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Computing Phylogenetic Roots with Bounded Degrees and
Errors is Hard

Tsukiji Tatsuie1 and Zhi-Zhong Chen2
1 築地 立家

Department of Information Science, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
$\mathrm{t}$sukij i@j .dendai. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

2 隙致中
Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394,

Japan. chenQr. dendai . $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

Abstract. The $\mathrm{D}\mathrm{E}\mathrm{G}\mathrm{R}\mathrm{E}\mathrm{E}-\Delta$ CLOSEST PHYLOGENETIC $k\mathrm{T}\mathrm{H}$ Root PROBLEM $(\Delta \mathrm{C}\mathrm{P}\mathrm{R}k)$ is the
problem of finding a (phylogenetic) tree $T$ from a given graph $G=(V, E)$ such that (1) the
degree of each internal node of $T$ is at least 3 and at most $\Delta$ , (2) the external nodes ( $i.e$ . leaves)
of $T$ are exactly the elements of $V$ , (3) The number of disagreements, $|E\mathrm{a}$ { $(u, v)$ : $u$ , $v$ are leaves
of $T$ and $dr(u, v)\leq k\}|$ does not exceed a given number, where $d_{T}$ (u, $v$ ) denotes the distance
between $u$ and $v$ in tree $T$ . We show that this problem is $\mathrm{N}\mathrm{P}$-hard for every fixed constants
6, $k\geq 3.$

Our major technical contribution is the determination of all pylogenetic roots that approximate
the almost largest cliques. In more precise, let $f_{\Delta}(k)$ be the size of a largest clique having a
$k\mathrm{t}\mathrm{h}$ phylogenetic root with maximum degree $\Delta$ . We determine the all phylogenic $k\mathrm{t}\mathrm{h}$ roots with
maximum degree 4 that approximate the $(f_{\Delta}(k)-1)$ -clique within error 2, where we allow the
internal nodes of phylogeny to have degree 2.

1 Introduction

A phylogeny is a tree where the leaves are labeled by species and each internal node represents a
speciation event whereby an ancestral species gives rise to two or more child species. The internal
nodes of a phylogeny have degrees (in the sense of unrooted trees, $i$ . $e$ . the number of incident edges)
at least 3. Specifically, interspecies similarity is represented by a graph where the vertices are the
species and the adjacency relation represents evidence of evolutionary similarity. A phylogeny is then
reconstructed from the graph such that the leaves of the phylogeny are labeled by vertices of the
graph ( $i.e$ . species) and for any two vertices of the graph, they are adjacent in the graph if and only
if their corresponding leaves in the phylogeny are connected by a path of length at most $k$ , where $k$ is
a predetermined proximity threshold. To be clear, vertices in the graph are called vertices while those
in the phylogeny nodes. Recall that the length of the (unique) path connecting two nodes $u$ and $v$ in
phylogeny $T$ is the number of edges on the path, which is denoted by $d_{T}(u, v)$ . This approach gives
rise to the following algorithmic problem [5]:

PHYLOGENETIC $k\mathrm{T}\mathrm{H}$ Root PROBLEM (PRfc):
Given a graph $G=(V, E)$ , find a phylogeny $T$ with leaves labeled by the
elements of $V$ such that for each pair of vertices $u$ , $v\in V$ , $(u, v)\in E$ if and
only if $d_{T}(u,v)\leq k.$
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Such a phylogeny $T$ (if exists) is called a phylogenetic $k\mathrm{t}\mathrm{h}$ root, or a $k\mathrm{t}\mathrm{h}$ root phylogeny, of graph $G$ .
Graph $G$ is called the $k\mathrm{t}\mathrm{h}$ phylogenetic power of $T$ . For convenience, we denote the $k$th phylogenetic
power of a phylogeny $T$ as 7 $k$ $(T)$ . That is, Vu(T) has the vertex set $L(T)=\{u$ : $u$ are leaves of $T$

$\}$ and the edge set $T^{k}=$ { $(u$ , $v$ ) $|u$ and $v$ are leaves of $T$ and $d_{T}(u,$ $v)\leq k$ }. Thus, $\mathrm{P}\mathrm{R}k$ asks for a
phylogeny $T$ such that $G=P_{k}(T)$ .

