RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Procedures for Multiple Input Functions with DNA Strands

Title (Evolutionary Advancement in Fundamental Theories of
Computer Science)
Author(s) | Kamio, Satoshi; Fujiwara, Akihiro
Citation O0O0O0OooDOgd (2004), 1375: 188-194

Issue Date | 2004-05
URL http://hdl.handle.net/2433/25595
Right
Type Departmental Bulletin Paper

Textversion

publisher

Kyoto University

oooooooOooo 13750 2004 0O

188-194

188

Procedures for Multiple Input Functions with DNA Strands

R %8 5 (Satoshi Kamio)

BEJR BEZ (Akihiro Fujiwara)
JUNTRRZERERR FHRTFZHIEH

Department of Computer Science and Electronics

Abstract

In recent works for high performance computing,
computation with DNA molecules, that is, DNA com-
puting, has considerable attention as one of non-silicon
based computing. In this paper, we propose two proce-
dures for computing multiple input functions. We first
propose a simple procedure for computing AND func-
tion. The procedure runs in O(1) steps using O(mn)
DNA strands for n binary numbers of m bits. We next
propose a procedure for EX-OR function. The proce-
dure runs in O(1) steps using O(mn?) DNA strands,
and is also applicable to other functions, such as major-
ity and threshold functions.

1 Introduction

In recent works for high performance computing,
computation with DNA molecules, that is, DNA com-
puting, has considerable attention as one of non-silicon
based computing. The DNA has two important fea-
tures, which are Watson-Crick complementarity and
massive parallelism. Using the features, we can solve an
NP-complete problem, which usually needs exponential
computation time on a silicon based computer, in a poly-
nomial number of steps with DNA molecules. There are
a number of works with DNA molecules for combinato-
rial N P-complete problems[1, 2, 9, 10, 15].

However, procedures for primitive operations, such as
logic or arithmetic operations, are needed to apply DNA
computing on a wide range of problems. A number of
procedures have been proposed for the primitive opera-
tions with DNA molecules[3, 4, 5, 6, 7, 12]. Fujiwara
et al.[4] have proposed addressable procedures for the
primitive operations. They first showed a DNA repre-
sentation of n binary numbers of m bits, and they pro-
posed procedures which compute logic operations and
additions of pairs of two binary numbers. The proce-
dures run in O(1) steps using O(mn) DNA strands for
n pairs of two binary numbers. Recently, Kamio et al.[8]
proposed three procedures for computing the maximum
of n binary numbers of m bits. The first procedure con-
sists of a repetition of checking on m bit positions, and
runs in O(m) steps using O(n) different DNA strands.
The second procedure consists of a repetition of paral-
lel comparisons of two numbers, and runs in O(logn)

Kyushu Institute of Technology

steps using O(mn) different DNA strands. The third
procedure mainly consists of O(n2) parallel compar-
isons, and runs in O(1) steps using O(mn?) different
DNA strands.

In this paper, we propose two procedures for comput-
ing multiple input functions. An input of the function
is a set of n binary numbers of m bits, and an output is
a binary number of m bits, which is defined by a n in-
put logic function. We first show a simple procedure for
computing AND function. The procedure runs in O(1)
steps using O(mn) different DNA strands for n binary
numbers. The procedure is also applicable to other sim-
ple logic functions, such as OR, NAND and NOR. We
next propose a procedure for EX-OR function. The pro-
cedure runs in O(1) steps using O(mn?) DNA strands,
and is also applicable to other functions, such as major-
ity and threshold functions.

2 Preliminaries

2.1 Computational model for DNA com-
puting

A number of theoretical or practical computational
models have been proposed for DNA computing(1, 6,
7,9, 12, 13, 14]. A computational model used in this
paper is the same model as [4]. We briefly introduce the
model in this subsection.

A single strand of DNA is defined as a string of sym-
bols over a finite alphabet X. We define the alphabet
Y= {0’0,0‘1, ey Um_l,ﬁo,al, v ,Em_.l}, where the
symbols 0;,7; (0 < 7 < m — 1) are complements. Two
single strands form a double strand if and only if the
single strands are complements of each other. A double

(4
7 |
The single or double strands are stored in a test tube.
For example, T} = {0¢01,7167} denotes a test tube in
which two kinds of single strands ogo, G100 are stored.
Using the DNA strands, the following eight DNA
manipulations are allowed on the computational model.
Since these eight manipulations are implemented with
a constant number of biological steps for DNA
strands[11], we assume that the complexity of each ma-
nipulation is O(1). (See {4] for details of the manipula-
tions.)

strand with o;,; is denoted by [

(1) Merge: Given two test tubes T}, Ts, Merge(Ty,Ts)
stores the union Ty U T in T7.

(2) Copy: Given a test tube 71, Copy(T1, T2) produces
a test tube T with the same contents as T7.

(3) Detect: Given a test tube T, Detect(T) outputs
“yes” if T' contains at least one strand, otherwise,
Detect(T) outputs “no”.

