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A Construction of a Family of RSA Functions with a Common Domain
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Ryotaro Hayashi

Hs E4
Keisuke Tanaka
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Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

Abstract— For a standard RSA family of trap-door permutations, even if all of the functions
in a family use RSA moduli of the same size (the same number of bit?, it will have domains
with different sizes. In this paper, we construct an RSA family of trap-door permutations with
a common domain. We also construct a family of Paillier’s trap door permutations with a

common domain.

Keywords: tran-door permutations, RSA, Paillier’s permutations

1 Int.roduction

Bellare, Boldyreva, Desai, and Pointcheval [1] re-
cently proposed ‘a new security requirement of the
encryption schemes called “key-privacy.” It asks
that the encryption provide (in addition to privacy
of the data being encrypted) privacy of the key un-
der which the encryption was performed. The stan-
dard RSA encryption does not provide key-privacy.
Since even if two public keys Np and N; (Ny < Ny)
are the same bits, N — Ny may be large. In [1], they
provided the key-privacy encryption scheme, RSA-
RAEP, which is a variant of RSA-OAEP (Bellare
and Rogaway [2], Fujisaki, Okamoto, Pointcheval,
and Stern [3]), and solved this problem by repeat-
ing the evaluation of the RSA-OAEP permutation
f(z,r) with plaintext  and random r, each time
using different r until the value is in the safe range.

We are concerned with an underlying primitive
element, that is, families of trap-door permutations
with a common domain. For a standard RSA fam-
ily of trap-door permutations denoted by RSA, even
if all of the functions in a family use RSA moduli
of the same size (the same number of bits), it will
have domains with different sizes. We construct an
RSA family of trap-door permutations with a com-
mon domain denoted by RSACD, and prove that
the §-partial one-wayness of RSACD is equivalent
to the one-wayness of RSACD for 8 > 0.5, and that
the one-wayness of RSACD is equivalent to the one-
wayness of RSA. Thus, the following relations are
satisfied for > 0.5.
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In [4], Paillier provided a trap-door one-way bi-
jective function, and proved that the function is
one-way if and only if RSA[N, N] is hard, where
RSA[N, N] is the problem of extracting N-th roots
modulo N. We slightly modified his function and
construct the family of Paillier’s trap-door permu-
tations. We also construct the family of Paillier’s
trap-door permutations with a common domain de-
noted by PCD, and prove the following relations for
6 > 0.5.
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where Paillier denotes a family of Paillier’s trap-
door permutations and RSAy denotes an RSA fam-
ily of trap-door permutations with the fixed expo-
nent N.



2 An RSA Family of Trap-door Per-
mutations with a Common Domain

2.1 Preliminaries

In this section, we briefly review the definitions of
families of functions, and the standard RSA family
of trap-door permutations denoted by RSA.

Definition 1 (families of functions [1]). A fam-
ily of functions F = (K, S, E) is specified by three
algorithms.

e The randomized key-generation algorithm K
takes as input a security parameter k € N and
returns a pair (pk, sk) where pk is a public key
and sk is an associated secret key. (In cases
where the family is not trap-door, the secret
key is simply the empty string.)

o The randomized sampling algorithm S takes
input pk and returns a random point in a set
that we call the domain of pk and denote by
Dom, (pk) .

e The deterministic evaluation algorithm E takes
inpul pk and a point £ € Domp(pk) and re-
turns an output we denote by Epp(z). We
let Rugr(pk) = {Epk(z) |z € Domp(pk)} de-
note the range of the function Epi(-).

Definition 2 (families of trap-door permu-

tations [1]). We say that F is a family of trap-

door functions if there exists a deterministic inver- .
sion algorithm I that takes input sk and a point

y € Rngp(pk) and returns a point ¢ € Domp(pk)

such that Epi(z) = y. We say that F is a family

of trap-door permutations if F' is a family of trap-

door functions, Domp(pk) = Rngp(pk), and E,y

18 a permutation on this set.

We describe the definition of §-partial one-way.

