Title	On the A bhy ankar＇s question for affine plane curves with one place at infinity（Feasibility of Theoretical A rguments of Mathematical A naly sis on Computer）
Author（s）	Fujimoto，Mitsushi；Suzuki，M asakazu；Y okoyama，Kazuhiro
Citation	数理解析研究所講究録（2004），1381：42－50
Issue Date	$2004-06$
URL	http：／hdl．handle．net／2433／25675
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

On the Abhyankar＇s question for affine plane curves with one place at infinity

\author{
Mitsushi FUJIMOTO
 Department of Information Education
 Fukuoka University of Education
 fujimoto＠fukuoka－edu．ac．jp
 Masakazu SUZUKI and Kazuhiro YOKOYAMA
 Faculty of Mathematics
 Kyushu University
 \｛suzuki，yokoyama\}@math.kyushu-u.ac.jp

}

1 Introduction

Let C be an irreducible algebraic curve in complex affine plane \mathbb{C}^{2} ．We say that C has one place at infinity，if the closure of C intersects with the ∞－line in \mathbb{P}^{2} at only one point P and C is locally irreducible at that point P ．

The problem of finding the canonical models of curves with one place at infinity under the polynomial transformations of the coordinates of \mathbb{C}^{2} has been studied by many mathematicians since Suzuki［10］and Abhyankar－－Moh ［2］proved independently that the canonical model of C is a line when C is non－singular and simply connected．

Sathaye［8］introduce the Abhyankar＇s question for curves with one place at infinity and Sathaye－Stenerson［9］suggested a candidate of counter exam－ ple for this question．However，they could not give the answer to the question since the root computation for a huge polynomial system was required．

We found a counter example for the Abhyankar＇s question using computer algebra system．In this report，we give the details．

2 Preliminaries

Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y)=0$ in the complex affine plane \mathbb{C}^{2}. Assume that $\operatorname{deg}_{x} f=m$, $\operatorname{deg}_{y} f=n$ and $d=\operatorname{gcd}(m, n)$. The dual graph corresponding to the minimal resolution of the singularity of C at infinity is the following [11]:

Definition 1 (δ-sequence) Let f be the defining polynomial of a curve C with one place at infinity. Let $\delta_{k}(0 \leq k \leq h)$ be the order of the pole of f on $E_{j_{k}}$ in the above dual graph. We shall call the sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ the δ-sequence of C (or of f).

We have the following fact since $\operatorname{deg}_{x} f=m$ and $\operatorname{deg}_{y} f=n$.
Fact $1 \delta_{0}=n, \delta_{1}=m$
We set L_{k} for each $k(1 \leq k \leq h)$ like the following figure:

Definition $2\left((p, q)\right.$-sequence) Now, we assume that the weights of L_{k} is of the following form:

We define the natural numbers $p_{k}, a_{k}, q_{k}, b_{k}$ satisfying

$$
\left(p_{k}, a_{k}\right)=1,\left(q_{k}, b_{k}\right)=1,0<a_{k}<p_{k}, 0<b_{k}<q_{k}
$$

$$
\frac{p_{k}}{a_{k}}=m_{1}-\frac{1}{m_{2}-\frac{1}{m_{3}-\cdot \ddots-\frac{1}{m_{r}}}} \quad \text { and } \quad \frac{q_{k}}{b_{k}}=n_{1}-\frac{1}{n_{2}-\frac{1}{n_{3}-\cdot \ddots-\frac{1}{n_{s}}} ~ . ~}
$$

We shall call the sequence $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{h}, q_{h}\right)\right\}$ the (p, q)-sequence of C (or of f).

There are the following Abhyankar-Moh's semigroup theorem and its converse theorem by Sathaye-Stenerson as results for δ-sequence. We set $\mathbb{N}=\{n \in \mathbb{Z} \mid n \geq 0\}$ and $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.

Theorem 1 (Abhyankar-Moh $[1,3,4])$ Let C be an affine plane curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of C and $\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{h}, q_{h}\right)\right\}$ be the (p, q)-sequence of C. We set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots\right.$, $\left.\delta_{k-1}\right\}(1 \leq k \leq h+1)$. We have then,
(i) $q_{k}=d_{k} / d_{k+1}, d_{h+1}=1(1 \leq k \leq h)$,
(ii) $d_{k+1} p_{k}=\left\{\begin{array}{ll}\delta_{1} & (k=1) \\ q_{k-1} \delta_{k-1}-\delta_{k} & (2 \leq k \leq h)\end{array}\right.$,
(iii) $q_{k} \delta_{k} \in \mathbb{N} \delta_{0}+\mathbb{N} \delta_{1}+\cdots+\mathbb{N} \delta_{k-1}(1 \leq k \leq h)$.

