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Faculty of Mathematics
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{suzuki, yokoyama}@math. kyushu-u. ac.jp

1Introduction
Let $C$ be an irreducible algebraic curve in complex affine plane $\mathbb{C}^{2}$ . We say
that $C$ has one place at infinity, if the closure of $C$ intersects with the o0-line
in $\mathrm{P}^{2}$ at only one point $P$ and $C$ is locally irreducible at that point $P$ .

The problem of finding the canonical models of curves with one place at
infinity under the polynomial transformations of the coordinates of $\mathbb{C}^{2}$ has
been studied by many mathematicians since Suzuki [10] and Abhyankar-Moh
[2] proved independently that the canonical model of $C$ is aline when $C$ is
non-singular and simply connected.

Sathaye [8] introduce the Abhyankar’s question for curves with one place
at infinity and Sathaye-Stenerson [9] suggested acandidate of counter exam-
ple for this question. However, they could not give the answer to the question
since the root computation for ahuge polynomial system was required.

We found acounter example for the Abhyankar’s question using computer
algebra system. In this report, we give the details
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2 $\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}|\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}$

Let $C$ be a curve with one place at infinity defined by a polynomial equa-
tion $f(x, y)=0$ in the complex affine plane $\mathbb{C}^{2}$ . Assume that $\deg f=m$ ,
$\deg f=n$ and $d=\mathrm{g}\mathrm{c}\mathrm{d}(m, n)$ . The dual graph corresponding to the minimal
resolution of the singularity of $C$ at infinity is the following [11]:

$E_{j_{1}}$ $E_{j_{2}}$ $E_{j_{h}}$

DEFINITION 1 ( $\delta$-sequence) Let $f$ be the defining polynomial of a curve
$C$ with one place at infinity. Let $\delta_{k}$ $(0\leq k \leq h)$ be the order of the pole of
$f$ on $E_{j_{k}}$ in the above dual graph. We shall call the sequence $\{\delta_{0}, \delta_{1}, . , \delta_{h}\}$

the $\delta$ -sequence of $C$ (or of $f$).

We have the following fact since degx $f=m$ and $\deg f=n$ .

Fact 1 $\delta_{0}=n$ , $\delta_{1}=m$

We set $L_{k}$ for each $k$ $(1\leq k \leq h)$ like the following figure:

$E_{j_{1}}$ $E_{j_{2}}$ $E_{j_{h}}$

DEFINITION 2 $((p, q)$-sequence) Now, we assume that the weights of $L_{k}$

is of the following form
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$E_{j_{k}}$

We define the natural numbers $p_{k}$ , $a_{k}$ , $q_{k}$ , $b_{k}$ satisf $ing$

$(p_{k}, a_{k})=1$ , $(q_{k}, b_{k})=1,0<a_{k}<p_{k}$ , $0<b_{k}<q_{k}$ ,

$\frac{p_{k}}{a_{k}}=m_{1}-$

1
1

$m_{2}-$

and $\frac{q_{k}}{b_{k}}=n_{1}-$

1
–.

1

$n_{2}-$

$m_{3}-$ $n_{3}-$.
1

$- \frac{1}{m_{r}}$

..
$- \frac{1}{n_{s}}$

We shall call the sequence $\{(p_{1}, q_{1}), (p_{2}, q_{2}), ‘ , (p_{h}, q_{h})\}$ the $(p, q)$ sequence
of $C$ (or of $f$).

There are the following Abhyankar-Moh’s semigroup theorem and its
converse theorem by Sathaye-Stenerson as results for $\delta$-sequence. We set
$\mathrm{N}=\{n\in \mathbb{Z}|n\geq 0\}$ and $\mathbb{C}^{*}=\mathbb{C}\backslash \{0\}$ .