Definition 3 (f-partial one-way [1]). Let F =
(K, S, E) be a family of functions. Let b € {0,1}
and k € N be a security parameter. Let0 < 0 <1
be a constant. Let A be an adversary. Now, we
consider the following experiments:

Experiment Expgp.:iD ow—fnc 1y
(pk, sk) & K (k)
21||z2 & Domp(pk) vhere jz1| = 6 |(z1]|z2)]]
Y — Epk(z1lz2)
z{ — A(pk,y) where |z}| = |z;]
for any x5 if E,k(x)||x3) =y then return 1
else return 0

We define the advantages of the adversary via

AdviE" (k) = Pr[Expy £°7 (k) = 1)
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where the probability is taken over (pk, sk) &k (k),
z1||z2 & Domp(pk), and the coin tosses of A. We
say that the family F' is 6-partial one-way if the
function Adv;,’_lfw_mc(-) is negligible for any ad-
versary A whose time complezity is polynomial in
k. In particular, we say that the family F is one-

way when F' is I-partial one-way.

We describe the standard RSA family of trap-
door permutations denoted by RSA.

Definition 4 (the standard RSA family of
trap-door permutations). The specifications of
the standard RSA family of trap-door permutations
RSA = (K, S, E) are as follows. The key genera-
tion algorithm takes as input a security parameter k
and picks random, distinct primes p,q in the range
2Mk/21-1 < p g < 21K/2] gnd 2%-1 < N < 2k, It
sets N =pq. It picks e,d € Z;(N) such thated =1
(mod ¢(N)) where d(N) = (p—1)(¢—1). The pub-
lic key is N,e, k and the secret key is N,d, k. The
sets Dompsa(N, e, k) and Rngrsa(V, e, k) are both
equal to Zy;. The evaluation algorithm En e x(z) =
z¢ mod N and the inversion algorithm Iy qx(y) =
y® mod N. The sampling algorithm returns a ran-
dom point in Z};. The sampling algorithm returns
a random point in Zy; .

Fujisaki, Okamoto, Pointcheval, and Stern [3] showed
that the #-partial one-wayness of RSA is equivalent
to the one-wayness of RSA for 6 > 0.5.

2.2 The Construction of RSACD

In this section, we propose the RSA family of
trap-door permutations with a common domain de-
noted by RSACD.

Definition 5 (the RSA family of trap-door
permutations with a common domain). The
specifications of the RSA family of trap-door per-
mutations with a common domain RSACD= (K, S, E)
are as follows. The key generation algorithm is the
same as that for RSA. The sets Domgsacp(N, e, k)
and Rngrsacp(IV, e, k) are both {z|z € [0,2%) A
zmod N € Zy}. The sampling algorithm returns
a random point in Domgsacp(N, €, k). The evalua-
tion algorithm En ¢ k(Z) = fN,ex(x) and the inver-
sion algorithm Inax(y) = gn,a.k(y) are as follows
(See Figure 1.).
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Figure 1: Function fyex and gn,a,x

Function fn,ex(7)
U fue (@) v flre e ¥y fRen(®)
return y

Function f} . ()
if (z < N) u «~ z° mod N else ¢ « z
return u

Function f%, ,(u)
if (u<2*-N)ve—u+N
elseif (2* ~-N<u<N)veu
elsev—u—-N
return v

Function f} , ,(v)
if W< N)y—v°mod N elsey —v
return y

Function gn,4,x(y)

v g an(¥) U 0Rar(V) T - g} ak(v)
return z

Function g} 4 .(v)
if (< N)ve—y?mod N elsev 1y
return v

Function g} 4 .(v)
if W<2-N)ue—v+N
elseif (2* -~ N<v<N)uew
elseu—v—-N
return u

Function g} ;. (u)
if u<N)ze—u'mod N elsez —u
return z ‘

The choice of N from (2%, 2*) ensures that all
elements in Domgsacp (N, e, k) are permuted by the
RSA function at least once.

2.3 Properties of RSACD

In this section, we prove that the §-partial one-
wayness of RSACD is equivalent to the one-wayness

of RSACD for 6 > 0.5, and that the one-waymness of
RSACD is equivalent to the one-wayness of RSA.

Theorem 1. If RSACD is one-way then RSACD is
f-partial one-way for 6 > 0.5.

To prove this theorem, we use the following lemma
proved in [3].

Lemma 1 ([3]). Consider an equation at +u = ¢
(mod N) which has solutions t and u smaller than
2ko. For all values of a, ezcept a fraction 2%0+8 /N
of them, (t,u) is unique and can be computed in
time O((log N)3). (We say “a is a good value”
when we can solve the above equation.)

