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Optimal $\mathrm{T}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{M}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}$ Design in a Software
Development Project

林坂弘一郎, 土肥正

Koichiro Rinsaka and Tadashi Dohi

Department of Information Engineering, Graduate School of Engineering,
Hiroshima University, Japan

1 Introduction
It is important to determine the optimal time when software testing should be stopped and when the
system should be delivered to a user or a market. This problem, called optimal software release problem,
plays a central role for the success or failure of a software development project. Okumoto and Goel [1]
assumed that the number of software faults detected in the testing phase is described by an exponential
software reliability model based on a non-homogeneous Poisson process (NHPP) [2], and derived an
optimal software release time which minimizes the total expected software cost. Koch and Kubat [3]
considered the similar problem for the other software reliability model by Jelinski and Moranda [4]. Bai
and Yun [5] calculated the optimal number of faults detected before the release under the Jelinski and
Moranda model. Many authors formulated the optimal software release problems based on different
model assumptions $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ several software reliability models $[6, 7]$ .

It is difficult to detect and remove all faults remaining in a software during the testing phase, because
exhaustive testing of all executable paths in a general program is impossible. Once the software is released
to users, however the software failures may occur even in the operational phase. It is common for software
developers to provide maintenance service during the period when they are still responsible for fixing
software faults causing failures. In order to carry out the maintenance in the operational phase, the
software developer has to keep a software maintenance team. At the same time, the management cost
in the operational phase should be reduced as much as possible, but the human resources should be
utilized effectively. Although the problem which determines the maintenance period is important from
the practical point of view, only a very few authors paid their attention to this problem.

Kimura et al. [8] considered the optimal software release problem in the case where the software
warranty period is a random variable. Pham and Zhang [9] developed a software cost model with both
warranty and risk. They focused on the problem for determining when to stop the software testing under
a warranty contract. However, it is noted that the software developer has to design the warranty contract
itself and often provides the posterior service for users after software failures. Dohi et $a/$. [10] formulated
the problem for determining the optimal software warranty period which minimizes the total expected
software cost under the assumption that the debugging process in the testing phase is described by an
NHPP. Since the user’s operational environment is not always same as that assumed in the software
development phase, however, the above literature did not take account of the difference between two
different phases.

Several reliability assessment methods during the operational phase have been proposed by some
authors $[11, 12]$ . In this paper, we develop a stochastic model for designing the optimal testing and
maintenance periods, where the difference between the software testing environment and the operational
environment are reflected. Based on the idea in Okamura et al. [12], we formulate the total expected
software cost incurred for the software developer, and derive analytically the optimal testing period
(release time) which minimizes the total expected software cost. We call the time length to complete
the operational maintenance after the release a planned maintenance limit, and also derive the optimal
planned maintenance limit which minimizes the total expected software cost. Throughout numerical
examples, we calculate numerically the joint optimal policy combined by testing period and planned
maintenance limit. Finally, the paper is concluded with some remarks.

2 Model Description
First, we make the following assumptions on the software fault-detection process:
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(a) In each time when a software failure occurs, the software fault causing the failure is detected and
removed immediately.

(b) The number of initial faults contained in the software program, $N_{0}$ , is given by the Poisson dis
tributed random variable with mean $\omega$ $(>0)$ .

(c) The time to detect each software fault is independent and identically distributed nonnegative
random variable with (absolutely continuous) probability distribution function $F(t)$ and density
function $f(t)$ .

Let $\{N(t), t\geq 0\}$ be the cumulative number of software faults detected up to time $t$ . From the above
assumptions, the probability math function of $N(t)$ is given by

$\mathrm{P}\mathrm{r}\{N(t)=m\}=\frac{[\omega F(t)]^{m}e^{-\omega F(t)}}{m!}$ $m=0,1,2$ , $\cdots$ . (1)

Hence, the stochastic process $\{N(t), t\geq 0\}$ is equivalent to an NHPP with mean value function $\omega F(t)$ ,
where the fault-detection rate (debugging rate) per unit of time is given by

$r(t)= \frac{f(t)}{1-F(t)}$ . (2)