Theorem 1 (Abhyankar-Moh [1, 3, 4]) Let $C$ be an affine plane
curve with one place at infinity. Let $\{\delta_{0}, \delta_{1}, \mathrm{r} , \delta_{h}\}$ be the $\delta$ sequence of $C$ and
{$\mathrm{p}\mathrm{h},$ $q_{1})$ , , $\{\mathrm{p}\mathrm{h}, q_{h})\}$ be the $(p, q)$ sequence ofC. We set $d_{k}=\mathrm{g}\mathrm{c}\mathrm{d}\{\delta_{0}$ , $\delta_{1}$ , ,

$\delta_{k-1}\}$ $(1\leq k \leq h+1)$ . We have then,
(i) $q_{k}=d_{k}/d_{k+1}$ , $d_{h+1}=1(1\leq k \leq h)$ ,

(ii) $d_{k+1}p_{k}=\{\begin{array}{l}\delta_{1}(k=\mathrm{l})q_{k-1}\delta_{k-1}-\delta_{k}(2\leq k\leq h)\end{array}$

(iii) $q_{k}\delta_{k}\in \mathrm{N}\delta_{0}+\mathrm{N}\delta_{1}+3$ $\cdot+\mathrm{N}\delta_{k-1}(1\leq k \leq h)$

Theorem 2 (Sathaye-Stenerson [9]) Let $\{\delta_{0}, \delta_{1}, \mathrm{c} , \delta_{h}\}(h\geq 1)$ be
the sequence of $h+1$ natural numbers. We set $d_{k}=\mathrm{g}\mathrm{c}\mathrm{d}\{\delta_{0}, \delta_{1}, , \delta_{k-1}\}(1\leq$

$k\leq h+1)$ and $q_{k}=d_{k}/d_{k+1}(1\leq k\leq h)$ . Furthermore, suppose that the
following conditions are satisfied :
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(1) $\delta_{0}<\delta_{1}$ ,
(2) $q_{k}\geq 2(1\leq k\leq h)$ ,
(3) $d_{h+1}=1_{f}$

(4) $\delta_{k}<q_{k-1}\delta_{k-1}(2\leq k \leq h)$ ,
(5) $q_{k}\delta_{k}\in \mathrm{N}\delta_{0}+\mathrm{N}\delta_{1}+)$ . $+\mathrm{N}\delta_{k-1}$ (I $\leq k$ $\leq h$).

Then, there exists a curve with one place at infinity of the $\delta$-sequence
$\{\delta_{0}, \delta_{1}, , \delta_{h}\}$ .

Suzuki [11] gave an algebric0-geometric proof of the above two theorem
by the consideration of the resolution graph at infinity. Further, Suzuki gave
an algorithm for mutual conversion of a dual graph and a $\delta$-sequence.

3 Construction of defining polynomials of curves
We shall assume that $f(x, y)$ is monic in $y$ . We define approximate roots by
Abhyankar’s definition.

DEFINITION 3 (approximate roots) Let $f(x, y)$ be the defining polynO-
mial, monic in $y$ , of a curve with one place at infinity. Let $\{\delta_{0}, \delta_{1}, . \mathrm{t} , \delta_{h}\}$

be the $\delta$ -sequence of $f_{\mathrm{r}}$ We set $n$ $=\deg f$ , $d_{k}=\mathrm{g}\mathrm{c}\mathrm{d}\{\delta_{0}, \delta_{1}, , \delta_{k-1}\}$ and
$n_{k}=n/d_{k}$ $(1\leq k \leq h+1)$ . Then, for each $k$ $(1\leq k\leq h+1)$ , a pair of
polynomials $(g_{k}(x, y)$ , $\psi_{k}(x, y))$ satisfying the following conditions is uniquely
determined:

(i) $g_{k}$ is monic in $y$ and $\deg g_{k}=n_{k}$ ,
(ii) $\deg\psi_{k}<n-n_{k}$ ,
(iii) $f=g_{k}^{d_{k}}+\psi_{k}$ .

We call this $g_{k}$ the $k$ -th approximate root of $f$ .

We can easily get the following fact from the definition of approximate
roots.

