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Canonical Data Structure for Probe Interval Graphs

R. Uehaxa(上原隆平)
Natural Science Faculty, Komazawa University (駒澤大学自然科学教室)
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Abst

Probe interval graphs are introduced to deal $\mathrm{w}$

as ageneralization of interval graphs. Polynomial 1
known. However, the complexity of the graph $\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{m}|$

this paper, extended $\lambda 4\mathcal{P}Q$-trees are proposed to 1
$\lambda 4\mathcal{P}Q$-tree for given probe interval graph can be $\mathrm{C}\mathrm{O}\Gamma_{l}^{1}$

tree is canonical, and hence we can solve the graph $\mathrm{i}$

time. Using the tree, we can determine that any two
relation cannot be determined without an $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}|$

nonprobe that would be probed in the next $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}\epsilon$

interval graphs for given probe interval graph.
Keywords: Bioinformatics, graph isomorphism, $\mathrm{P}^{1}$

1Introduction

The class of interval graphs was introduced in the
1950’s by Hajos and Benzer independently. Since
then anumber of interesting applications for interval
graphs have been found including to model the top0-
logical structure of the DNA molecule, scheduling,
and others (see [8, 15, 5] for further details). The
class of probe interval graphs is introduced by Zhang
in the assembly of contigs in physical mapping of
DNA, which is aproblem arising in the sequenc-
ing of DNA (see [17, 19, 18, 15] for background).
Aprobe interval graph is obtained from an interval
graph by designating asubset $P$ of vertices as probes,
and removing the edges between pairs of vertices in
the remaining set $N$ of nonprobes. That is, on the
model, only partial overlap information is given. A
few efficient algorithms for the class are known; the
recognition algorithms [11, 14, 10], and an algorithm
for finding atree 7-spanner(see [4] for details). The
recognition algorithm in [11] also gives adata struc-
ture that represents all possible permutations of the
intervals of aprobe interval graph.

Adata structure called $\mathcal{P}Q$-trees was developed
by Booth and Lueker to represent all possible per-
mutations of the intervals of an interval graph [3].
Korte and Mohring simplified the algorithm by in-
troducing M7 $Q$-trees[12]. An $\Lambda 4\mathcal{P}Q$ tree is canon-
ical; that is, given two interval graphs are isomorphic
if and only if their corresponding $\mathcal{M}\mathcal{P}Q$ trees are
isomorphic. However, there are no canonical $\mathcal{M}\mathcal{P}Q-$

trees for probe interval graphs. Given probe inter-
val graph, there are several non-isomorphic interval
graphs such that their interval representations are
consistent to thc probe interval graph.

In this paper, we extend M7 ($Q$-trees to repre-
sent probe interval graphs. An extended $\mathcal{M}\mathcal{P}Q$ tree

bract

ith the physical mapping and sequencing of DNA
time recognition algorithms for the graph class are
lorphism problem for the class is still unknown. In
represent the probe interval graphs. The extended
nstructed in $O(n^{2}+nm)$ time. An extended $\mathcal{M}\mathcal{P}Q-$

isomorphism problem for the graphs in $O(n^{2}+nm)$
$\prime 0$ nonprobes are independent, overlapping, or their
$\iota \mathrm{e}\mathrm{n}\mathrm{t}$ . Therefore, we can heuristically find the best
$\mathrm{e}\mathrm{n}\mathrm{l}$ . Also, we can enumerate all possible affirmative

robe interval graph.

is canonical, and it can be constructed in $O(n^{2}+nm)$

time. Thus the graph isomorphism (GI) problem for
probe interval graphs can be solved in $O(n^{2}+nm)$

time. From the theoretical point of view, the com-
plexity of the GI problem of probe interval graphs
was not known (see [16] for related results and ref-
erences). Thus the result improves the upper bound
of the graph classes such that the GI problem can
be solved in polynomial time.

From the practical point of view, the extended
$\mathcal{M}\mathcal{P}Q$-tree is very informative, which is beneficial
in the Computational Biology community. The ex-
tended $\mathcal{M}\mathcal{P}Q$-tree gives the information between
nonprobes in linear time; the relation of two non-
probes is either (1) independent, (2) overlapping,
or (3) not determined without experiments. Hence
it is sufficient to experiment on the nonprobes in
the case (3) to clarify the structure of the DNA se
quence. Moreover, we can find the nonprobe $v$ that
has most nonprobes $u$ such that $v$ and $u$ are in the
case (3). Therefore, we can heuristically find the
“best” nonprobe to fix the structure of the DNA
sequence. The extended $\mathrm{A}47$)($Q$-tree also represents
all possible permutations of the intervals of aprobe
interval graph as in [11].

Due to space limitation, all prm& and some
figures are omitted and can be found in afull
draft available at $\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w}$ .komazawa-u. $\mathrm{a}\mathrm{c}$ . $\mathrm{j}\mathrm{p}/$

“
$\mathrm{u}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}/\mathrm{p}\mathrm{s}/\mathrm{f}\mathrm{f}\mathrm{P}\mathrm{Q}\mathrm{p}\mathrm{i}\mathrm{g}$ .pdf.