Proof of Theorem 1. Let A be an algorithm that
outputs the k — ko most significant bits of the pre-
image of its input y € Rngrsacp(NV, e, k) for 2v-1 <
N < 2 with k > 2ko (i.e. Aisa ((k—ko)/k)-partial
inverting algorithm for RSACD with k > 2kg), with
success probability € = Advﬁ;{é’g;fm(k) where
0 = (k — ko)/k > 0.5, within time bound ¢. There
exists an algorithm B that outputs a pre-image of
y (i.e. B is an inverting algorithm for RSACD) with
success probability ¢ = Adv,lgzgg,_;“c(k), within
time bound t’ where

e > i . (1 _ 22ko—k+7)

= 16 ?

We construct the algorithm B to compute a pre-

image of y € Rngrsacp({V, e, k), then we analyze

this algorithm and evaluate the success probability
and the running time of B.

t <2t + O(k3).

Algorithm B((N,e, k), y)

%%% [step 1] set o, pow, ¥y %%%

& ZN; pow Fid {1,2}; ¢ & {0,1}

Yiemp — y- 0" mod N

if (c= O) Y~ yéemp

elseif (0 < Yoy <25 = N) ¥ — Yiomp+ N
else return fail

%%% [step 2] run A %%%
z— AQy); 2 — AWY) -

%%% [step 3] compute gn,q4k(y) %%%
find (r,s) s.t. ar—s=(2' —za)-2% (mod N)
T z-2%0 4 p

return z
Analysis

For y € Rngrsaco(N, €, k) and £ = gn 4,k(y), (2,7)
satisfies one of the following equations.

(1) y==z* (mod N)
2) y=z° (mod N)



We say type(y) = 1 (respectively type(y) = 2) if
(z,y) satisfies equation 1 (resp. equation 2).

After step 1, if B does not output fail, then ¢/ is
uniformly distributed over Rngrsacp(V, €, k), and
for y and 2’ = gnqk(y’), (¢',y') satisfies one of
the following equations.

(1) ¢’ =(')* (mod N)
@) ¢ =() (modN)

We say type(y') = 1 (respectively type(y’) = 2) if
(z',y') satisfies equation 1’ (resp. equation 2').

After step 2, if A outputs correctly, namely, z is
the k — ko most significant bits of z and 2z’ is the
k — ko most significant bits of z’, then z = z-2%k0 41
and z’ = 2’ - 2% 4 5 for some (r, s) where 0 <'r,s <
2o, Furthermore, if type(y) = type(y’) = pow, then
y=2z%" (mod N)and ¢/ = (z/)¢*" (mod N).
Since y’ =y - (mod N) and ged(eP°%, N) =
1, we have 2’ =az (mod N). Thus,

22k 4 g=q.(z-2% +7) (mod N)
ar —s= (2 - 20¢)-2% (mod N)

where 0 < r, s < 2%_ If o is a good value, algorithm
B can solve this equation in step 3 (Lemma 1), and
outputs z = z - 2% 4 .

Now, we analyze the success probability. We define
the following events:

e Fail : B outputs fail in step 1,

e GV : ¢ is a good value,

o Typel : type(y) = type(y’) = 1,

Type2 : type(y) = type(y') =2,

SucA : A(y) and A(y’) are correct.

We have € = Pr[A(y) is correct A type(y) = 1] +
Pr[A(y) is correct A type(y) = 2] where y is uni-
formly distributed over Rngrsacp(V, e, k). Thus,
Pr[A(y) is correct A type(y) = 1] > €/2 or Pr{A(y)
is correct A type(y) = 2] > €/2.

If B does not output fail in step 1, then 3/’ is uni-
formly distributed over Rngrsacp(lV, e, k). There-
fore, Pr[SucA A Typel|-Fail] > (¢/2)* = €*/4 or
Pr[SucA A Type2|-Fail] > (¢/2)? = €2/4.