Fact 2 We have

$g_{1}=y+ \sum_{j=0}^{\mathrm{b}/q\rfloor}c_{k}x^{k}$, $g_{h+1}=f$

where $c_{k}\in \mathbb{C}$ , $p=\deg f/d$ , $q=\deg f/d$ , $d=\mathrm{g}\mathrm{c}\mathrm{d}\{\deg f, \deg f\}$ and
$\mathrm{k}/q\rfloor$ is the maximal integer $p$ such that $\ell\leq p/q$ .
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DEFINITION 4 (Abhyankar-Moh’s condition) We shall call the conditions
$(1)-(5)$ conceming $\{\delta_{0}, \delta_{1}, , \delta_{h}\}$ in Theorem 2 Abhyankar-Moh ’s condi-
tion.

The following theorem gives normal forms of defining polynomials of
curves with one place at infinity and the method of construction of their
defining polynomials.

Theorem 3 ([5]) Let $\{\delta_{0}, \delta_{1}, . , \delta_{h}\}(h\geq 1)$ be a sequence of natu-
ral numbers satisfy$ing$ $Abhyankar- Moh’s$ condition (see DEFINITION $\mathrm{A}$). Set
$d_{k}=\mathrm{g}\mathrm{c}\mathrm{d}\{\delta_{0}, \delta_{1}, . , \delta_{k-1}\}(1\leq k\leq h+1)$ and $q_{k}=d_{k}/d_{k+1}(1\leq k --<_{\backslash }’h)$ .
(1) We define $g_{k}(0\leq k \leq h+1)$ as follows:

$\{\begin{array}{l}g_{0}=xg_{1}=y+\sum_{j=0}^{\mathrm{b}/q\rfloor}c_{j}x^{j},c_{j}\in \mathbb{C},p=\delta_{1}/d_{2},q=\delta_{0}/d_{2}g_{i+1}=g_{i}^{qi}+a_{\overline{\alpha}\mathrm{o}\overline{\alpha}_{1}\cdots\overline{\alpha}_{*-1}}g_{0^{0}}^{\overline{\alpha}}g_{1}^{\overline{\alpha}_{1}}g_{i-1}^{\overline{\alpha}.-1}+\Sigma c_{\alpha_{0}\alpha_{1}\cdots\alpha_{i}}g_{0^{0}}^{\alpha}g_{1}^{\alpha_{1}}(\alpha_{0},\alpha_{1},\cdots,\alpha_{i})\in\Lambda_{i}.g_{i}^{\alpha}a_{\overline{\alpha}\mathrm{o}\overline{\alpha}_{1}\cdots\overline{\alpha}\dot{.}-1}\in \mathbb{C}^{*},c_{\alpha \mathrm{o}\alpha_{1}\cdots\alpha_{i}}\in \mathbb{C}(\mathrm{l}\leq i\leq h)\end{array}$

where $(\overline{\alpha}_{0},\overline{\alpha}_{1}, ,\overline{\alpha}_{i-1})$ is the sequence of $i$ non-negative integers satisf $ing$

$\sum_{j=0}^{i-1}\overline{\alpha}_{j}\delta_{j}=q_{i}\delta_{i},\overline{\alpha}_{j}<q_{j}(0<j<i)$

and

$\Lambda_{i}=\{$ $(\alpha_{0}, \alpha_{1}, , \alpha_{i})\in \mathrm{N}^{i+1}$ $\alpha_{j}<q_{j}(0<j<i)$ , $\alpha_{i}<q_{i}-1$ , $\sum_{j=0}^{i}\alpha_{j}\delta_{j}<q_{i}\delta_{i}\}$

Then, $g_{0}$ , $g_{1}$ , , $g_{h}$ are approximate roots of $f(=g_{h+1})_{f}$ and $f$ is the
defining polynomial, monic in $y$ , of a curve with one place at infinity of the

$\delta$ sequence $\{\delta_{0}, \delta_{1}, , \delta_{h}\}$ .
(2) The defining polynomial $f$ , monic in $y$ , of a curve with one place at $\inf fin-$