Theorem 2 (Sathaye-Stenerson [9]) Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be the sequence of $h+1$ natural numbers. We set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq$ $k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$. Furthermore, suppose that the following conditions are satisfied :
(1) $\delta_{0}<\delta_{1}$,
(2) $q_{k} \geq 2(1 \leq k \leq h)$,
(3) $d_{h+1}=1$,
(4) $\delta_{k}<q_{k-1} \delta_{k-1}(2 \leq k \leq h)$,
(5) $q_{k} \delta_{k} \in \mathbb{N} \delta_{0}+\mathbb{N} \delta_{1}+\cdots+\mathbb{N} \delta_{k-1}(1 \leq k \leq h)$.

Then, there exists a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$.

Suzuki [11] gave an algebrico-geometric proof of the above two theorem by the consideration of the resolution graph at infinity. Further, Suzuki gave an algorithm for mutual conversion of a dual graph and a δ-sequence.

3 Construction of defining polynomials of curves

We shall assume that $f(x, y)$ is monic in y. We define approximate roots by Abhyankar's definition.

Definition 3 (approximate roots) Let $f(x, y)$ be the defining polynomial, monic in y, of a curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of f. We set $n=\operatorname{deg}_{y} f, d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ and $n_{k}=n / d_{k}(1 \leq k \leq h+1)$. Then, for each $k(1 \leq k \leq h+1)$, a pair of polynomials $\left(g_{k}(x, y), \psi_{k}(x, y)\right)$ satisfying the following conditions is uniquely determined:
(i) g_{k} is monic in y and $\operatorname{deg}_{y} g_{k}=n_{k}$,
(ii) $\operatorname{deg}_{y} \psi_{k}<n-n_{k}$,
(iii) $f=g_{k}^{d_{k}}+\psi_{k}$.

We call this g_{k} the k-th approximate root of f.
We can easily get the following fact from the definition of approximate roots.

Fact 2 We have

$$
g_{1}=y+\sum_{j=0}^{\lfloor p / q\rfloor} c_{k} x^{k}, \quad g_{h+1}=f
$$

where $c_{k} \in \mathbb{C}, p=\operatorname{deg}_{x} f / d, q=\operatorname{deg}_{y} f / d, d=\operatorname{gcd}\left\{\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right\}$ and $\lfloor p / q\rfloor$ is the maximal integer ℓ such that $\ell \leq p / q$.

Definition 4 (Abhyankar-Moh's condition) We shall call the conditions (1) - (5) concerning $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ in Theorem 2 Abhyankar-Moh's condition.

The following theorem gives normal forms of defining polynomials of curves with one place at infinity and the method of construction of their defining polynomials.

Theorem 3 ([5]) Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition (see Definition 4). Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$.
(1) We define $g_{k}(0 \leq k \leq h+1)$ as follows:
where ($\bar{\alpha}_{0}, \bar{\alpha}_{1}, \cdots, \bar{\alpha}_{i-1}$) is the sequence of i non-negative integers satisfying

$$
\sum_{j=0}^{i-1} \bar{\alpha}_{j} \delta_{j}=q_{i} \delta_{i}, \bar{\alpha}_{j}<q_{j}(0<j<i)
$$

and
$\Lambda_{i}=\left\{\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{i}\right) \in \mathbb{N}^{i+1} \mid \alpha_{j}<q_{j}(0<j<i), \alpha_{i}<q_{i}-1, \sum_{j=0}^{i} \alpha_{j} \delta_{j}<q_{i} \delta_{i}\right\}$.
Then, $g_{0}, g_{1}, \ldots, g_{h}$ are approximate roots of $f\left(=g_{h+1}\right)$, and f is the defining polynomial, monic in y, of a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$.
(2) The defining polynomial f, monic in y, of a curve with one place at infinity of the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is obtained by the procedure of (1), and the values of parameters $\left\{a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{i-1}}\right\}_{1 \leq i \leq h}$ and $\left\{c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}}\right\}_{0_{0 i} \leq h}$ are uniquely determined for f.

