality
In 1976 Lieb and Thirring proved the following Sobolev-Lieb-Thirring inequality([3]).

Theorem 4.1 Let n € N. Then there ezists a positive constant ¢ = c(n) such that for
every family {f;}X, in H'(R") which is orthonormal in L*(R™), we have

N
| permaz<ed [ 9a@de

where

@) = 3 IA(a)
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The Sobolev-Lieb-Thirring inequality has applications to the stability of matter or
the estimates of the Hausdorff dimension of the attractor of nonlinear equations.

We can prove the following generalization by the quarkonial characterization of Hj (2, w).

Theorem 4.2 Let n > 3 and Q@ C R” be a bounded C?-domain. Suppose that w €
Ay(Q), w2 € An2(Q) and w satisfies the condition (C). Then there exists a positive
constant ¢ such that for every family {f;}X.; in L2(Q) N H}(Q, w) which is orthonormal
in L*(Q), we have

)y (z) do cN ()| 2w(z) dz
/Qp() ()dS;/QIVf(N()d
where
N
o) = S LA,

Our method of the proof is a modification of results in [1] and [5].

5 Estimate of the Hausdorff dimension of the at-

tractor of a nonlinear equation

In [6] applications of the Sobolev-Lieb-Thirring inequality to the problem of the
estimate of the dimension of the attractor of nonlinear equations are explained. By
the method in [6] we give an application of Theorem 4.2 to a nonlinear equation. The
equation considered in this section is an example given in [6].

Let n > 3 and £ C R" be a bounded C2-domain. Suppose that w € Ax(Q), w2 €

An/2(Q),
2/n 1
cl@|*" < ——lQI/dew

for all cubes @ C €, and w satisfies the condition (C). Let

2p-—-1

g(s)=> b;s’, b €R, byp1>0
s ,

k1 >0, g'(s)>—k;, forallseR.
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For d > 0 and u = u(z,t) we consider the equation

%% _ d;@xi(w(x)aziu) +gw)=0 inQ xRy,

u(z,t) =0 on 00 x Ry,
u(z,0) = up(z) z €

We set
V= Lz(Q) N HS(Q,w).

Theorem 5.1 Under above notations and assumptions, for any up € L2%(Q), there

exists a unique solution u of the equation such that
u e L*0,T;V)
for all T > 0 and
u € C(R,; L3()).

The mapping up — u(-,t) is continuous in L*(Q2).
Furthermore there exists a mazimal attractor A which is bounded in V, compact and

connected in L?(Q). Let m be the integer such that

n/2
m—1<c(ﬂ) /w’"/zdmgm.
d Q

Then the Hausdorff dimension of A is less than or equal to m.
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