$ity$ of the $\delta$ sequence $\{\delta_{0}, \delta_{1}, . , \delta_{h}\}$ is obtained by the procedure of (1), and
the values of parameters $\{a_{\overline{\alpha}0\overline{\alpha}_{1}\cdots\overline{\alpha}_{i-1}}\}_{1\leq i\leq h}$ and $\{c_{\alpha 0\alpha_{1}\cdots\alpha}\dot{.}\}_{0\leq:\leq h}$ ore uniquely
determined for $f$ .
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4 Abhyankar’s Question

DEFINITION 5 (planar semigroup) Let $\{\delta_{0}, \delta_{1}, , \delta_{h}\}(h\geq 1)$ be a se-
quence of natural numbers satisfy$ing$ Abhyankar-Moh $fs$ condition. A semi-
group generated by $\{\delta_{0}, \delta_{1}, , \delta_{h}\}$ is said to be a planar semigroup.

DEFINITION 6 (polynomial curve) Let $C$ be an algebraic curve defined
by $f(x, y)=0$ , where $f(x, y)$ is an irreducible polynomial in $\mathbb{C}[x, y]$ . We call
$C$ a polynomial curve, if $C$ has a parametrisation $x=x(t)$ , $y=y(t)$ , where
$x(t)$ and $y(t)$ are polynomials in $\mathbb{C}[t]$ .

Abhyankar’s Question: Let $\Omega$ be a planar semigroup. Is there a polyn0-
mial curve with $\delta$-sequence generating $\Omega$ ?

Moh [6] showed that there is no polynomial curve with $\delta$ sequence {6, 8, 3}.
But there is a polynomial curve $(x, y)=(t^{3}, t^{8})$ with $\delta$ sequence {3, 8} which
generates the same semigroup as above. Sathaye-Stenerson [9] proved that
the semigroup generated by {6, 22, 17} has no other $\delta$-sequence generating
the same semigroup, and proposed the following conjecture for this question.

Sathaye-Stenerson’s Conjecture: There is no polynomial curve having
the $\delta$ sequence {6, 22, 17}.

By Theorem 3, the defining polynomial of the curve with one place at
infinity of the $\delta$ sequence {6, 22, 17} as follows:

$f$ $=$ $(g_{2}^{2}+a_{2,1}x^{2}g_{1})+c_{5,0,0}x^{5}+c_{4,0,0}x^{4}+c_{3,0,0}x^{3}+c_{2,0,0}x^{2}$

$+c_{1,1,0}xg_{1}+c_{1,0,0}x+c_{0,1,0}g_{1}+c_{0,0,0}$

where

$g_{1}$ $=$ $y+c_{3}x^{3}+c_{2}x^{2}+c_{1}x+c_{0}$ ,
$g_{2}$ $=$ $(g_{1}^{3}+a_{11}x^{11})+c_{10,0}x^{10}+c_{9,0}x^{9}+c_{8,0}x^{8}+(c_{7,1}g_{1}+c_{7,0})x^{7}$

$+(c_{6,1}g_{1}+c_{6,0})x^{6}+(c_{5,1}g_{1}+c_{5,0})x^{5}+(c_{4,1}g_{1}+c_{4,0})x^{4}$

$+(c_{3,1}g_{1}+\mathrm{c}_{3,0})x^{3}+(c_{2,1}g_{1}+c_{2,0})x^{2}+(c_{1,1}g_{1}+c_{1,0})x+\mathrm{c}_{0,1}g_{1}+c_{0,0}$ .

Since $C$ has one place at infinity and genus zero if and only if $C$ has
polynomial parametrization (Abhyankar), {6, 22, 17} is a counter example if
it can be shown that the above type curve does not include a polynomial
curve.
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5 Approach by using a computer algebra sys-
tem

We assume that $C$ is a polynomial curve and has the $\delta$-sequence $\{6_{\backslash }22,17\}$ .
Therefore $C$ has the following polynomial parametrization:

$\{\begin{array}{l}x=t^{6}+a_{1}t^{5}+a_{2}t^{4}+a_{3}t^{3}+a_{4}t^{2}+a_{5}t+a_{6}y=t^{22}+b_{1}t^{21}+b_{2}t^{20}+b_{3}t^{19}+\cdot+b_{21}t+b_{22}\end{array}$

It follows that $\deg g_{2}(x(t), y(t))=17$ from the form of $f$ and $g_{2}$ in the
previous section. We can get the polynomial system I with 11 variables and
17 polynomials after eliminating variables from the coefficients of all terms
of $t$-degree more than 18 in $g_{2}(x(t), y(t))$ .