(4) Separation: Given a test tube T and a set of
strings X, Separation(Ty, X, T») removes all sin-
gle strands containing a string in X from Ty, and
produces a test tube 75 with the removed strands.

(5) Selection: Given a test tube 77 and an integer L,
Selection(Ty, L, T5) removes all strands, whose
length is L, from T, and produces a test tube T3
with the removed strands. (The length of a strand
is the number of symbols in the strand.)

(6) Cleavage: Given a test tube T and a string of two
symbols ooy, Cleavage(T, ooo) cuts each dou-
0o01

ble strand containing
0001

in T into two dou-
ble strands as follows.

=[5]

(We assume that Cleavage can only be applied to
some specified symbols over the alphabet X.)

Qg0o

000150
a10Gp

o1 Goo1

015]

o161

(7) Annealing: Given a test tube T, Annealing(T)
produces all feasible double strands from single
strands in 7'. (The produced double strands are still
stored in T after Annealing.)

(8) Denaturation: Given a
Denaturation(T) dissociates
strand in T into two single strands.

test tube T,
each double

In addition to the above, we add a manipulation to
clarify description of this paper. The complexity of the
manipulation is also O(1).

 (9) Empty': Given a test tube T, Empty(T) sets T =
0.

2.2 Representation of binary numbers
with DNA strands

In this subsection, we explain a data structure for storing
a set of n binary numbers using DNA strands. Let us
consider a number z such thatz = Z;'_'__Bl z;%29, where
Trm—1,Tm~2,-..,Tp are binary bits. We assume that
the most significant bit x,, 1 is a sign bit, and a negative
number is denoted using two’s complement notation. A
representation of each bit is the same as that in [4], and

is briefly described in the following.

| Empty(T) is equivalent to Copy(¢, T).

189

We first define the alphabet X as follows.

¥ = {AO,Ala"'aATUBO)Bl"'-7B‘m—1,
COaCIyDO;Dl’lyO, ﬁ:
ZO,Z]_,. . .,Zn,—gg,—.gl,.. -;-B_m—la

—élaﬁzyﬁl)ﬁZ’l’O’ ﬁ}

In the above alphabet, Ag,A;,...,A, denote ad-
dresses of numbers, and By, By, ..., B,,—1 denote bit
positions. Cg, C; and Dg, D; are specified symbols cut
by Cleavage. Symbols “0” and “1” are used to denote
values of bits, and “4” is a special symbol for Separa-
tion.

Using the above alphabet, a value of a bit, whose ad-
dress and bit position are 7 and j, is represented by a
single strand S; ; such that

Si; = D1A;B;CoChV; 5 Do,

where V; ; = 0 if a value of the bit is 0, otherwise,
Vij =1

We call each S;; a memory strand, and use a set
of O(mn) different memory strands to denote n bi-
nary numbers of m bits, that is, a number z stored in
address 1 is represented by a set of memory strands
{Sim-1,Si,m~2,..-,Si0}, which denote binary bits
Tm—1,Tm—2,- - -, Lo, respectively. We assume that V;
denotes the number stored in address ¢ as follows.

m—1
Vi=) Vix2.
j=0

We also assume that S; j(V') denote a memory strand
whose value is V', that is,

S;(0) = D1 A;B;CyC10Dy, S; j(1) = D1A:B;CoC11Do

2.3 Primitive operations

In this paper, four operations ValueAssignment,
LogicOperation, Subtraction and MazOperation
are used as primitive operations. The
ValueAssignment V (Tinput; Toutput) i an op-
eration which assigns the same value V(€ {0,1})

to all memory strands in a test tube Tinpyt. The
LogicOperation(Tinput, L, Toutput) 18 an op-
eration which executes logic operations, which

are defined by single strands in a test tube L,
for pairs of two memory strands in Tinput. The
Subtraction(Tinput, R, Toutput) is an operation which
executes subtractions, which are defined by single
strands in a test tube R, for pairs of memory strands
in Tinput. The M azOperation(Tinput, Toutput) iS
an operation which computes the maximum of values
which are stored memory strands in Ty, The results
of all operations are stored in a test tube Toutput-

For the above four primitive operations, the following
lemmas are obtained in [4] and [8].

190

Lemma 1 [4] The Value Assignment(Tinput; Toutput)
can be executed in O(1) steps using O(1) kinds of DNA
strands. O

Lemma 2 [4] The LogicOperation(Tinput, L, Toutput)
and Subtraction(Tinput, R, Toutput), Which are for
O(n) pairs of m-bit binary numbers, can be executed
in O(1) steps using O(mn) kinds of DNA strands. O

Lemma 3 [8] The MaxOperation(Tinput, Toutput),
which is for O(n) binary numbers of m bits, can be
executed in O(1) steps using O(mn?) kinds of DNA
strands. O

24

We assume that an input of a function is a set of n binary
numbers of mn bits, and given by a test tube Ti,p,: such
that,

Input of procedures

Tinput = {S3,; | 0<i<n,0< j <m -1},

where {S;; |0 <i<n-10<j<m-1}is
a set of memory strands which denote n input binary
numbers, and {Sp, ; | 0 < j < m—1}is aset of memory
strands in which an output of the procedures is stored.
(All memory strands are stored in Tjnpy¢ again at the
end of each procedure.) We also assume that f is a given
logic function such that V,, = f(Vp,V4,---, Va-1).