2Preliminaries
An edge which joins two vertices of acycle but is not
itself an edge of the cycle is achord of that cycle. A
graph is $ck$ ordal if each cycle of length at least 4has
achord. Given graph $G=(V, E)$ , avertex $v$ $\in V$ is
simplicial in $G$ if $G[N(v)]$ is aclique in $G$ .
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2 $\epsilon$

Lemma 1 For any chordal graph, all simplicial ver-
tices can be found in linear time.

Interval graph representation: A graph $(V, F_{\lrcorner})$

with $V=\{v_{1}$ , $v_{2}$ , $\cdots$ , $v_{n}$ ] is an interval graph if there
is a set of intervals I $=\{I_{v_{1}}, I_{v_{2}}, \cdots, I_{v_{n}}\}$ such that
$\{v_{i}, vj\}\in E$ iff $I_{v}:\cap I_{v_{\mathrm{J}}}\neq\emptyset$ for each $i$ and $j$ with
$1\leq i,$ $j\leq n.$ We call the set $\mathcal{T}$ of intervals inter-
val representation of the graph. For each interval $I$ ,
we denote by $R(I)$ and $L(I)$ the right and left end-
points of the interval, respectively (hence we have
$\mathrm{L}(\mathrm{I})\leq R(I)$ and $I$ $=[L(I), R(I)])$ .

A graph $G=(V, E)$ is a probe interval graph if
$V$ can be partitioned into subsets $P$ and $N$ (cor-
responding to the probes and nonprobes) and each
$v\in V$ can be assigned to an interval $I_{v}$ such that
$\{u, v\}\in E$ iff both $I_{u}\cap I_{v}\neq\emptyset$ and at least one
of $\mathrm{u}$ and $v$ is in $P$ . In this paper, we assume
that $P$ and $N$ are given, and then we denote by
$G=(P, N, E)$ . Let $G=(P, N, E)$ be a probe in-
terval graph. Let $E^{+}$ be a set of edges $\{t_{1_{i}}t_{2}\}$ with
$t_{1}$ , $t_{2}\in N$ such that there are two probes $v_{1}$ and $v_{2}$ in
$P$ such that $\{v_{1},t_{1}\}\in E$ , {vu $\mathrm{t}2$ } $\in E$ , $\{v_{2}, t_{1}\}\in E,$

$\{v_{2}, t2\}\in E,$ and $\{v_{1}, v_{2}\}\not\in E.$ In the case, we have
$I_{t_{1}}\cap It_{2}\neq\emptyset$ . Each edge im $E^{+}$ is called an enhanced
edge, and the graph $G^{+}:=(P, N, E\cup E^{+})$ is said
to be an enhanced probe interval graph. For further
details and references can be found in $[5, 15]$ .

For given (enhanced) probe interval graph $G$ , an
interval graph $G’$ is said to be affirmative iff $G’$ gives
one possible interval representation of $G$ .

Given enhanced probe interval graph $G^{+}$ $=$

$(P, N, E\cup E^{+})$ , lct $u$ and $v$ be any two nonprobes
with $\{u, v\}\not\in E^{+}$ . Then, we say that $u$ intersects $v$ if
$I_{u}\cap I_{v}\neq\emptyset$ for all affirmative interval graphs of $G^{+}$ .
The nonprobes $u$ and $v$ are independent if $I_{u}\cap I_{v}=\emptyset$

for all affirmative interval graphs of $G^{+}$ . Otherwise,
we say that the nonprobe $u$ potentially intersects $v$ .
Intuitively, if $u$ potentially intersects $v$ , we cannot
determine their relation without experiments.
$\mathcal{P}Q$-trees and $\mathcal{M}\mathcal{P}Q$-trees: $\mathcal{P}Q$-trees were intr0-
duced by Booth and Lueker [3], and which can be
used to recognize interval graphs as follows. A $\mathcal{P}Q-$

tfte is a rooted tree $T$ with two types of internal
nodes: $\mathcal{P}$ and $Q$ , which will be represented by cir-
cles and rectangles, respectively. The leaves of $T$ are
labeled 1-1 with the maximal cliques of the interval
graph $G$ . The frontier of a $\mathcal{P}Q$ tree $T$ is the permu-
tation of the maximal cliques obtained by the order-
ing of the leaves of $T$ from left to right. $\mathcal{P}Q$ tree $T$

and $T’$ are equivalent ifone can be obtained from the
other by applying the following rules a finite number
of times; arbitrarily permute the successor nodes of
a $\mathcal{P}$-node, or reverse the order of the successor nodes
of a $Q$-node. A graph $G$ is an interval graph iff there

is a $\mathcal{P}Q$ tree $T$ whose frontier represents a consec-
utive arrangement of the maximal cliques of $G$ . If
$G$ is an interval graph, then all consecutive arrange-
ments of the maximal cliques of $G$ are obtained by
taking equivalent $\mathcal{P}$ Q-trees.

Lueker and Booth [13], and Colbourn and Booth
[6] developed labeled $\mathcal{P}Q$-traes in which each node
contains information of vertices as labels. Their la-
beled $\mathcal{P}Q$-trees are canonical] given interval graphs
$G_{1}$ and $G_{2}$ are isomorphic iff corresponding labeled
$\mathcal{P}Q$-trees $T_{1}$ and $T\underline,$ are isomorphic.