Suppose that a software testing is started at time 0 and terminated at time $t_{0}(\geq 0)$ . The time length
of software life cycle $t_{L}(>0)$ is known in advance and is assumed to be sufficiently larger than $t_{0}$ . More
precisely, the software life cycle is measured from the time $t_{0}$ . The software developer is responsible to
the maintenance service for all the software failures that may occur during the software life cycle under
a maintenance contract. We suppose that the project manager decides to break up the maintenance
team at time $t_{0}+t_{W}(0\leq t_{W}\leq t_{L})$ for reduction of the operational cost to keep it, but a large amount
of debugging cost after the planned maintenance limit if the software failure occurs may be needed.
Further, we define the following cost components;

$c_{0}(>0)$ : cost to remove each fault in the testing phase,

$c_{W}(>0)$ : cost to remove each fault before the planned maintenance limit,

$cL$ $(>0)$ : cost to remove each fault after the planned maintenance limit,

$k_{0}(>0)$ : testing cost per unit of time,

$kw$ $(>0)$ : operational cost to keep the maintenance team per unit of time.

In the following section, we formulate the total expected software cost by introducing the above cost
factors in testing and operational phases. We derive the optimal software testing period or the optimal
planned maintenance limit which minimizes the total expected software cost at the end of the software
life cycle. Then, we calculate the joint optimal policy combined by both testing period and planned
maintenance limit.

3 Total Expected Software Cost
We formulate the total expected software cost which can occur in both testing and operational phases.
In the operational phase, we consider two cost factors; the maintenance cost due to the software failure
and the operational cost to keep the maintenance team.

From Eq.(l), the probability math function of the number of software faults detected during the
testing phase is given by

$\mathrm{P}\mathrm{r}\{N(t_{0})=m\}=\frac{[\omega F(t_{0})]^{m}e^{-\omega F(t_{0})}}{m!}$. (3)

It should be noted that the operational environment after the release may differ from the debugging
environment in the testing phase. This difference is similar to that between the accelerated life testing
environment and the normal operating environment for hardware products. We introduce the environ-
ment factor $a(>0)$ which express the relative severity in the operational environment after the release,
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and consider that the times in the testing phase and the operational phase have a proportional relation-
ship. Namely, the time length $t$ in the operational phase corresponds to at in the testing phase. Under
the above assumption, $a=1$ means the equivalence between the testing and operational environments.
On the other hand, $a>1(a<1)\mathrm{i}$ mplies that the operational environment is severe (looser) than the
testing environment. Okamura et al. (2001) apply this technique to model the operational phase of the
software, and estimate the software reliability through an example in the actual software development
project. The probability math function of the number of software faults detected before the planned
maintenance limit is given by

$\mathrm{P}\mathrm{r}\{N(t_{0}+t_{W})-N(t_{0})= 72\}$ $= \frac{\{\omega[F(t_{0}+at_{W})-F(t_{0})]\}^{m}}{m!}e^{-\omega[F\langle t_{0}+at_{W})-F(t_{0})]}$ . (4)

Similarly, the fault-detection process of the software after the planned maintenance limit is expressed
by

$\mathrm{P}\mathrm{r}\{N(t_{0}+t_{L})-N(t_{0}+t_{W})=m\}$

$=$ $\frac{\{\omega[F(t_{0}+at_{L})-F(t_{0}+at_{W})]\}^{m}}{m!}e^{-w}$[ $F(t_{0}+at\mathrm{D}-F(t0+\mathrm{a}\mathrm{t}\mathrm{w})$ (5)

From Eqs.(3), (4) and (5), the total expected software cost is given by

$\mathrm{C}(\mathrm{t}0, t_{W})$ $=$ $k_{0}t_{0}+$ coU)F(to) $+k_{W}t_{W}+c_{W}\omega$ [$F$ ( $t_{0}+$ atyy) -N(tO)
1 $c_{L}\omega[F(t_{0}+at_{L})-F(t_{0}+atw)$ . (6)

4 Determination of the Optimal Policies
In this section we derive the optimal testing period or the optimal planned maintenance limit which
minimizes the total expected software cost incurred to the software developer at the end of software life
cycle. Suppose that the time to detect each software fault obeys the exponential distribution [2] with
mean $1/\lambda$ $(>0)$ . In this case, the total expected software cost in Eq.(6) becomes