4 Abhyankar's Question

Definition 5 (planar semigroup) Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition. A semigroup generated by $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is said to be a planar semigroup.

Definition 6 (polynomial curve) Let C be an algebraic curve defined by $f(x, y)=0$, where $f(x, y)$ is an irreducible polynomial in $\mathbb{C}[x, y]$. We call C a polynomial curve, if C has a parametrisation $x=x(t), y=y(t)$, where $x(t)$ and $y(t)$ are polynomials in $\mathbb{C}[t]$.

Abhyankar's Question: Let Ω be a planar semigroup. Is there a polynomial curve with δ-sequence generating Ω ?

Moh [6] showed that there is no polynomial curve with δ-sequence $\{6,8,3\}$. But there is a polynomial curve $(x, y)=\left(t^{3}, t^{8}\right)$ with δ-sequence $\{3,8\}$ which generates the same semigroup as above. Sathaye-Stenerson [9] proved that the semigroup generated by $\{6,22,17\}$ has no other δ-sequence generating the same semigroup, and proposed the following conjecture for this question.

Sathaye-Stenerson's Conjecture: There is no polynomial curve having the δ-sequence $\{6,22,17\}$.

By Theorem 3, the defining polynomial of the curve with one place at infinity of the δ-sequence $\{6,22,17\}$ as follows:

$$
\begin{aligned}
f= & \left(g_{2}^{2}+a_{2,1} x^{2} g_{1}\right)+c_{5,0,0} x^{5}+c_{4,0,0} x^{4}+c_{3,0,0} x^{3}+c_{2,0,0} x^{2} \\
& +c_{1,1,0} x g_{1}+c_{1,0,0} x+c_{0,1,0} g_{1}+c_{0,0,0}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{1}= & y+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}, \\
g_{2}= & \left(g_{1}^{3}+a_{11} x^{11}\right)+c_{10,0} x^{10}+c_{9,0} x^{9}+c_{8,0} x^{8}+\left(c_{7,1} g_{1}+c_{7,0}\right) x^{7} \\
& +\left(c_{6,1} g_{1}+c_{6,0}\right) x^{6}+\left(c_{5,1} g_{1}+c_{5,0}\right) x^{5}+\left(c_{4,1} g_{1}+c_{4,0}\right) x^{4} \\
& +\left(c_{3,1} g_{1}+c_{3,0}\right) x^{3}+\left(c_{2,1} g_{1}+c_{2,0}\right) x^{2}+\left(c_{1,1} g_{1}+c_{1,0}\right) x+c_{0,1} g_{1}+c_{0,0}
\end{aligned}
$$

Since C has one place at infinity and genus zero if and only if C has polynomial parametrization (Abhyankar), $\{6,22,17\}$ is a counter example if it can be shown that the above type curve does not include a polynomial curve.

5 Approach by using a computer algebra system

We assume that C is a polynomial curve and has the δ-sequence $\{6,22,17\}$. Therefore C has the following polynomial parametrization:

$$
\left\{\begin{array}{l}
x=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+a_{4} t^{2}+a_{5} t+a_{6} \\
y=t^{22}+b_{1} t^{21}+b_{2} t^{20}+b_{3} t^{9}+\cdots+b_{21} t+b_{22}
\end{array}\right.
$$

It follows that $\operatorname{deg}_{t} g_{2}(x(t), y(t))=17$ from the form of f and g_{2} in the previous section. We can get the polynomial system I with 11 variables and 17 polynomials after eliminating variables from the coefficients of all terms of t-degree more than 18 in $g_{2}(x(t), y(t))$.
$\{6,22,17\}$ is a counter example of Abhyankar's question if I does not have a root. For such a huge polynomial system it is suitable to compute the Gröbner basis of the ideal. However, it was impossible to compute the Gröbner basis of I even if using a computer with 8GB memory.

We classified δ-sequences with genus ≤ 50 into groups which generate the same semigroup. Furthermore, we listed δ-sequences with the following three properties: (i) There is no other δ-sequence which generates the same semigroup. (ii) The number of generators is 3 . (iii) k-number ≥-1. Then, we obtained $\{6,15,4\},\{4,14,9\},\{6,15,7\},\{6,21,4\}, \cdots$. The Gröbner basis computations for the polynomial systems corresponding to these δ-sequences showed that $\{6,21,4\}$ was a counter example of Abhyankar's question.