$\Lambda 4\mathcal{P}Q$-trees are developed by Korte and M\"ohring
to simplify the construction of $\mathcal{P}Q$-trees [12]. The
$\Lambda\{\mathcal{P}Q$ tree $T^{*}$ assigns sets of vertices to the nodes
of a $\mathcal{P}Q$ tree $T$ representing an interval graph $G=$

$(V, E)$ . A $\mathcal{P}$-node is assigned only one set, while a
$Q$-node has a set for each of its sons (ordered from
left to right according to the ordering of the sons).

For a $\mathcal{P}$ node $\hat{P}$ , this set consists of those vertices
of $G$ contained in all maximal cliques represented by
the subtree or $\hat{P}$ in $T$ , but in no other cliques1 . For
a $Q$ node $\hat{Q}$ , the definition is more involved. Let
$Q_{1}$ , $\cdots$ , $Q_{m}(m\geq 3)$ be the set of the sons (in con-
secutive order) of $\hat{Q}$ , and let $T_{\dot{*}}$ be the subtree of
$T$ with root $Q:$ . We then assign a set $S_{i}$ , called
section, to $\hat{Q}$ for each $Q_{\dot{l}}$ . Section $s_{i}$ contains all
vertices that are contained in all maximal cliques of
$T_{i}$ and some other $Tj$ , but not in any clique belong-
ing to some other subtree of $T$ that is not below
$\hat{Q}$ . The $\mathcal{M}\mathcal{P}Q$-tree directly corresponds to the la-
beled $\mathcal{P}Q$-tree; the sets of vertices assigned in the
$\lambda 4\mathcal{P}Q$-tree directly correspond to the “characteris-
tic nodes” in [6]. Thus the $\mathcal{M}\mathcal{P}Q$-tree is canonical
(although it does not shown explicitly in [12]). Thus
the graph isomorphism problem for interval graphs
cm be solved in linear time using the $\mathrm{W}\mathcal{P}Q$-trees,
which can be obtained without constructing $\mathcal{P}$ Q-
trecs in [3]. The property of $\mathcal{M}\mathcal{P}Q$-tree for interval
graphs is summarized as follows:

Theorem 2 Let $T^{*}$ be the canonical $\mathcal{M}\mathcal{P}Q$-tree for
given interval graph $G=(V, E)$ . (a) $T^{*}$ can be ob-
tained in $O(|V|+|E|)$ time and $O(|V|)$ space, (b)
Each maximal clique of $G$ corresponds to a path in
$T^{*}$ from the root to a leaf, where each vertex $v\in V$

is as close as possible to the root, (c) In $T^{*}$ , each
vertex $v$ appears in either one leaf, one $\mathcal{P}$-node, or
consecutive sections $S_{\dot{\iota}}$ , $S_{\dot{*}+1}$ , $\cdots$ , $S_{\dot{|}+j}$ (with $j>0$)
in a $Q$-node. (d) The root of $T^{*}$ contains all vertices
belonging to all maximal cliques, while the leaves
contain the simplicial vertices.

Lemma 3 Let $\hat{Q}$ be a $Q$-node in the canonical
$\mathcal{M}\mathcal{P}Q$ tree Let $S_{1}$ , $\cdots$ , $S_{k}$ (in this order) be the

$1\mathrm{W}\mathrm{e}$ will use $\hat{P},\hat{Q}$ , and $\hat{N}$ for describing a $p$-node, $Q$-node, any node, respectively to $\mathrm{d}\dot{0}\mathrm{e}$tinguishprobe et $P$ and nonprobe
set $N$ .
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sections of $\hat{Q}$ , and let $U_{i}$ denote the set of vertices
occurring below $S_{\dot{\mathrm{z}}}$ with $1\leq i\leq k.$ Then we have
the following; (a) $S_{i-1}\cap s_{i}\neq\emptyset$ for $2\leq i\leq k,$ (b)
$S_{1}\subseteq S_{2}$ and $S_{k}\subseteq S_{k-1}$ , (c) $U_{1}\neq\emptyset$ and $U_{\lambda}$. $\neq\emptyset$ ,
(d) $(S_{i}\cap S_{i+1})\backslash S_{1}\neq\emptyset$ and $\mathrm{S}\mathrm{t}-\mathrm{i}\cap S_{\dot{*}}$ ) $\backslash S_{k}\neq\emptyset$ for
$2\leq i\leq k-1$ , (e) $s_{i-1}\neq S_{i}$ with $2\leq i\leq k-1,$ and
(f) $(\mathrm{S},--\mathrm{i}\cup U_{\dot{\mathrm{a}}-1})\backslash S_{i}\neq\emptyset$ and $(S_{i}\cup U_{i})\backslash S_{\dot{*}-1}\neq\emptyset$

for $2\leq i\leq k.$

Extended MVQ-trees: If given graph is an inter-
val graph, the corresponding $\mathcal{M}\mathcal{P}Q$-tree is uniquely
determined up to isomorphism. However, for a
probe interval graph, this is not in the case. For
example, consider a probe interval graph $G=$
$(P, N, E)$ with $P=\{1,2,3,4,5,6,7,8,9\}$ and $N=$