$C(t_{0},t_{W})$ $=$ $\mathrm{k}\mathrm{o}\mathrm{t}0+c_{0}\omega(1-e^{-\lambda t_{0}})$ $+kwtw$
$+c_{W}\omega e^{-\lambda t_{0}}(1-e^{-\lambda at_{W}})+c_{L}\omega e^{-\lambda t_{\mathrm{O}}}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})$ . (7)

We make the following assumptions:

(A-I) $c_{L}>c_{W}>c_{0}$ ,

(A-II) $c_{W}(1-e^{-\lambda at_{L}})>c_{0}$ ,

(A-III) $c_{W}(1-e^{-\lambda at_{W}})+c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})>c_{0}$ .
Define

$Q(t_{W})=k_{0}+\omega\lambda[c_{0}-c_{W}(1-e^{-\lambda at_{W}})-c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})]$ . (8)

Then the following result provides the optimal software testing policy which minimizes the total expected
software cost.

Theorem 1: When the software fault-detection time distribution follows the exponential distribution
with mean $1/\lambda$ , under the assumptions (A-I) to (A-III), the optimal software testing period (release time)
which minimizes the total expected software cost is given as follows:

(1) If $Q(t_{W})<0,$ then there eists a finite and unique optimal $sof$ tware testing period (release time)
$t_{0}^{*}(>0)$ , and its associated expected cost is given by

$C(t_{0}^{*},t_{W})$ $=$ $\mathrm{k}\mathrm{o}\mathrm{t}0+c_{0}\omega(1-e^{-\lambda t_{\mathrm{O}}^{*}}$ ) $1$ kwtw
$+cw\omega e^{-\lambda}t$; $(1-e^{-\lambda at_{W}})+$ $c_{L}$

$\mathrm{i}e^{-\lambda t_{\dot{0}}}$ ($e^{-\lambda a}$t $W_{-e^{-\lambda at}}L$ ) \dagger (9)

(2) If $Q(tw)\geq 0$ , then the optimal policy is $t_{0}^{*}=0$ with

$C(t_{0}^{*},t_{W})=kwtw$ $+c_{W}\omega(1-e^{-\lambda a}’ W)+c_{L}\omega(e^{-\lambda at_{W}}-e^{-\lambda at_{t}})$ . (10)
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Proof: For the total expected cost in Eq.(7), we have

$5(0, t_{W})=kwtw$ $+c\iota V\omega$ $(1-e^{-\lambda t_{W}})+c_{L}w$ $(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})$ (11)

and
linl $\mathrm{C}$ (tO $\mathrm{i}t_{W}$ ) $=+\mathrm{o}\mathrm{o}$ . (12)

$t_{0}arrow+\infty$

Differentiating $C(t_{0}, t_{W})$ with respect to $t_{0}$ yields

$\frac{\partial C(t_{0},t_{W})}{\partial t_{0}}$ $=$ $k_{0}+c_{0}\omega\lambda e^{-\lambda t_{0}}-c_{W}ci\lambda e^{-\lambda}t0(1-e^{-}\lambda at_{1\mathrm{y}})$

$-c_{L}\omega\lambda e^{-\lambda t_{0}}$ $(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})$ . (13)

Let $\delta(t_{0}, tw)$ denote the right-hand-side of Eq.(13). Then it is seen that

$5(0, t_{W})=k_{0}+\omega\lambda[c_{0}-c_{W}(1-e^{-\lambda at_{W}})-cl (e^{-\lambda at_{W}}-e^{-\lambda at_{L}})]$ (14)

and
$\lim$ $\delta(t_{0}, t_{W})=k_{0}$ . (15)

$t_{0}arrow+\infty$

By taking the differentiation of Eq.(13) with respect to $t_{0}$ , we get

$\frac{\partial\delta(t_{0},t_{W})}{\partial t_{0}}=\omega$A$2-e\lambda t_{\mathrm{O}}[-c_{0}+c_{W}(1-e^{-\lambda at_{W}})1c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})]$ (16)