If A(y) and A(y') are correct, type(y) = type(y’)
= pow, and « is a good value, then B outputs
correctly. Since Pr[—Fail] > Prlc = 1] = 1/2,
Prlpow = 1] = Prlpow = 2] = 1/2, and Pr[GV]>
1—2%k0—6/N > 1 — 22k0—k+7 ye have

€’ > Pr[SucA A type(y) =
> Pr[GV] x Pr[-Fail] x
Pr[SucA A type(y) = type(y’) = pow|-Fail]

type(y') = pow A GV]

1687

v

% . (1 __ 22ko~-k+7) %
(Pr[SucA A Typel A pow = 1|—Fail]
+ Pr{SucA A Type2 A pow = 2|-Fail])
— % . (1 _ 22ko—k+7) x
(Prlpow = 1] x Pr{SucA A Typel|-Fail]
+ Prlpow = 2] x Pr[SucA A Type2|-Fail])
2
16
We estimate the running time of B. B runs A twice.
B can solve ar — s = (2/ — za) - 2¥ (mod N) in
time O(k3). Therefore, t' < 2t + O(k3). a

3 (1 _ 22ko—k+7).

Theorem 2. If RSA is one-way then RSACD is

one-way.

Proof. We prove that if there exists a poly-time in-
verting algorithm A for RSACD with non-negligible
probability € = Adv;gfgg;f“(k), then there exists
a poly-time inverting algorithm D for RSA with
non-negligible probability ¢ = Advégf\’,"g'f“(k).
We show the algorithm D to compute a pre-image
of Y e RngRSA(N, €, k).

Algorithm D((N,e, k),Y)

c& (0,1}

if (¢ =0)
y—Y;, A((Na €, k)’y); U — f]b,e,k(x)
Ve fRen(w); X —v

else
ue—Y; ve f]%f,e,k(u); Y fgl,e,k(v)
z— A((N,e,k),y); X~z

return X

Now, we analyze the advantage of D. If A outputs
correctly then D outputs correctly (See Figure 1).
Therefore,

¢ > Pr[-Fail] - (Prle =0 A A((N,e,k),Y) is correct]
+Prfc=1 A A((N,e, k), Z) is correct])
2 % -(Pr[A({IV, e, k),Y) is correct]
+Pr[A((N,e, k), Z) is correct A N < Z < 2¥]).

where Z = fg,’e,k(fﬁ,,e’k(Y)). We have

Pr[A((N,e,k),Y) is correct]
= Pr[A((N, e, k),y) is correct |0 < y < N]
> Pr[A((N, e, k),y) is correct A 0 <y < NJ.

Furthermore, we have Pr[N < Z < 2¥] > P1[N <
y < 2F] where Y is uniformly distributed over Z}
and y is uniformly distributed over Rngggacp (N, €, k),
since Pr{N < Z < 2¥] = Pr[0 < Y < 2¥ — N] and
|Z}| < |Rngrsacn (N, €, k)|.
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Since Pr[A((N, e, k), Z) is correct | N < Z < 2¥] =
Pr[A((N,e, k),y) is correct | N <y < 2¥] | we have

Pr[A((N,e, k), Z) is correct A N < Z < 2¥]
> Pr[A((N, e, k),y) is correct A N <y < 2F].

Therefore,
¢ > % -(PrlA((N, e, k),y) is correct A 0 <y < N]
+Pr[A((N,e, k),y) is correct A N <y < 2F])

c €

B

= % -Pr[A((N, e, k),y) is correct] =

which is non-negligible in k. O

It is clear that if RSACD is one-way then RSA
is one-way. Thus, the one-wayness of RSACD is
equivalent to the one-wayness of RSA.

3 A Family of Paillier’s Trap-door Per-
mutations with a Common Domain

3.1 Paillier’s Trap-door Permutations

In [4], Paillier provided the trap-door one-way
bijective function. He proved that his function is
one-way if and only if RSA[N, N} is hard, where
RSA(N, N] is the problem of extracting N-th roots
modulo N. We slightly modify his function, and
then, we consdier the family of Paillier’s trap-door
permutations denoted by Paillier.

Definition 6 (the family of Paillier’s trap-door
permutations). The specifications of the family of
Paillier’s trap-door permutations Paillier = (K, S, D)
are as follows. The key generation algorithm K

takes as input a security parameter k and picks

random, distinct primes p,q such that 2/F/21-1 <

p,q < 2[F/2] | 2k=1 < pa < 2k gnd 226-1 < (pg)? <

22k It sets N = pg and A = A(N) = lem(p —

1,q — 1). The public key is N,k and the secret key
is N,k,A. Domp;ijier(N, k) and Rngpaiier(N, k, A)

are both equal to {x1 + z2 - Nl|z1 € ZNn, 22 € Z}}.