$\{a, b, c, d, e, f, g\}$ given in Fig. 1. If the graph does
not contain the nonprobe $g$ , we have the canoni-
cal MVQ-tree in Fig. 2. However, the graph is a
probe interval graph md we do not know if $g$ inter-
se ts $b\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ $c$ since they are nonprobes. Accord-
ing to the relations between $g$ and $b$ $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}c$ , we
have four possible $\mathcal{M}\mathcal{P}Q$-trees that are affirmative
to $G$ shown in Fig. 3, where $X$ is either {1, 2, 7, 8},
$\{1, 2, 7, 8, c\}$ , or $\{1, 2, 7, 8, b, c\}$ . We call such a ver-
tex $g$ floating leaf (later, it will be shown that such
a vertex has to be a leaf in an $\mathcal{M}\mathcal{P}Q$-tree). For a
floating leaf, there is a corresponding $Q$-node (which
also will be shown later). Thus we extend the n0-

tion of a $Q$-node to contain the information of the
floating leaves. A floating leaf appears consecutive
sections of a $Q$-node $\hat{Q}$ as the ordinary vertices in
$\hat{Q}$ . To distinguish them, we draw them over the cor-
responding sections; see Fig. 4. Further details will
be discussed in Section 3.

3 Construction of Extended
$\mathcal{M}’PQ$-tree of Probe Interval
Graph

Let $G=(P, N, E)$ be a given probe interval graph,
and $G^{+}=(P, N, E\cup E^{+})$ be the corresponding
enhanced probe interval graph, where $E^{+}$ is the
set of enhanced edges. In our algorithm, simpli-
cial nonprobes play an important role; we partition
the set $N$ of nonprobes to two sets $N^{*}$ and $N_{s}$ de-
fined as follows; $N_{S}:=$ { $u|\mathrm{u}$ is simplicial in $G^{+}$ },
and $N^{*}:=N\backslash N_{S}$ . For example, for the graph
$G=(P, N, E)$ in Fig. 1, $E^{+}=\{\{c,d\}, \{e, f\}\}$ ,
$Ns=\{a, e,g\}$ , md $N^{*}=\{b, c, d, f\}$ . The outline
of the algorithm is as follows:

$\mathrm{A}0$ . Given probe interval graph $G=(P, N, E)$ ,
compute the enhanced probe interval graph
$G^{+}=(P, N, E\cup E^{+})$ ;

Al. Partition $N$ into two subsets $N^{*}$ and $N_{s}$ ;

A2. Construct the $\mathcal{M}\mathcal{P}Q$-tree $T^{*}$ of $G^{*}$ $=$

$(P, N^{*}, E^{*})$ , where $E^{*}$ is the set of edges in-
duced by $P\cup N^{*}$ from $G^{+};$

A3. Embed each nonprobe $v$ in $Ns$ into $T^{*}$ .

Note that the tree constructed in step A2 is an ordi-
nary MVQ-tiee. In step A3, it will be modified to
the extended $\mathcal{M}\mathcal{P}Q$-tree. The following observation
is obtained by definition:

Observation 4 Let $v$ be a nonprobe in $Ns$ . Then
for any two vertices $u_{1}$ , $u_{2}\in N_{G}+(v)$ , $I_{u_{1}}\cap I_{u_{2}}\neq\emptyset$ .

3.1 Construction of $\mathcal{M}\mathcal{P}Q$ tree of $G^{*}$

Let $G^{*}=(P, N^{*}, E^{*})$ be the enhanced probe in-
terval graph induced by $P$ and $N^{*}$ . The following
lemma plays an important role.

Lemma 5 Let $u$ and $v$ be any nonprobes in $N^{*}$ .
Then there is an interval representation of $G^{*}$ such
that $I_{u}\cap I_{v}\neq\emptyset$ iff $\{u, v\}\in E^{+}$ .

The definition of (enhanced) probe interval graphs
and Lemma 5 imply the main theorem in this $\sec-$

$\mathrm{f}$ our

Theorem 6 The enhanced probe interval graph $G^{*}$

is an interval graph,

Hereafter we call the graph $G^{*}=(P, N^{*}, E^{*})$ the
backbone interval graph of $G^{+}=(P, N, E\cup E^{+})$ . For
any given interval graph, its corresponding $\mathcal{M}\mathcal{P}Q-$

tree can be computed in linear time [12]. Thus we
also have the following corollary:

Corollary 7 The $\mathcal{M}\mathcal{P}Q$-tree $T^{*}$ of $G^{*}$ can be com-
puted in linear time.

In the $\Lambda 4\mathcal{P}Q$ tree $T^{*}$ , for each pair of nonprobes
$u$ and $v$ , their corresponding intervals intersect iff
$\{u, v\}\in E^{+}$ . This implies the following observation.

Observation 8 The $\Lambda 4\mathcal{P}Q$ tree $T^{*}$ gives us the
possible interval representations of $G^{*}$ such that two
nonprobes in $N^{*}$ do not intersect as possible as they
can.