Letting $\gamma(t_{0}, t_{W})$ denote the right-hand-side of Eq.(16), we obtain

$\mathrm{C}\{0,\mathrm{t}\mathrm{w}$ ) $=$ $\omega$)$\mathrm{S}^{2}$

$[-c_{0}+c_{W}(1-e^{-\lambda at_{W}})1 c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})]$ . (17)

Further, let $A(tw)$ denote the right-hand-side of Eq.(17). Then conditions $A(0)>0$ and $A(t_{L})>0$ are
reduced to

$c_{L}(1-e^{-\lambda at_{L}})>c_{0}$ (18)

and
$c_{W}(1-e^{-\lambda at_{L}})>c_{0}$ , (19)

respectively. Since $c_{L}>c_{W}$ from assumption (A-I), we can show that $A(0)>A(t_{L})$ and

$\frac{\partial A(t_{W})}{\partial t_{W}}=-(c_{L} -c_{W})\omega\lambda^{3}ae^{-\lambda at_{W}}<0.$ (20)

Hence, we have $7(0, t_{W})>0.$ Since
$\lim$ $\mathrm{C}(\mathrm{t}0,\mathrm{t}\mathrm{w})=0$ , (21)

$t_{0}arrow+\infty$

we can prove that $\partial\gamma(t_{0}, t_{W})/\partial t_{0}<0,$ say,

$c_{W}(1-e^{-\lambda at_{W}})+c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})>$ $(${$)$ . (22)

The proof is completed. Q.E.D.

Furthermore, the following result provides the optimal planned maintenance limit which minimizes
the total expected software cost.

Theorem 2: hen the $sof$ tware fault-detection time distribution follows the exponential distribution
with mean $1/\lambda$ , under the assumption (A-I), the optimal planned maintenance limit which minimizes the
total expected software cost is given as follows:

(1) If $k_{W}\geq(c_{L}-cw)\omega\lambda ae^{-\lambda t_{0}}$ , then the optimal policy is $t_{W}^{*}=0$ with

$C(t_{0},t_{W}^{*})=$ koto $+c_{0}\omega(1-e^{-\lambda t_{0}})+c_{W}\omega\lceil e^{-\lambda t_{0}}-e^{-}\lambda(t\mathrm{g}$ $1\mathrm{a}t_{L}1$ (23)

and
A

$1!.\mathrm{m}$. $\delta(t_{0}, t_{W})=k0$ . (15)
$t_{0}arrow+\infty$

By taking the differentiation of Eq.(13) with respect to $t_{0}$ , we get

$\frac{\partial\delta(t_{0},t_{W})}{\partial t_{0}}=\omega\lambda^{2}e^{-\lambda t_{\mathrm{O}}}[-c_{0}+c_{W}(1-e^{-\lambda at_{W}})+c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})]$ (16)

Letting $\gamma(t0, tw)$ denote the right-hand-side of Eq.(16), we obtain

$\gamma(0,t_{W})=\omega\lambda^{2}[-c_{0}+cw(1-e^{-\lambda at_{W}})+c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})]$ . (17)

Further, let $A(tw)$ denote the right-hand-side of Eq.(17). Then conditions $A(0)>0$ and $A(tL)>0$ are
reduced to

$c_{L}(1-e^{-\lambda at_{L}})>c_{0}$ (18)

and
$c_{W}(1-e^{-\lambda at_{L}})>c_{0}$ , (19)

respectively. Since $c_{L}>cw$ from assumption (A-I), we can show that $A(0)>A(tL)$ and

$\frac{\partial A(t_{W})}{\partial t_{W}}=-(c_{L}-c_{W})\omega\lambda^{3}ae^{-\lambda at_{W}}<0.$ (20)

Hence, we have $\gamma(0, t_{W})>0.$ Since
$\lim$ $\gamma(t_{0},t_{W})=0,$ (21)

$t_{0}arrow+\infty$

we can prove that $\partial\gamma(t_{0}, \mathrm{t}\mathrm{w})/\mathrm{d}\mathrm{t}0$ $<0,$ say,

$cw(1-e^{-\lambda at_{W}})+c_{L}(e^{-\lambda at_{W}}-e^{-\lambda at_{L}})>c_{0}$ . (22)

The proof is completed. Q.E.D.