The sampling algorithm returns a random point in
Domp,itiier (N, k). The evaluation algorithm En x(z)

= Fp(z), and the inversion algorithm In i (y) =

Gp(y) are as follows.

Function Fp(z)
Ty —zmod N; 2o —zdiviN
Y « (1 + Nz;)zY mod N?
y1—~Y divN; y Y mod N
ye—u+y-N
return y

Function Gp(y)
Yy —ymod N; yo —ydivN
Y—y1-N+y
L(Y* mod N?)
A
y' <~y (1= Nz;) mod N?
Tg (y/)N‘1 mod A 0 q N2
T— 1 +22-N
return x

T — mod N

We describe the RSA family of trap-door permu-
tations with the fixed exponent N.

Definition 7 (the RSA family of trap-door
permutations with the fixed exponent N).
The specifications of the RSA family of trap-door
permutations with the fized exponent N RSAy =
(K, S, E) are as follows. The key generation algo-

rithm K is the same as that for Paillier. Dompgsa, (N, k)

and Rogrsay (N, k, ) are both equal to Z%,. The
evaluation algorithm En (z) = z¥ mod N and the
inversion algorithm In i x(y) =y ™42 mod N.
The sampling algorithm returns a random point in
Zy.

Then, we can easily see the following lemma.

Lemma 2. Paillier is one-way if and only if RSAN
is one-way.

We prove the following theorem.

Theorem 3. 0-partial one-wayness of Paillier is
equivalent to the one-wayness of Paillier for 6 > 0.5.

Proof. Let A be an algorithm that outputs the 2k —
ko most significant bits of the pre-image of its in-
put y € Rngpailier(N, k) with k > ko (ie. Ais a
((2k = ko)/2k)-partial inverting algorithm for Pail-
lier with k > kq), with success probability ¢ =
Advi RO (k) where § = (2k — ko)/k > 0.5,
within time bound ¢t. We prove that there exists
an algorithm B that outputs a pre-image of y with
success probability ¢ = Adv:,;if,’i‘e’:”ghc(k) > €/2,
within time bound ¢ < t + O(k®). We construct
the algorithm B as follows.

Algorithm B((N,k),y)
X — A((N,k),y)

c&{0,1}
T2 «— ((2% - X) divN) +¢

y1 —ymod N; y; — y divN
Y~y -N+y
Y
find 7; s.t. 1+ Nz = —5 mod N?
(z2)
T—x1+22-N
return z



Assume that A outputs correctly, that is, X is
the most 2k — ko significant bits of . We know
z =25 . X + R for some 0 < R < 2%, Thus,
z3 =z divN = ((2% . X) div N) + ((((2* - X) mod
N) + R) div N). Since R < 2k < 251 < N (Note
that kg < k — 1, since k, ko € N and kg < k.), we
have ((2% - X) mod N) + R < 2N. Hence, ((2%0 -
X)mod N + R) div N is equal to 0 or 1, and we
have 2o = (2% - X)div N or (2F - X)div N + 1.

It is easy to see that if x5 is correct then r =
Z1 + x2 - N is the pre-image of 3. Therefore, ¢ =
Advy FETC(k) > /2. Tt is easy to see that ¢/ <
t+ O(k3). O

3.2 The construction of PCD

In this section, we construct a family of Paillier’s
trap-door permutations with a common domain.

Definition 8 (family of Paillier’s trap-door
permutations with a common domain). The
specifications of the family of Paillier’s trap-door

permutations with a common domain PCD = (K, S, E)

are as follows. The key generation algorithm is
the same as that for Paillier. Dompcp(N, k) and
Rngpep (N, k, A) are both equal to {z1 +z2- N|(zy +
zz - N) € [0,2%%), z; € Zn, (z2 mod N) € Z4}.
The sampling algorithm returns a random point in
Dompcp(N, k). The evaluation algorithm E(z) =

Fpcep(z), and the inversion algorithm I(y) = Gpcp(y)

are as follows.