Figure 5: The canonical $\mathcal{M}\mathrm{M}\mathrm{V}Q$-tree $T^{*}$ of $G^{*}$

For example, for the graph $G=(P, N, E)$ in Fig. 1,
the canonical $\mathcal{M}\mathcal{P}Q$-tree of the backbone interval
graph $G^{*}=(P, N^{*}, E^{*})$ is described in Fig. 5. In
the $\mathcal{M}\mathcal{P}Q$ tree $I_{d}\cap I_{f}=\emptyset$ , while $I_{d}\cap If\neq\emptyset$ in
Fig. 1.
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$4b\underline{-g}\overline{2}\underline{\overline{-e}}$

–58

3.2 Embedding of Nonprobes in $N_{S}$

Lemma 9 For each nonprobe $v$ in $Ns$ , all vertices
in $N(v)$ are probes.

Lemma 10 For any probe interval graph $G$ , there
is an affirmative interval graph $G’$ such that every
nonprobe $v$ in $Ns$ of $G$ is also simplicial in $G’$ .

By Lemma 10 and Theorem $2(\mathrm{d})$ , we have the
following corollary.

Corollary 11 For any probe interval graph $G$ ,
there is an affirmative interval graph $G’$ such that
every nonprobe $v$ in $Ns$ of $G$ is in a lea $\mathrm{f}$ the $\mathcal{M}\mathcal{P}$ Q-
tree of $G’$ .

Our embedding is an extension of the embedding
by Korte and M\"ohring [12] to deal with nonprobes.
Each node $\hat{N}$ (including $Q$-node) of the current tree
$T^{*}$ and each section $S$ of a $Q$-node is labeled accord-
ing to how the nonprobe $v$ in $N_{S}$ is related to the
probes in $\hat{N}$ or $S$ . Nonprobes in $\hat{N}$ or $S$ are ignored.
The label is $\infty$ , 1, or 0 if $v$ is adjacent to all, some,
or no probe from $\hat{N}$ , or $S$ , respectively. Empty sets
(or the sets containing only nonprobes) obtain the
label 0. Labels 1 and $\infty$ are called positive labels.

Lemma 12 For a nonprobe $v$ in $Ns$ , all nodes with
positive labels are contained in a unique path of $T^{*}$ .

Let $\mathrm{P}’$ be the unique minimal path in $T^{*}$ contain-
ing all nodes with positive label. Let $\mathrm{P}$ be a path
from the root of the MVQ-tree $T^{*}$ to a leaf contain-
ing $\mathrm{P}’$ (a leaf is chosen in any way). Let $\hat{N}_{*}$ be the
lowest node in $\mathrm{P}$ with positive label. If $\mathrm{P}$ contains
nonempty $\mathcal{P}$-nodes or sections above $\hat{N}_{*}$ with label

$\overline{-\underline{dc}}f$ $)\mathrm{N}\mathrm{o}\mathrm{n}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{e}\mathrm{e}$

$\overline{-\underline{-9-}}_{6}^{1}37$ $1^{\mathrm{P}\mathrm{m}\mathrm{b}\mathrm{e}\epsilon}$

0 or 1, let $\hat{N}^{*}$ be the highest such $\mathcal{P}$-node or Q-node
containing the section. Otherwise put $\hat{N}_{*}=\hat{N}^{*}$ .

When $\hat{N}_{*}\neq\hat{N}^{k}$ , we have the following lemma:

Lemma 13 We assume that $\hat{N}_{*}\neq\hat{N}^{*}$ . Let $\hat{Q}$ be
any $Q$-node with sections $S_{1}$ , $\cdots$ , $S_{k}$ in this order
between $\hat{N}_{*}$ and $\hat{N}^{*}$ . If $\hat{Q}$ is not $\hat{N}^{*}$ , all neighbors
of $v$ in $\hat{Q}$ appear in either $S_{1}$ or $S_{k}$ .

We are now ready to use the bottom-up strategy
from $\hat{N}_{*}$ to $\hat{N}^{*}$ as in [12]. In our algorithm, the step
A3 consists of the following substeps;

A3.1. while there is a nonprobe $v$ such that $\hat{N}_{*}\neq$

$\hat{N}^{*}$ for $v$ , embed $v$ into $T^{*};$

A3.2. while there is a nonprobe $v$ such that $\hat{N}_{*}=$

$\hat{N}^{*}$ for $v$ and $v$ is not a floating leaf, embed $v$

into $T^{*};$

A3.3. embed each nonprobe $v$ (such that $\hat{N}_{*}=$

$\hat{N}^{*}$ for $v$ and $v$ is a floating leaf) into $T^{*}$ .
As shown later, an embedding of a nonprobe $v$ with
$\hat{N}_{*}\neq\hat{N}^{*}$ merges some nodes into one new Q-node.
Thus, during step A3.1, embedding of a nonprobe $v$

cm change the condition of other nonprobes $\mathrm{u}$ from
$” N_{*}\neq N^{*}$

” to $” N_{*}=N^{*}$”. We note that A3.1 and
A3.2 do not generate floating leaf, md all float-
ing leaves are embedded in step A3.3, which $\mathrm{w}\mathrm{i}\mathrm{h}$ be
shown later. Hence the templates used in steps A3. 1
and A3.2 are not required to manage floating leaves.