The defining polynomial of the curve with one place at infinity of the δ-sequence $\{6,21,4\}$ as follows:

$$
f=g_{2}^{3}+a_{2,0} x^{2}+c_{1,0,1} x g_{2}+c_{1,0,0} x+c_{0,0,1} g_{2}+c_{0,0,0}
$$

where

$$
\begin{aligned}
g_{2}= & g_{1}^{2}+a_{7} x^{7}+c_{6,0} x^{6}+c_{5,0} x^{5}+c_{4,0} x^{4}+c_{3,0} x^{3} \\
& +c_{2,0} x^{2}+c_{1,0} x+c_{0,0} \\
g_{1}= & y+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
\end{aligned}
$$

Let the following be the polynomial parametrization of the polynomial curve with δ-sequence $\{6,21,4\}$:

$$
\left\{\begin{array}{l}
x=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+a_{4} t^{2}+a_{5} t+a_{6} \\
y=t^{21}+b_{1} t^{20}+b_{2} t^{19}+b_{3} t^{18}+\cdots+b_{20} t+b_{21}
\end{array}\right.
$$

By the same operation as the case of $\{6,22,17\}$ we can get the polynomial system J with 7 variables $\left\{a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{12}, b_{18}\right\}$ and 13 polynomials from $\operatorname{deg}_{t} g_{2}(x(t), y(t))=4$.

We used the total degree reverse lexicographic ordering (DRL) with $a_{2} \succ$ $a_{3} \succ a_{4} \succ a_{5} \succ a_{6} \succ b_{12} \succ b_{18}$ to the Gröbner basis computation. CPU time for the computation is 3 hours 40 minutes and the required memory is 850 MB . The computer is a PC AthlonMP $2200+$ with 4 GB memory. The computer algebra system is Risa/Asir [7] on FreeBSD 4.7.

The obtained Gröbner basis G of J was not $\{1\}$. However, the normal form of the coefficient p of the term with t-degree $=4$ in $g_{2}(x(t), y(t))$ with respect to G is 0 . This shows that $p \in J$. Thus, we get $\operatorname{deg}_{t} g_{2}(x(t), y(t))<4$. Since this is contradictory for $\operatorname{deg}_{t} g_{2}(x(t), y(t))=4$, there is no polynomial curve with δ-sequence $\{6,21,4\}$.

References

[1] S.S. Abhyankar and T.T. Moh: Newton-Puiseux expansion and generalized Tschirnhausen transformation I, II, J. Reine Angew. Math., 260 (1973), 47-83; 261 (1973), 29-54.
[2] S.S. Abhyankar and T.T. Moh: Embeddings of the line in the plane, J. Reine Angew. Math., 276 (1975), 148-166.
[3] S.S. Abhyankar: Lectures on expansion techniques in algebraic geometry (Notes by B.Singh), Tata Institute of Fundamental Research Lectures on Mathematics and Physics 57, Tata Institute of Fundamental Research, Bombay, 1977.
[4] S.S. Abhyankar and T.T. Moh: On the semigroup of a meromorphic curve, Proc. Int. Symp. Algebraic Geometry Kyoto 1977, 249-414, Kinokuniya Book-Store Co., Ltd., 1978.
[5] M. Fujimoto and M. Suzuki: Construction of affine plane curves with one place at infinity, Osaka J. Math., 39 (2002), 1005-1027.
[6] T.T. Moh: On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math., 340 (1983), 140-212.
[7] M. Noro, et al.: A computer algebra system Risa/Asir, http://www.math.kobe-u.ac.jp/Asir/asir.html.
[8] A. Sathaye: On planar curves, Amer. J. Math., 99 (1977), 1105-1135.
[9] A. Sathaye and J. Stenerson: Plane polynomial curves, Algebraic Geometry and its Applications (C.L. Bajaj, ed.), 121-142, Springer-Verlag, New York-Berlin-Heidelberg, 1994.
[10] M. Suzuki: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^{2}, J. Math. Soc. Japan, (2)26 (1974), 241-257.
[11] M. Suzuki: Affine plane curves with one place at infinity, Annales Inst. Fourier, 49 (1999), 375-404.