Function Fpcp(z)
U Fpep(2); v Fpep(u); y — Fpep(v)
return y

Function Fqp(z)
if (t < N¥) u«e Fp(z)elseu—z
return u

Function F2qp(u)
if (u < 2% - N?) vy« u+ N?
elseif 2% - N2 <u < N*) v« u
else v — u —~ N?
return v

Function F.p(v)
if (v < N?) y«— Fp(v) else y v
return y

Function Gpcp(y)
v — Ghep(¥); ¢ Ghep(v); T Ghep(u)
return
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Function GhLep(y)
if (y < N*) v« Gp(y) else vy
return v

Function G%cp(v)
if (v < 2% -~ N?) y v+ N?
elseif (22 ~ N2 <v < N?)ue—v
else u — v — N?
return u

Function Gdcp(u)
if (u < N?%) z «— Gp(u) else z —u
return &

The choice of N? from (22—1,2%) ensures that
all elements in Dom(Fpcp) are permuted by Fp at
least once. It is clear that Fpcp is bijective since
Fp is bijective.

3.3 Properties of PCD

In this section, the §-partial one-wayness of PCD
is equivalent to the one-wayness of PCD for § > 0.5
and the one-wayness of PCD is equivalent to the
one-wayness of Paillier.

Theorem 4. If PCD is one-way then PCD is -
partial one-way for > 0.5.

Proof. Let A be an algorithm that outputs the 2k—
ko most significant bits of the pre-image of its input
y € Rngpcp(V, k) with k& > kg (i.e. Aisa ((2k—
ko)/2k)-partial inverting algorithm for PCD with

—~pow—

k > ko), with success probability € = AdngD, v—ine (k)

where 0 = (2k — ko)/2k > 0.5, within time bound
t. We prove that there exists an algorithm B that
outputs a pre-image of y with success probability
¢ = Advégg"’g ~e(k) > €/2. within time bound
t' < t+ O(k®). We construct the algorithm B as
follows.
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Algorithm B((N, k), w)
X «— A((N, k), w)
c & {0,1}
To ((2"’0 X) leN) +c
w; —wmod N; wp «— wdivN

if (x> NVwy 2 N)
Y «w; - N 4+ (w2 mod N)
Y
1.1+ Nzy = ————— mod N?

find z; s.t. 1+ Nz (:L‘szdN)Nmo
else

Z—wy - N+w

Y2 — & mod N

find z; s.t.
1 z 2
1+Nw1=-—-1;,- “‘ﬁ—l + 32| mod N
) Ya
ze—xzy+xz9 N
return r
Analysis

Assume that w = wy +ws - N € Rngpep(N, k) and
T =z +z3- N = Gpco(y)-

B computes x3 like the inverting algorithm in the
proof of Theorem 3.

If 2o > N or wp > N, 7 is permuted by Fp only
once, and then, we have

wy + (we mod N) - N = Fp(x; + (22 mod N) - N).

Therefore, we can compute z; like the inverting
algorithm in the proof of Theorem 3 with replacing
z2 by 2 mod N and ws by wy; mod N.

If z; < N and we < N, z is permuted by Fp
twice, that is, w = Fp(Fp(z)). Assume that y =
Y1 + y2 - N = Fp(z). By the definition of Fp, we
have

vi-N+y,=(1+Nz)zY (mod N?)
and
Z=w-N+wp=(14+Ny)y) (mod N?).

Thus,

Z
(Ny1 =) 1+ Nzy)zd —9o = ;ﬁ—l (mod N?),
' 2

14+ Nzxy = LN [(—2;:,- - 1) +yz] (mod N?).
) p)

Since 1 + Nz; < N2,

Z
1+ Nzy = iN [(T - 1) +y2] mod N2, (1)
L) Lp)

Furthermore, y2 = ((1 + Nz)zd mod N?) mod
N = z} mod N, B can compute the right term
of equation 1. Therefore, B can compute z;.

Hence, if x5 is correct then z = 1 + x4 - N is the
pre-image of w, and we have ¢/ = Adv,l,'c“gf’;_f"“‘(k) >
€/2. Tt is also clear that t' <t + O(k®). a

It is clear that if PCD is 6-partial one-way then
PCD is one-way for § > 0.5. Thus, the f-partial
one-wayness of PCD is equivalent to the one-wayness
of PCD for 6 > 0.5.

We can prove the following theorem.

Theorem 5. If PCD is one-way then Paillier is
one-way.

It is clear that if Paillier is one-way then PCD is
one-way. Thus, the one-wayness of PCD is equiva-
lent to the one-wayness of Paillier.
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