Hereafter, we suppose that the algorithm picks
up some nonprobe $v$ from $Ns$ md it is going to em-
bed $v$ into $T^{*}$ . In most cases, the vertex set $V_{N}$

of the current node or section is partitioned into $A$ ,
$B$ , and $C$ defined as follows; $A:=P\cap V_{N}\cap N(v)$ ,
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$B:=(P\cap V_{N})\backslash A$ , and $C:=N\cap V_{N}$ . Since we extend
the templates in [12], we use the same names of tem-
plates as $\mathrm{L}\mathrm{I}$ , P2, and so on, which is an extension of
the corresponding templates in [12] (templates from
Q4 to Q7 are new templates). We also use the help
templates Hl and H2 in [12] if they can be applied;
it is simple $\mathrm{m}d$ omitted here. Due to space limita-
tion, templates Ll, L2, $\mathrm{P}\mathrm{I}$ , P2, P3, Ql-l, Q1-2, Q3,
and Q6 are omitted here. Through the embedding,
we keep the following assertion:
Assertion 14 (1) Each nonprobe in $Ns$ has no in-
tersection with unnecessary nonprobes, (2) each leaf
contains either vertices in $P\cup N^{*}$ or one nonprobe
in $Ns$ , and (3) each nonprobe in $Ns$ is in a leaf.
3.2.1 Templates for nonprobe with $\hat{N}_{*}=\hat{N}^{*}:$

We first assume that $\hat{N}^{*}=\hat{N}_{*}$ , which occurs in steps
A3.2 md A3.3. If the node is a leaf or a $\mathcal{P}$-node, we
use template Ll or $\mathrm{P}\mathrm{I}$ , respectively. If $\hat{N}^{*}=\hat{N}_{*}$ is a
$Q$-node with sections $S_{1}$ , $\cdots$ , $S_{k}$ in this order, $v$ can
be a floating leaf. We let $A:=( \bigcup_{1\leq t\leq k}S_{\dot{1}})\cap N(v)$ .
Let $\ell$ be the minimum index with $A\subseteq S_{l}$ and $r$ be
the maximum index with $A\subseteq Sr$ . That is, $A$ \not\subset $S_{i}$

for each $i<\ell$ and $i>$ r, and $A\subseteq S_{j}$ for each
$\ell\leq j\leq r.$ Then there are four cases:
(a) $l$ $=1$ and $A\subset S_{t}\cap P.$ In the case, $v$ may be a
leaf of a new section So $:=A\subset S_{1}$ . The case $\mathrm{r}$ $=k$

and $A\subset S_{k}\cap P$ is symmetric.
(b) $A=S_{j}\cap P$ for some $\ell\leq j\leq f.$ In the case, $v$

may be a leaf under the section $S_{j}$ .

Figure 6: Template Q2 for (1) $\hat{N}_{*}$ $=\hat{N}^{*}$ and
$A\subset s_{1}\cap P,$ or (2) $\hat{N}=N_{*}\neq N*,$ $A\subseteq S_{1}$ , and
$A$ \not\subset $\bigcap_{1\leq i\leq k}S_{*}$.
(c) $A=Sj\cap Sj+1$ $\cap P$ for some $I$ $\leq j<f.$ In
the case, $v$ may be a leaf under the new section
$S:=A\cup(Sj\cap S_{j+1}\cap N)$ between $S_{j}$ and $Sj+1$ .
(d) $S_{j}\cap S_{j+1}\cap P\subset A\subset S_{j}\cap P$ or $S_{j}\cap S_{j+1}\cap P\subset A\subset$

$S_{j+1}\cap P$ for some $l$ $\leq j<r.$ In the case, $v$ may be a
leaf under the new section $S:=A\cup(S_{j}\cap S_{j+1}\cap N)$

between $S_{j}$ and $S_{j+1}$ .
The algorithm checks if the position of the $v$ is

uniquely determined. If it is uniquely determined,
the algorithm embeds $v$ into the place in step A3.2.
If exactly one of the cases (a) to (d) occurs, we use
a template as follows. In (a), template Q2 in Fig. 6
is used. In (b), we use one of three templates Q6-1,
Q6-2, md Q6-3 as follows; if the section $Sj\mathrm{h}\mathrm{a}8$ no
child, template Q6-1 is used and $v$ is added as a leaf
under $S\mathrm{j}$ ; if the root of the subtree under $Sj$ is a $\mathcal{P}$-

node with empty label, template Q6-2 is used and
$v$ is added as a leaf under the $\mathcal{P}- \mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}_{\mathrm{t}}$

. or otherwise,
template Q6-3 is used and $v$ is added as a leaf under

a new $\mathcal{P}$-node with empty label under $S_{j}$ . We note
that Assertion 14(2) holds if $\hat{R}$ contains nonprobes.
In (c) or (d), template Q2 in Fig. 6 is used (we have
$A\cup(Sj\cap Sj+1\cap N)=Sj\cap S_{J}+1$ in (c) $)$ . We have one
more case that the position of the $v$ may be uniquely
determined; $l$ $=1$ , $r=k,$ and $(S_{j}\cap S_{i+1}\cap P)\backslash A\neq\emptyset$

for each $1\leq i<k.$ In the case, we use the template
Ql-l. If the position is not uniquely determined, $v$

is a floating leaf. In the case, the embedding is post-
poned until step A3.3, where we use template Q4 in
Fig. 8 for such $\ell$ and $r(R_{\dot{*}}$ denotes the set of floating
leaves in $S_{\dot{*}}$ ). If $v$ can be a floating leaf under some
sections $S$ (including non-existent sections), we say
$v$ can hang down $S$ .