The input graph in $\mathrm{P}\mathrm{R}k$ is derived from some similarity data, which is usually inexact in practice
and may have erroneous (spurious or missing) edges. Such errors may result in graphs that have no
phylogenetic roots and hence we are interested in finding approximate phylogenetic roots for such
graphs. For a graph $G=(V, E)$ , each tree $T$ whose leaves are exactly the elements of $V$ is called an
approximate phylogeny of $G$ , and the error of $T$ is $|7$

$k$ ea $E|=|$ $(E-T^{k})\cup(T^{k}-E)|$ . This motivated
Chen et. at. to consider the following problem:

CLOSEST PHYLOGENETIC $k\mathrm{T}\mathrm{H}$ Root PROBLEM (CPRfc):
Given a graph $G=(V, E)$ and a nonnegative integer $\ell$ , decide if $G$ has an
approximate phylogeny $T$ with at most $\ell$ errors.

An approximate phylogeny of $G$ with the minimum errors is called a closest $k\mathrm{t}\mathrm{h}$ root phylogeny of
graph $G$ .

The hardness of PRC for large $k$ seems to come from the unbounded degree of an internal node in
the output phylogeny. On the other hand, in the practice of phylogeny reconstruction, most phylogenies
considered are trees of degree 3 [7] because speciation events are usually bifurcating events in the
evolutionary process. We call these restricted versions the $\mathrm{D}\mathrm{E}\mathrm{G}\mathrm{R}\mathrm{E}\mathrm{E}-\Delta$ $\mathrm{P}\mathrm{R}k$ and the $\mathrm{D}\mathrm{E}\mathrm{G}\mathrm{R}\mathrm{E}\mathrm{E}-\Delta$ CPRk,
and denote them for short as $4\mathrm{P}\mathrm{R}7\mathrm{c}$ and ACPRk, respectively.

1.1 Previous Results on Phylogenetic Root Problems

$\mathrm{P}\mathrm{R}k$ was first studied in [5] where linear-time algorithms for PR2 and PR3 were proposed. A linear-
time algorithm for the special case of PR4 where the input graph is required to be connected, was
also presented in [5]. At present, the complexity of $\mathrm{P}\mathrm{R}k$ with $k\geq 5$ is still unknown.

Chen et. al. [2] presented a linear-time algorithm that determines, for any input connected graph
$G$ and constant $\Delta$ $\geq 3,$ if $G$ has a $k\mathrm{t}\mathrm{h}$ root phylogeny with degree at most $\mathrm{a}$ , and if so, demonstrates
one such phylogeny. On the other hand, Chen et. al. [2] showed that CPRk is $\mathrm{N}\mathrm{P}$-complete, for any
$k\geq 2.$ One of their open questions asks for the complexity of $\Delta$CPRk.

Of special interest is CPR2. CPR2 is essentially identical to the correlation clustering problem
which has drawn much attention recently [1], The proof of the $\mathrm{N}\mathrm{P}$-hardness of CPR2 given in [2] is
also a valid proof of the $\mathrm{N}\mathrm{P}$-hardness of the correlation Clustering problem.

1.2 Our Contribution

In this paper, we will show that ACPRk is $\mathrm{N}\mathrm{P}$-complete, for every $k\geq 3$ and IS $\geq 3.$ This answers
an open question in [2].

In a course of the proof we first reduce HAMILTONIAN PATH, a famous $\mathrm{N}\mathrm{P}$-complete problem, to
$4\mathrm{C}\mathrm{P}\mathrm{R}3$ , and then ACPRS to ACPRk. The former reduction is tedious but a routine work. On the
other ha $\mathrm{d}$ , the latter reduction seems to require new combinatorial investigation that is proper of
$\Delta$CPRk.

A $(\Delta, k, h,\ell)$ -core graph is a graph $G=(V, E)$ with the following properties:
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-There is a tree $T$ of maximum degree 4 whose phylogenetic $k\mathrm{t}\mathrm{h}$ power is $G$ and such that $T$ has
a unique unsaturated ( $i.e$ . degree $<4$ ) internal node $\alpha$ , the degree of at is a – 1, $\mathrm{d}\mathrm{r}(\mathrm{a}, u)$ $=h$

holds for one leaf $u$ and $d_{T}(\alpha,v)\geq h+1$ for all leaves $v$ other than $u$ .
-For every approximate phylogeny $T$ of $G$ with maximum degree $\Delta$ and at most $\ell$ errors, there is

at most one pair $(\alpha,u)$ such that $\alpha$ is an unsaturated internal node of $T$ , $u$ is a leaf of $T$ , and
$\mathrm{d}\mathrm{r}(\mathrm{a}, u)$ $\leq h;$ moreover, if $(\alpha,u)$ exists then the degree of $\alpha$ in $T$ is 5-1.
Then, we establish the reduction from ACPRZ to $\Delta \mathrm{C}\mathrm{P}\mathrm{R}k$ by providing a family of $(\Delta$ , $k$ , $\lfloor k/2\rfloor-$