Furthermore, the following result provides the optimal planned maintenance limit which minimizes
the total expected software cost.

Theorem 2: When the software fault-detection time distribution follows the exponential distribution
with mean $1/\lambda$ , under the assumption (A-I), the optimal planned maintenance limit which minimizes the
total expected software cost is given as follows:

(1) If $k_{W}\geq(c_{L}-cw)\omega\lambda ae^{-\lambda t_{0}}$ , then the optimal policy is $t_{W}^{*}=0$ with

$C(t0,t_{W}^{*})=k_{0}t0+c0\omega(1-e^{-\lambda t_{0}})+c_{W}\omega|e^{-\lambda t_{0}}-e^{-\lambda(t\mathrm{o}+at_{L})}|$ (23)
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(2) If $k_{W}<(c_{L}-c_{W})\omega\lambda ae^{-\lambda t_{0}}$ and $k_{W}>(c_{L}-c_{\mathfrak{l}V})\omega\lambda ae_{l}^{-\lambda(t_{0}+at_{L})}$ then there exists a unique optimal
planned maintenance limit $t_{W}^{*}(0<t_{W}<t_{L})$ which minimizes the total expected software cost with

$C(t_{0}, t_{W}^{*})$ $=$ $ht\mathit{0}+c_{0}\omega(1-e^{-\lambda t_{0}})+k_{W}t_{W}^{*}+c_{W}\omega\lfloor e^{-\lambda t_{0}}-e^{-\lambda(t_{0}+at_{W}}$

. )
$\rfloor$

$ $c_{W}\omega\lceil_{e^{-\lambda a(t_{0}+t_{W}^{*})}}-e^{-\lambda a(t_{\mathrm{O}}+t_{L})\rceil}$ . (24)

(3) If $k_{W}\leq(c_{L}-c_{W})\omega\lambda ae^{-\lambda(t_{0}+at_{L}\rangle}$ , then we have $t_{W}^{*}=t_{L}$ with

$C(t_{0},t_{W}^{*})=k_{0}t_{0}+c_{0}\omega(1-e^{-\lambda t_{0}})+kwtL$ $+c_{W}\omega|e^{-\lambda t_{0}}-e^{-\lambda(}t\mathit{0}+a\mathrm{C}_{L})$

The proof of Theorem 2 is similar to that of Theorem 1, and is omitted for brevity.

Remark 3: The algorithm for finding the joint optimal policy combined by both the testing period
and the planned maintenance limit is as follows:

Algorithm

Step 1 If there exists a solution $(t_{0}, t_{w})(t_{0}\geq 0,0\leq t_{W}\leq t_{L})$ which satisfies the following first order
condition of optimality, then go to Step 2, otherwise, go to Step 3.

$\frac{\partial C(t_{0},t_{W})}{\partial t_{0}}=\frac{\partial C(t_{0},t_{W})}{\partial t_{W}}=0$ . (26)

Step 2 Define the Hessian matrix $H(t_{0}, t_{W})$ :

$H(t_{0},t_{W})= \frac{\partial^{2}C(t_{0},t_{W})}{\partial t_{0}^{2}}\frac{\partial^{2}C(t_{0},t_{W})}{\partial t_{W}^{2}}-(\frac{\partial^{2}C(t_{0},t_{W})}{\partial t_{0}\partial t_{W}})^{\overline{4}}$ (27)

If $H(t_{0}, t_{W})>0$ and $\partial^{2}C(t_{0},t_{W})/\partial t_{0}^{2}>0,$ then the solution $(t_{0}, t_{W})$ found in Step 1 is regarded
as the joint optimal policy, otherwise, go to Step 3.

Step 3 Find $t_{W}^{*}(0\leq t_{W}^{*}\leq t_{L})$ by solving $\partial C(0, t_{W})/\partial t_{W}=0.$ Let $C_{1}(t_{0}^{*}, \mathrm{t}\mathrm{w})=C(0,t_{W}^{*})$ .