Figure 7: Template Q7 for $\hat{N}_{*}=\hat{N}^{*}$ and $S_{j}\cap S_{\mathrm{j}+1}\cap$

$P\subset A\subseteq S_{j+1}\cap P$ or $S_{j}\cap S_{j+1}\cap P\subset A\subseteq S_{j}\cap P$

Figure 8: Template Q4 for floating leaf $v$

We have the following observation.

Observation 15 In steps A3.2 and A3.3, all Q-
nodes are neither divided nor merged.

3.2.2 Templates for nonprobe with $\hat{N}_{*}\neq\hat{N}^{*}:$

When $\hat{N}_{*}\neq\hat{N}^{*}$ , we use the bottom-up strategy from
$\hat{N}_{*}$ to $\hat{N}^{*}$ as in [12]. Let $\hat{N}$ denote the current node
that starts from $N_{*}$ and ends up at $\hat{N}^{*}$ . The al-
gorithm consists of three phasae; (1) $\hat{N}=N_{*}$ , (2)
$\hat{N}\neq\hat{N}_{*}$ and $\hat{N}\neq\hat{N}^{*}$ , and (3) $\hat{N}=\hat{N}^{*}$ . The first
two phases are the extensions of the templates in
[12] by Lemmas 12 and 13 which correspond to [12,
Lemma 4.1]. However, the algorithm uses one more
template in the third phase since Lemma 13 does
not hold. The templates in the case $\hat{N}_{*}\neq\hat{N}^{*}$ never
generate floating leaves. Therefore, since they are
applied in step A3.1, the templates in the case are
not required to manage floating leaves.



33

Figure 9: Template Q5 for $\tilde{N}=N^{*}\neq N_{*}$ and $B\subseteq S_{|+1}’$.

(1) $\hat{N}=\hat{N}_{*}\neq\hat{N}^{*}$ . Since the label of $\hat{N}=\hat{N}_{\mathrm{r}}$ is
positive, $A:=\hat{N}\cap$

$N(\mathrm{v})$ $\neq 0.$ If $\hat{N}$ i8 a leaf or a
$\mathcal{P}$-node, the algorithm uses template L2 or P2, re-
spectively. When $\hat{N}$ is a $Q$-node, we cm use Lemmas
12 and 13 in this case. Thus we have two subcases,
which correspond to templates Ql and Q2 in [12].
By Lemma 13, we assume that $A\subseteq S_{1}$ without loss
of generality. The algorithm uses template Q1-2 if
$A\subseteq S_{k}$ , and otherwise, it uses template Q2 in Fig. 6.

Observation 16 In any case, $v$ becomes a leaf $[v]$

under a non-empty section $S_{1}$ of a $Q$-node since
$A\neq\emptyset$ .

(2) $\hat{N}\neq N_{*}$ and $\hat{N}\neq N^{*}$ . If $\hat{N}$ is a $\mathcal{P}$-node,
the algorithm uses template P3. If $\hat{N}$ is a Q-node,
we can use Lemmas 12 and 13 again and the algx
rithm uses template Q3. By a simple induction of
the length of the path $\mathrm{P}$ with Observation 16, we
again have the following observation (since $S_{1}\neq\emptyset$

$)$ :

Observation 17 In my case, $v$ becomes a leaf $[v]$

under a non-empty section $S_{1}$ of a Q-node.

(3) $\hat{N}=N^{*}\neq N_{*}$ . If $\hat{N}$ is a $\mathcal{P}$-node, the also
rithm uses the template P3 again. If $\hat{N}$ i8 a Q-node,
we cannot use Lemmas 13. Let $S_{*}’$ be the section in
$\hat{N}$ such that the subtree $T_{\dot{l}}’$ contains $[v]$ . If $S_{i}’$ is the
leftmost or rightmost section in $\hat{N}$ , we can use the
template Q3 again. Thus we assume that $1<i<k’$ ,
where $k’$ is the number of sections in the $Q$-node $\hat{N}$ .
Let $S_{\dot{*}-1}’$ and $S_{\dot{*}+1}’$ be the left and right sections of
$S_{\}’$., respectively. We now define $A:=N(v)\cap S_{\dot{*}}’$ and
$B:=$ $(S_{\dot{*}}’ \cap P)$ $\backslash A$ . Then, since the label of $S_{i}’$ is 0
or 1, we have $B\neq\emptyset$ . For the set $B$ , we have the
following lemma:

Lemma 18 Either $B\subseteq S_{\dot{*}+1}’\backslash S_{*-1}’$. or $B\subseteq S_{\dot{\iota}-1}’\backslash$

$s_{+1}’\dot{.}$ .