$1$ , 2)-core graphs for every fixed $4\geq 3$ and $k\geq 4.$ Our construction of a (A $k,\cdot\lfloor k/2\rfloor-1,2$) more graph
is a pile of $(\mathrm{A}, k’, 1,2)$-core graphs for $k’=5,7$ , $\ldots$ , $k$ if $k\geq 5$ is odd, and $k’=4,6$, $\ldots$ , $k$ if $k\geq 4$ is
even. So, a more basic problem is to prove that a certain graph is a $(\mathrm{A}, k, 1,2)$ -core graph.

The maximum size of a clique having a (nO-error) $k\mathrm{t}\mathrm{h}$ root phylogeny with maximum degree 4 is
given by the following function,

$f_{\Delta}(k)=\{$
$\Delta\cdot(\Delta-1)9-1$ , if $k$ is even,
2 . (4-1) $k\mathrm{T}^{1}$ , if $k$ is odd.

We prove that the clique of size $f_{\Delta}(k)-1$ is a $(\Delta, k, 1,2)$ -core graph. Moreover, we determine the
all $k\mathrm{t}\mathrm{h}$ root phylogenies with maximum degree a that approximate the clique within error 2, where
we allow the internal nodes of phylogeny to have degree 2. For example, all phylogenetic roots of the
$(f_{3}(5)-1)$ clique are $D_{5}$ in Figure 1, $E_{5}$ in Figure 2, and the tree obtained from $D_{5}$ by removing the
leaf $u$ .

2 Notations and Definitions

We employ standard terminologies in graph theory. In particular, for a graph $G$ , $V(G)$ and $E(G)$

denote the sets of vertices and edges of $G$ , respectively. An induced subgraph of a graph $G$ is the
subgraph $H$ induced by a subset $W$ of $V(G)$ , $i.e$ . $\mathrm{E}(\mathrm{H})=$ { $(\mathrm{u},\mathrm{v})$ : $u,v\in W$ and $(\mathrm{w},\mathrm{v})\in E(G)$ }.
Two graphs $G=(V, E)$ and $G’=(V’, E’)$ are isomorphic if there is a one-tO-One correspondence $\phi$

between $V$ and $V’$ such that $(u, v)\in E$ if and only if $(\phi(u), \mathrm{O}(\mathrm{v}))\in E’$ , and we denote it as $G\cong_{\phi}G’$ .
The distance between two vertices $u$ and $v$ in $G$ is denoted by $d_{G}(u,v)$ . The degree of a vertex $v$ in $G$

is denoted by da (v), which is the number of vertices adjacent to $v$ in $G$ . Similarly, for a tree $T_{:}V(T)$ ,
$E(T)$ , and $L(T)$ denote the sets of nodes, edges and leaves of $T$ , respectively.

We also introduce some new terminologies of trees for convenience. For a tree $T$ of maximum degree
$\Delta$ , an internal node $\alpha$ of $T$ is unsaturated if $d_{T}(\alpha)\leq$ A-l. Tree $T$ is $i$-extensible if $i= \sum_{v}(\Delta-deg_{T}(v))$ ,
where the summation is taken over all unsaturated internal nodes $v$ of $T$ . A tree $T$ is $h$-away if for
each unsaturated internal node $x$ of $T$ , the minimum distance from $x$ to a leaf is at least $h$ and further
there is exactly one leaf $v_{l}$ such that $d_{T}(x,v_{li})=h.$ For any set $U$ of nodes of $T$ , $\mathrm{T}[\mathrm{J}7]$ denotes the
minimum subtree containing $U$ . Note that each leaf of $T[U]$ belongs to $U$ . A phylogeny is a tree that
contains no degree 2 nodes. As already mentioned, the $k\mathrm{t}\mathrm{h}$ phylogenetic power of any tree $T$ is denoted
as Vk (T) $=(L(T),T^{k})$ , $T^{k}$ is the set of edges $(u, v)$ with $\{u,v\}\subseteq L(T)$ and $d_{T}(u, v)\leq k.$

3 Construction of $(\Delta, k, \lfloor k/2\rfloor ・1, 2)$-core graphs

In this section we give a construction of (3, $k$ , $\lfloor$7c/2$\rfloor$ – 1, 2)-core graphs for every odd $k\geq 5.$ It is
straightforward to generalize the arguments of this section to obtain $(\Delta, k, \lfloor k/2\rfloor ・1, 2)$-core graphs
for every $\Delta$ $\geq 3$ and $k\geq 4.$
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Throughout this section, all trees and phylogenies are of maximum degree 3 or less. We abbreviate
$\mathrm{f}\mathrm{s}(\mathrm{k})$ as $\mathrm{f}(\mathrm{k})$ . The proofs of the most lemmas and corollaries are omitted due to lack of space.