Step 4 Find $t_{0}^{*}(0\leq t_{0}^{*}<\infty)$ by solving $\partial C(t_{0},0)/\partial t_{0}=0.$ Let $C_{2}(t_{0}^{*}, t_{W}^{*})=C(t_{0}^{*}, 0)$ .
Step 5 Find $t_{0}^{*}(0\leq t_{0}^{*}<\infty)$ by solving $\partial C(t_{0},t_{L})/\partial t_{0}=0.$ Let $C_{3}(t_{0}^{*},t_{W}^{*})=$ (to, $\mathrm{t}\mathrm{w}$).

Step 6 The minimum total expected software cost is $C(t_{0}^{*}, t_{W}^{*})$ $= \min C_{i}(t_{0}^{*}, t_{W}^{*})$ and the correspond-
$i=1,2,3$

ing pair $(t_{0}^{*}, t_{W}^{*})$ is the joint optimal policy.

5 Numerical Examples

Based on 86 software fault data observed in the real software testing process [13], we calculate numerically
the optimal testing period $t_{0}^{*}$ and the optimal planned maintenance limit $t_{W}^{*}$ which minimize the total
expected software cost. Further, we compute the joint optimal policy $(t_{0}^{**},t_{W}^{**})$ minimizing $C(t_{0}, t_{W})$ .
For the software fault-detection time distribution, we apply three distributions; exponential [2], gamma
of order 2 [14] and Rayleigh [15] distributions. The probability distribution functions for gamma of order
2 and Rayleigh are given by

$F(t)=1-(1+At)e$ $-\lambda t$ (28)

and
$F(t)=1- \exp\{-\frac{t^{2}}{2\theta^{2}}\}$ , (29)

respectively. For the gamma distribution in Eq.(28), the total expected software cost in Eq.(6) becomes

$C(t_{0}, t_{W})$ $=$ $\mathrm{h}\mathrm{t}0+c_{0}\omega[1-(1+\lambda t_{0})e^{-\lambda t_{0}}]$ $+kwtw$

$+cw\omega\{(1+Ato)e^{-\lambda t_{0}}-[1+\lambda(t_{0}+at_{W})]e^{-\lambda(t_{0}+at_{W})}\}$
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Figure 1: The actual software failure data and the behavior of estimated mean value functions.

$+$ CLCJ $\{[1+\lambda(t_{0}+at_{W})]e^{-\lambda(t_{0}+at_{W}\rangle}-[1+\lambda(t_{0}+at_{L})]e^{-\lambda(t_{0}+at_{L})}\}$ . (30)

For the Rayleigh distribution, it becomes

$\mathrm{C}(70, t_{W})$ $=$ $k_{0}t_{0}+c_{0} \omega[1-\exp\{-\frac{t_{0}^{2}}{2\theta^{2}}\}]+k_{W}t_{W}$

$+c_{W}\omega$

$+c_{L}\omega\{$

$[\exp\{-$ $\mathrm{z}$ $\}-\exp\{-\frac{(t_{0}+at_{W})^{2}}{2\theta^{2}}\}]$

$\exp\{-\frac{(t_{0}+at_{W})^{2}}{2\theta^{2}}\}-\exp\{-\frac{(t_{0}+at_{L})^{2}}{2\theta^{2}}\}]$
‘ (31)

Suppose that the unknown parameters in the software reliability models are estimated by the method
of maximum likelihood, when 70 fault data are obtained, namely $t=$ 67.374. Then, we have the estimates
$(\hat{\omega},\hat{\lambda})$ $=$ (98.5188, 1.84e-02) for the exponential model, $(\hat{\omega},\hat{\lambda})$ $=$ (75.1746, 6.46224e-02) for the gamma
model and $(\hat{\omega},\hat{\theta})=$ $(71.6386, 2.45108\mathrm{e}+01)$ for the Rayleigh model. Figure 1 shows the actual software
fault data and the behavior of estimated mean value functions. For the other model parameters, we
assume: kg $=0.02$, $k_{W}=0.01$ , $c_{0}=1.0$ , $c_{W}=2.0$ , $c_{L}=20.0$ and $t_{L}=$ 1000.