{6, 22, 17} is a counter example of Abhyankar’s question if I does not
have a root. For such a huge polynomial system it is suitable to compute
the Gr\"obner basis of the ideal. However, it was impossible to compute the
Gr\"obner basis of I even if using a computer with $8\mathrm{G}\mathrm{B}$ memory.

We classified $\delta$-sequences with genus $\leq 50$ into groups which generate
the same semigroup. Furthermore, we listed $\delta$-sequences with the following
three properties: (i) There is no other $\delta$-sequence which generates the same
semigroup. (ii) The number of generators is 3. (iii) $\mathrm{A}$;-number $\geq-1$ . Then,
we obtained {6, 15, 4}, {4, 14, 9}, {6, 15, 7}, {6, 21, 4}, $\cdot$ The Gr\"obner basis
computations for the polynomial systems corresponding to these $\delta$-sequences
showed that {6, 21, 4} was a counter example of Abhyankar’s question.

The defining polynomial of the curve with one place at infinity of the
$\delta$-sequence {6, 21, 4} as follows:

$f$ $=$ $g_{2}^{3}+a_{2,0}x^{2}-1^{1}- c_{1,0,1}xg_{2}+c_{1,0,0}x+c_{0,0,1}g_{2}+c_{0,0,0}$

where

$g_{2}$ $=g_{1}^{2}+a_{7}x^{7}+c_{6,0}x^{6}+c_{5,0}x^{5}+c_{4,0}x^{4}+c_{3,0}x^{3}$

$+c_{2,0}x^{2}+c_{1,0}x+c_{0,0}$

$g_{1}$ $=y+c_{3}x^{3}+c_{2}x^{2}+c_{1}x+c_{0}$

Let the following be the polynomial parametrization of the polynomial
curve with $\delta$-sequence {6, 21, 4}:

$\{\begin{array}{l}x=t^{6}+a_{1}t^{5}+a_{2}t^{4}+a_{3}t^{3}+a_{4}t^{2}+a_{5}t+a_{6}y=t^{21}+b_{1}t^{20}+b_{2}t^{19}+b_{3}t^{18}+\mathrm{c}\cdot+b_{20}t+b_{21}\end{array}$
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By the same operation as the case of {6, 22, 17} we can get the polynomial
system $J$ with 7 variables { $a_{2}$ , a3, $a_{4}$ , $a_{5}$ , $a_{6}$ , 612, $b_{18}$ } and 13 polynomials from
$\deg g_{2}(x(t), y(t))=4$ .

We used the total degree reverse lexicographic ordering (DRL) with $a_{2}\succ$

$a_{3}\succ a_{4}\succ a_{5}\succ a_{6}\succ b_{12}\succ b_{18}$ to the Gr\"obner basis computation. CPU
time for the computation is 3 hours 40 minutes and the required $\mathrm{m}^{1}‘.\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{y}$ is
$850\mathrm{M}\mathrm{B}$ . The computer is a PC AthlonMP $2200+\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}4\mathrm{G}\mathrm{B}$ memory. The
computer algebra system is $\mathrm{R}\mathrm{i}\mathrm{s}\mathrm{a}/\mathrm{A}\mathrm{s}\mathrm{i}\mathrm{r}[7]$ on FreeBSD 4.7.

The obtained Gr\"obner basis $G$ of $J$ was not {1}. However, the normal
form of the coefficient $p$ of the term with $t$-degree $=4$ in $g_{2}(x(t), y(t))$ with
respect to $G$ is 0. This shows that $p\in J$ . Thus, we get $\deg g_{2}(x(t), y(t))<4$ .
Since this is contradictory for $\deg g_{2}(x(t), \mathrm{y}\{\mathrm{t}))=4$ , there is no polynomial
curve with $\delta$-sequence {6, 21, 4}.
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