A phylogeny whose $k\mathrm{t}\mathrm{h}$ phylogenetic power realizes the $f(k)$-clique can be constructed as follows:
Start with a path $P$ of length exactly $k$ . Let $u$ and $v$ be the endpoints of $P$ . Then connect as many
new nodes as possible so that $P$ becomes a tree of degree 3 and every node has distance at most $k$

ffom both $u$ and $v$ . This tree is unique up to isomorphism and hence we denote it by $C_{k}$ . Moreover,
removing an arbitrary leaf from $C_{k}$ yields a tree, which is unique up to isomorphism. We denote this
tree by $D_{k}$ . Figure 1 depicts $D_{4}$ , $D_{5}$ , and $D_{6}$ where the missing sibling leaf of ti has been removed. By
definition, the $k\mathrm{t}\mathrm{h}$ phylogenetic power of $D_{k}$ is an $f(k)-1$ clique.

Fig. 1. $D_{4}$ , $D_{6}$ and $D_{6}$ .

Lemma 1. For every tree $T$ (of maimum degree 3), if there are two leaves $u$ and $v$ with $d_{T}$ (u, $v$ ) $=k$

and all leaves $w$ of $T$ have distance at most $k$ from both $u$ and $v$ , then $T$ is isomorphic to a subtree of
$C_{k}$ .
Corollary 1. For any tree $T$ , if $dr\{u,$ $v$) $\leq k$ for all leaves $u$ and $v$ , then $T$ is isomorphic to a subtree
of $c_{k}$ .

FVict 1 For every tree $T$ with $|L(T)|=f(k)$ -1 and $|Tk|\geq(_{2}^{f(k)-1})-2,$ we have $d_{T}(u,v)\leq k$ for all
but at most teuo unordered pairs $(u,v)$ of leaves of $T$ .

Lemma 2. Let $k\geq 4.$ Let $T$ be an arbitrary tree such that $|L(T)$ $|=f(k)-1$ and $|Tk|\geq(_{2}^{f(k)-1})-2.$

Then, there are leaves $u$ and $v$ of $T$ with $d_{T}(u,v)=k.$

Lemma 3. Let $k\geq 6.$ Let $T$ be an arbitrary tree having $f(k)-1$ leaves. Suppose that there are leaves
$u$ , $v$ , $w$ of $T$ such that $d_{T}(u, v)=k$ and $\max(d_{T}(u, w),$ $dr\{u,$ $w$)) $\geq kf$ $1$ . Then, $|T^{k}|\leq(_{2}^{f(k)-1})-3.$

Lemma 4. Let $k\geq 6.$ Let $T$ be a tree having $f(k)-1$ leaves such that $|\mathrm{r}k|\geq(_{2}^{f(k)-1})$ - 2. Then $T$

is 0-extensible or 1-extensible. Moreover, if $T$ is 1-extensible then $T\underline{\simeq}D_{k}$ .

For $k\in\{4,5\}$ , let $E_{k}$ be the tree in Figure 2.

Lemma 5. Let $k\in\{4,5\}$ . Let $T$ be a tree having $f(k)$ $-1$ leaves such that $|Tk|\geq(_{2}^{f(k)-1})-2.$ Then
$T$ is 0-estensible or 1-estensible. Moreover, if $T$ is 1-extensible then $T\underline{\simeq}D_{k}$ or $T\underline{\simeq}E_{k}$
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Fig. 2. $E_{4}$ and $E_{6}$ .

Fig. $\theta$ . $R_{7,2}$

Theorem 1. For every $k\geq 4,$ the $(f(k)-1)$ -clique is $a(3, k, 1,2)$ -core graph.