Ihble 1 presents the dependence of the environment factor $a$ on the optimal testing period $t_{0}^{*}$ when
$t_{W}=50.$ As the environment factor monotonically increases, $i.e.$ , the operational circumstance tends to
be severe, it is observed that the optimal testing period $t$; and its associated minimum total expected
software cost $C(t_{0}^{*}, 50)$ decrease for both exponential and gamma models. For the Rayleigh model, it
is observed that the optimal testing period is hardly influenced by varying environment factor. This is
because the goodness of-fit of the Rayleigh model is quite low.

Table 2 shows the dependence of the environment factor $a$ on the optimal planned maintenance limit
$t\mathrm{i}$ in case of $t_{0}=70.$ It is found that the optimal planned maintenance limit $t_{W}^{*}$ and the correspond-
ing minimum total expected software cost $C(70, t_{W}^{*})$ decrease as the environment factor monotonically
increases. This tendency can be explained as follows: The residual faults in software are detected and
removed at the early stage in the operational phase as the operational environment becomes more severe.
Then, the possibility that the software failure occurs in the latter stage of the operational phase becomes
small. Hence, the implication in which the software developer keeps the maintenance team becomes
smaller toward the end of the life cycle.

Table 3 examines the dependence of the environment factor $a$ on the joint optimal policy $(t_{0}^{*},t_{W}^{*})$

combined by testing period and planned maintenance limit. Figure 2 illustrates the behavior of the
expected cost for the exponential model when $a=$ 2.00. It is observed ffom Table 3 that the optimal
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Table 1: Optimal testing period for varying environment factor.

Exponelltial Gamma $\mathrm{R}^{1}$,ayleigh
$a$ $t_{0}^{*}$ $C(t_{0}^{*}, 50)$ $t_{0}^{*}$ $-C\overline{(}^{-}t_{0}^{*}$ , $5\overline{0})^{-}$ $t_{0}^{*}$ $\overline{C(t}_{0}^{*}-$, 50)

0.50 381.6 107.7 145.1 78.9 88.8 74.0
0.75 370.2 107.5 135.8 $78.7^{-}$ 86.9 74.0
1.00 359.1 107.3 128.4 78.6- 86.7 74.0
1.25 348.3 107. 1 123.1 78.5 86.6 74.0
1.50 337.9 106.9 119.9 78.4 86.6 74.0
2.00 318.3 106.5 117.1 86.6 74.0
3.00 286.3 105.8 116.2 78.4 86.6 74.0

Table 2: Optimal planned maintenance limit for varying environment factor.

$\overline{\mathrm{E}}\mathrm{x}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$ Gamma $\mathrm{R}_{-}*\cdot$
$\mathrm{a}^{1}\mathrm{y}1\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}$

$a$ $t_{W}^{*}$ $C(70, t_{W}^{*})$ $t_{W}^{*}$ $C(70, t_{W}^{*})$ $t_{W}^{*}$ $C(70, t_{W}^{*})$

0.50 664.0- 134.8 193.0 83.3 111.9 82.8
0.75 472.1 132.5 137.9 $8_{-}2.7$ 77.8 82.4
1.00 369.7 131.3 108.3 82.4 60.0 82.2
1.25 305.5 130.6 89.6 $82.\overline{1}^{-}$ $\overline{4}9.0$

1.50 261.2 130.1 76.8 82.0 41.5 82.0
2.00 203.7 129.4 60.0 81.8 32.0 81.9
3.00 143.4 128.7 42.3 81.6 22.0 81.8

testing period $t_{0}^{*}$ decreases as the environment factor monotonically increases, but, the monotonicity
of the optimal planned maintenance limit $t_{W}^{*}$ is not observed. It is also seen that the minimum total
expected software cost $C(t_{0}^{*}, t_{W}^{*})$ decreases as the environment factor monotonically increases.

Tables 4, 5 and 6 present the dependence of the software reliability model parameter A or $\theta$ on the
joint optimal policy $(t_{0}^{*}, t_{W}^{*})$ . Except for A $=$ 0.0055 in the gamma model, it is observed that the optimal
testing time, optimal planned maintenance limit and its associated minimum total expected software cost
decrease as the fault detection becomes easier.