Without loss of generality, we assume that
Lemma 18(a) occurs. That is, all vertices in $B$ ap-
pear from the section $S_{*}’$. to the some sections on the
right side of $S_{\dot{1}}’$ . Let C’ $:=s_{i-1}^{l}\cap s_{i}’\cap N.$ That i\S ,
$C’$ is the set of nonprobes appearing both of $S_{i-1}’$

and Si. Then we use template Q5 in Fig. 9. In

the figure, $C$ denotes the nonprobes in $S_{i}’$ ; that is,
$S_{\dot{\iota}}’=A$ $\cup B$ $\cup C$ and $C’\subseteq C$ .

Example 19 For the graph $G=(P, N, E)$ in Fig. 1
with its backbone interval graph in Fig. 5, the ex-
tended $\lambda 4\mathcal{P}Q$-tree $\tilde{T}$ is shown in Fig. 4. The alg0-
rithm uses templates L2 and Q3 to embed $a$ , and
uses template Q4 to embed $g$ since it is a float-
ing leaf. For the nonprobe $e$ , only the case (c)
in Section 3.2.1 can be applied; {1,2,7,8, c, $d$} $\cap$

{ 1, 2, 6, 7, $c$ , $d$] $\cap$ $F=\{1,2,7\}=$ N(v). Thus its
position is uniquely determined, and embedded be-
tween the sections. Note that we can know that $e$

intersects both of $c$ and $d$ with neither experiments
nor enhanced edges. We also note that $I_{a}$ and $I_{b}$

could have intersection, but they are standardized
according to Assertion 14(1).

3.3 Analysis of Algorithm
Since the correctness of steps $\mathrm{A}\mathrm{O}$ , Al, and A2 fol-
lows from Theorem 6, we concentrate on step A3.
First, the templates cover all formally distinct cases.
All templates for the case $\hat{N}_{*}=\hat{N}^{*}$ with the help-
templates Hl and H2 in [12] are easily shown to be
correct. Thus we consider the case $\hat{N}_{*}\neq\hat{N}^{*}$ .

Theorem 20 When $\hat{N}_{*}\neq\hat{N}^{*}$ , $v$ is not a floating
leaf.

Theorem 21 The resulting extended $\lambda 4\mathrm{M}\mathrm{V}Q$-tree is
canonical up to isomorphism.

Theorem 22 For given probe interval graph $G=$

$(P, N, E)$ , let $\tilde{T}$ be the canonical extended $\mathcal{M}\mathcal{P}Q-$

tree, and $G^{+}$ $=$ $(P, N, E\cup E^{+})$ bc thc corre-
sponding enhanced interval graph. Let $\tilde{E}$ be the
set of edges { $v_{1}$ , $v_{2}]$ joining nonprobes $v_{1}$ md $v_{2}$

which is given by $T$ ; more precisely, we regard $\tilde{T}$

as an ordinary $\Lambda 4\mathcal{P}Q$-tree, and the graph $\tilde{G}=$

$(P\cup N, E\cup E^{+}\cup\tilde{E})$ is the interval graph given
by the $\mathcal{M}\mathcal{P}Q$-tree $\tilde{T}$ (thus a floating leaf is not a
leaf; the vertex appears in consecutive sections in
the corresponding $Q$-node). Then $\tilde{T}$ can be com-
puted in $\mathit{0}(( |P|+|N|) |E|+|E^{+}|+|E|)$ time

and $\mathit{0}( |P|+|N|+|E|+|E^{+}|+|E|)$ space
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Corollary 23 The graph isomorphism problem for
the class of (enhanced) probe interval graphs $G$ is
solvable in $O(n^{2}+nm)$ time and $O(n^{2})$ space, where
$n$ and $m$ are the number of vertices and edges of an
affirmative interval graph of $G$ , respectively.

4 Application
We consider the following problem:

Input: An enhanced probe interval graph $G^{+}=$

$(P, N, E \cup E^{+})$ and the canonical extended
$\mathcal{M}\mathcal{P}Q$Tree $\tilde{T}$ ;

Output: Mapping $f$ from each pair of nonprobes
$u$ , $v$ with $\{u, v\}\not\in E^{+}$ to “intersecting” , $\ell$‘po-
tentially intersecting”, or “independent” ;

We denote by $E_{i}$ and $E_{p}$ the sets of the pairs of
intersecting nonprobes, and the pairs of potentially
intersecting nonprobes, respectivcly. That is, each
pair of nonprobes $u$ , $v$ is either i $\mathrm{n}$

$E^{+}$ , $E_{\dot{\mathrm{a}}}$ , $E_{p_{1}}$ or
otherwise, they are independent.

Theorem 24 The sets $E_{i}$ and $E_{p}$ can be computed
in $O( |E|+|E^{+}|+|E_{j} |+|E_{\mathrm{p}}|)$ time for given en-
hanced probe interval graph $G^{+}=(P, N, E\cup E^{+})$

and the extended $\mathcal{M}\mathcal{P}$QTree $\tilde{T}$ .

By Theorem 24, we can heuristically find the “best”
nonprobe to fix the structure of the DNA sequence:

Corollary 25 For given enhanced probe interval
graph $G^{+}=(P, N, E\cup E^{+})$ and the canonical cx-
tended $\mathcal{M}\mathcal{P}Q-$Tree $\tilde{T}$ , we can find the nonprobe $v$

that has most potentially intersecting nonprobes in
$O( |E|+|E^{+}|+|E|.|+|E_{p}|)$ time
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