Now we are ready to construct a $(3, k, \lfloor \mathrm{A}/2\rfloor-1, 2)$-core graph for every odd $k\geq 5.$ We recursively
construct trees $R_{k,\lfloor k/2\rfloor-1}$ , $k=5,7,9$ , $\ldots$ , and define a family of $(3, k, \lfloor k/2\rfloor- 1, 2)$ -core graphs as the
kth phylogenetic power of the trees $R_{k,\lfloor k/2\rfloor-1}$ (see Figure 3 for $R_{7,2}$ ):

-Let $h_{k}=\lfloor k/2\rfloor-$ $1$ . For each $1\leq i\leq h_{k}$ , let $g(i)= \prod_{j=1}^{t}(f(2j+3)-1)$ . Let $g(0)=1.$
$-\tilde{R}_{k,h_{k}}$ is a leveled tree of depth $h_{k}$ such that at depth $i(0\leq i\leq h_{k})$ are placed $g(i)$ nodes and

each node $v$ at depth $i<h_{k}$ is connected to some $f(2i+5)-1$ nodes at depth $i+$ l.
$-R_{k,h_{k}}$ is an expansion of $\tilde{R}_{k,h_{k}}$ such that each node $v$ of $\tilde{R}_{k,h_{k}}$ at depth $i$ $(0\leq i\leq h_{k}-1)$ is

expanded to a copy $D(v)$ of $D_{2:+5}$ in $R_{k,h_{k}}$ , where $v$ is identified with the degree-2 node of $D(v)$

and the child nodes of $v$ in $\tilde{R}_{k,h_{k}}$ are identified with the leaves of $\mathrm{D}(\mathrm{v})$ in an arbitrary onetoone
manner.
By construction, $R_{k,h_{h}}$ is 1-extensible and $h_{k}$-away, and has a unique degree-2 node, namely, the

unique degree-2 node of $D_{5}$ .
Lemma 6. Let $k\geq 4.$ Let $T$ be a tree having $f(k)-1$ leaves such that $|T_{k}|$ $\geq(_{2}^{f(k)-1})-2.$ Suppose
further that $T$ is not 0-extensible. Let $T(w)$ be the tree obtained by connecting a neen leaf to an arbitrary
leaf $w$ of T. Then, $|\mathrm{T}(\mathrm{w})|^{k}\leq(_{2}^{f(k)-1})-3.$

Lemma 7. Let $k\geq 5$ be odd. Let $T$ be a tree such that $L$ (7 ) $=$ L(Rk,hk) and $|Tk$ $\oplus R_{k,h_{k}}^{k}|\leq 2.$ Then,
$T$ is 0-extensible or 1-extensible. Moreover, if $T$ is 1-extensible then it is $h_{k}$ -arnay.
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Theorem 2. For every odd $k\geq 5,$ the graph $7^{\mathit{2}_{k}}(R_{k,\lfloor k/2\rfloor-1})$ is $a$ $(3, k, \lfloor k/2\rfloor-1, 2)$ -core graph.

These constructions, lemmas and theorems can be generalized to every fixed $k\geq 4$ and $\Delta\geq 3.$ A
phylogenic $k\mathrm{t}\mathrm{h}$ root of the $f_{\Delta}(k)$-clique can be constructed in the same way as $D_{i}$ and we denote it
as $Ds,i$ . We can construct a phylogeny $R_{\Delta,k,h_{k}}$ of degree $\Delta$ recursively in the same way as $R_{k,h_{k}}$ but
replacing $f$ and $D_{i}$ therein with $f_{\Delta}$ and $D_{\Delta,i}$ , respectively; further, if $k$ is even then the function $g(i)$

therein should be replaced by $\prod_{j=1}^{i}(f_{\Delta}(2j+2)-1)$ . Lemma 7 and Theorem 2 can be generalized as
follows:

Lemma 8. Let $k\geq 4$ and a $\geq 3.$ Let $T$ be a tree of mairnurn degree $\Delta$ such that $L(T)=L(R_{\Delta,k,h_{k}})$

and $|Tk\oplus R_{\Delta,k,h_{k}}^{k}|\leq 2.$ Then $T$ is $\theta$-extensible or 1-extensible. Moreover, if $T$ is 1-extensible then it
is $h_{k}$ -away.

Theorem 3. For every $k$ a 4, $\mathcal{P}_{k}(R_{\Delta,k,\lfloor}c\mathit{7}2\rfloor-1)$ is $a(\Delta,$ $k$ , $\lfloor k/2\rfloor-$ $1$ , $2i$ -core graph.