6 Concluding Remarks
In this paper, we have assumed that the software developer was responsible to the maintenance service
for all the software failures that occur during the software life cycle under the maintenance contract. In
order to carry out the maintenance service in the operational phase, the software developer has to keep
a software maintenance team. At the same time, the management cost in the operational phase has to
be reduced as much as possible, but human resources should be utilized effectively. We have called the
time length to complete the operational maintenance after the release the planned maintenance limit,
and have controlled it in terms of cost-benefit analysis. We have developed the model which considers
the difference in the software execution environment during testing and operational phases using the
same method as the reliability assessment modeling in the operational phase proposed by Okamura et
$cd$. [12]. Based on NHPP we have formulated the total expected software cost incurred to the software
developer until the end of software life cycle. The optimal testing period (release time) and optimal
planned maintenance limit which minimize the total expected software cost have been derived. Then,
throughout the numerical examples, we have discussed the joint optimal policy combined by testing
period and planned maintenance limit.
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Table 3: Joint optimal policy for varying environment factor.

Exponential Gamma Rayleigh
a $0**$ $t_{1}^{**}$ $C(\mathrm{o}t_{W}^{**}**,)$ $0**$ ; $C(t_{0}^{**}t_{W}^{**})-,-$ $t_{0}^{**}$ $t_{W}^{**}$ $C(t_{0}^{*},t^{**})$

$0.50$ 405.0 0.0 107.7 167.4 0.0 78.9 106.3 0.0 73.9
0.75 304.6 159.2 107.3 13 .6 50.4 78.7 94.5 18.4 73.8
1.00 282.6 157.1 -106.8 128.5 49.8 78.6 91.7 18.3 73.8
1.25 272.7 143.3 106.5 125.2 45. 78. 90.4 16.7 73.7
1.50 267.0 129.8 106.2 123.4 41.2 78.4 89. 15.1 73.7
2.00 260.6 108.4 105.9 121.3 34.3 78.3 88.8 12.6 73.7
3.00 254.9 81.5 105. 119.4 25.8 78.2 88.0 9.4 73.6

Figure 2: Behavior of the total expected software cost when $a=$ 2.00.

Table 4: Joint optimal policy for varying exponential software reliability model parameter A.

$\mathrm{E}\mathrm{x}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\underline{\mathrm{t}}\mathrm{i}\mathrm{a}\mathrm{l}$

$\lambda$

$t_{0}^{**}$ $t_{W}^{**}$ $C(t_{0}^{**}, t^{**})$

0.005 735.1 533.6 -122.6
0.010 440.8 263.7 112.0-
0.015 320.9 175.8 108.0
0.020 255.1 131.8 106.0
$0^{-}.025$ 213.0 $\overline{1}05.5$ 104.6
0.030 183.6 87.9 103.7
0.035 $16\overline{1}.7$ 75.3 103.1
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Table 5: Joint optimal policy for varying gamma software reliability model parameter A.

Gamma
$\lambda$

$t_{0}^{**}$ $t_{W}^{**}$ $C(t_{0}^{**}, t_{W}^{**})$

0.0055 824.6 1000.0 106.1
0.0060 876.6 516.7 101.7
0.0065 826.6 474.0 100.0
$0^{-}.0070$ 781.7 438.3 98.5
0.0075 741.5 407.9 97.2
0.0080 705.3 381.5 96.0-
0.0085 672.6 358.4 94.9

Table 6: Joint optimal policy for varying Rayleigh software reliability model parameter $\theta$ .
$\mathrm{R}\mathrm{a}\mathrm{y}\overline{\mathrm{l}}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}$

$\theta$
$t_{0}^{**}$ $t_{W}^{**}$ $C(t_{0}^{**}, t^{**})$

22.5 83.5 15.2 73.6
23.0 85.2 15.6 73.6
23.5 87.0 16.0 73.7
24.0 88.7 16.3 73.7
24.5 90.4 16.7 73.7
25.0 92.1 17.1 -73.8
25.5 93.7 17.4 73.8
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