4 The $\mathrm{N}\mathrm{P}$-hardness of $\Delta$CPRk

This section proves that 3CPR& is $\mathrm{N}\mathrm{P}$-hard for each odd $k\geq 3.$ It is straightforward to generalize
the arguments of this section to prove that $3\mathrm{C}\mathrm{P}\mathrm{R}k$ is $\mathrm{N}\mathrm{P}$-hard for for every $4\geq 3$ and $k\geq 3.$

Throughout this section, all trees and phylogenies are of maximum degree 3 or less. Proofs of most
lemmas and corollaries are omitted due to lack of space.

We begin with the $\mathrm{N}\mathrm{P}$-hardness proof of $3\mathrm{C}\mathrm{P}\mathrm{R}3$ because the $\mathrm{N}\mathrm{P}$-hardness proofs of $3\mathrm{C}\mathrm{P}\mathrm{R}\mathrm{A}$; for
larger odd $k$ are reductions from it. We reduce the following version of HAMILTONIAN PATH PROBLEM
(HP) to $3\mathrm{C}\mathrm{P}\mathrm{R}3$, whose $\mathrm{N}\mathrm{P}$-hardness proofs can be found in [3] and [6, Section 9.3].

HAMILTONIAN PATH PROBLEM (HP): Given a graph $G=(V, E)$ such that

- all vertices are of degree 3 or less,
- two specific vertices are of degree 1 and each of them is adjacent to a vertex of degree 2, and
- there is no cycle of length less than 5.

Find a Hamiltonian path of $G$ , $i.e$ . find a linear ordering of the vertices of $G$ such that each pair
of consecutive vertices are adjacent in $G$ .

Let $G=(V, E)$ be an arbitrary instance of $\mathrm{H}\mathrm{P}$ , hence the maximum degree of $G$ is 3 and $G$

contains no cycle of length less than 5. Let $T=(V, E(T))$ be an approximate phylogeny of $G$ . We
define a fractional value $cost_{\mathit{3}}(v)$ associated with each vertex $v\in V$ as follows:

COSt3 $(v)= \frac{1}{2}|$ { $u$ : $(u,v)\in E$ and $d_{T}(u,$ $v)>3$} $|$

$+|$ {( $u$ , $w$ ) : $u\neq w$ , $(u,$ $v)\in E$ , $(v,$ $w)\in E$ , $(u,$ $w)$ \not\in $E$ and $d_{T}(u,$ $w)\leq 3$} $|$ .

Lemma 9. The surn of $cost_{\mathit{3}}(v)$ over all vertices $v\in V$ is no more than $|7$ $3\oplus E|$ .

Lemma 10. Let $v$ be a vertex of $G$ having three pairwise nonadjacent neighbors $u_{1},u_{2}$ and 113. Then,
COSt3 $(v)= \frac{1}{2}$ or cOst3 $(v)\geq 1.$ Moreover, if $cost_{\mathit{3}}(v)$ $= \frac{1}{2}$ , then $d_{T}(u_{i}, v)>3$ for one $u_{\dot{*}}\in\{u_{1},u_{2},u_{3}\}$

and $d_{T}(u_{j}, v)=3$ for the other two $u_{j}\in\{u_{1},u_{2},u_{3}\}-$ $(u_{\mathrm{i}}\}$ .

Theorem 4. $3\mathrm{C}\mathrm{P}\mathrm{R}3$ is NP-complete.
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Theorem 5. For every odd $k\geq 3,$ 3CPR& is NP-complete.

It is straightforward to generalize Theorem 5 to every $4\geq 3$ and $k\geq 4,$ obtaining the following
theorem.

Theorem 6. For every $\Delta\geq 3$ and every $k\geq 3,$ 3CPR& is NP-complete.

5 Summary and an Open Question

We have proved that ACPRk is $\mathrm{N}\mathrm{P}$-complete for every $\mathrm{i}$ $\geq 3$ and $k\geq 3.$ A more fundamental problem
is the TREE $k\mathrm{T}\mathrm{H}$ Root PROBLEM $(\mathrm{T}\mathrm{R}/\mathrm{c})$ , where the nodes (not only the leaves) of $T$ correspond
to the vertices of $G$ . Kearney and Corneil proved that CTRA; is $\mathrm{N}\mathrm{P}$-complete when $k\geq 3[4]$ . We
conjecture that $4\mathrm{C}\mathrm{T}\mathrm{R}k$ is $\mathrm{N}\mathrm{P}$-complete for every fixed $4\geq 3$ and $k\geq 2.$
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