In this paper, we consider multiple input functions
such that an output value of each bit does not depend
on output values of the other bits. For example, we
consider a multiple input function f, and assume that
{Vo,Vi,...,Vp_1} and V,, are input and output bi-
nary numbers such that V; = Z;":"Ol V;,j * 27, respec-
tively. Then, we can define a function f; whose input
and output are of Boolean values in j-th bit, that is,
Vo= fj(VO,j,Vl,j, o 7Vn—1,j)-

3 Procedure for AND function

The logic function AND for multiple input is defined as
follows.

Vnij = fJ (‘/O,j’ Vl:j’ Tty Vn"l’j)

=%)j/\‘l’l;j/\.../\v_laj

A strategy for computing AND is simple. We first
separate output memory strands { Sy, ; |0 < j < m—1}
from a test tube Tjnpye, store the memory strands in a
test tube 7y, and assign 1 to all memory strands in T3,
We next choose output memory strands, whose output
value must be 0. An output value of AND function
is O if there exists one O in input values. We separate
the output memory strands using input memory strands
and additional strands, which indicate a feature of AND
function. We move the separated output memory strands
from T; to Ty, and assign O to all memory strands in
To. Finally, we return memory strands in Tp and 73 into

Tin}mt .

We now summarize an overview of the procedure
AND, which computes AND function in O(1) steps.

Procedure AND

Step 1: Separate memory strands whose addresses are
A,, from Tippy: to a test tube T1. Then, execute
ValueAssignment_1 for T.

Step 2: Separate memory strands whose output value
must be 0, from 77 to Tp. Then, execute
ValueAssignment 0 for Tg.

Step 3: Return memory strands in T1 and T to Tinput-

(End of the procedure)

We now describe details of the procedure step by step.
At the beginning, we show test tubes used in the descrip-
tion.

Timp: Memory strands are temporarily stored in T p,p.

T10: Single strands, which separate memory strands
from T} to Tj, are stored in T3 0.

To, T1: Memory strands, whose value mustbe O and 1,
are stored in Ty and T, respectively.

Tirash: Unnecessary strands are discarded into Ty qsp.-

Step 1 consists of the following manipulations.

Step 1
Separation(Tinput, {An}, T1)
ValueAssignment 1(T,,T1)

In Step 2, we merge the following test tube T, _,¢ with
the input test tube.

Tiso = {D1#Do}U {S;;(0)D1#DoD1AnB;
10<i<n—10<i<m~—1)}

Then, we execute manipulations Annealing,
Cleavage, Denaturation and Separation.

After execution of the manipulations, the test tube
contains a single strand D, #DyD1 A, B; if and only
if Vy,,; must be 0. (If there is at least one 0 in input of
AND function, its output must be 0.)

We next execute Annealing and Denaturation for
the above single strand and memory strand in 7;. Then,
we obtain a single strand D # DSy, ; if and only if V, ;
must be 0.

We separate the single strand from T to Ty and
remove an unnecessary part Dy# D, from the single
strand using Cleavage. Finally, we assign O to the
memory strands in Tp. The Step 2 is summarized be-
low.

Step 2
Empty(Timp)
Copy (Tinput s Ttmp)

Merge(Timp, T1-0)

Annealing(Timp)

Cleavage(Timp, DoD1)
Denaturation(Tymp)

Separation(Timp, {CoC1,CoCl1}, Ttrash)

Merge(T1, Timp)

Annealing(Ty)
Denaturation(Ty)
Separation(Ty, {D1#Do}, To)
Separation(Ty, {D1#Do}, Ttrash)

Merge(To,{DoD1})
Cleavage(To, DoD1)
Separation(To, { D1#Do, Do, D1}, Tirash)

ValueAssignment_0(Tp)

In Step 3, all memory strands in Ty and T are re-
turned to Tinput. This step consists of the following
manipulations.

Step 3
Merge(Tinputa TO)
Merge (Tinput T)

We now consider complexity of the above procedure.
Each step consists of a constant number of DNA ma-
nipulations, which are described in Section 2. In addi-
tion, O(mn) kinds of strands are used in the procedure.
Then, we obtain the following theorem.

Theorem 1 Procedure AN D, which computes the re-
sult of AND operation of n binary numbers of m bits,
runs in O(1) steps using O(mn) DNA strands. |

The procedure AND are easily modified to be ap-
plied to other simple logic functions, such as, OR,
NAND and NOR. Thus, we can compute the logic func-
tions with the same complexity.

4 Procedure for EX-OR function

The logic function EX-OR for multiple input is defined
as follows.

Vﬂ:j = fJ(V.U,Jy ‘/l,j: ttty Vﬂ—l,j)

=Vo,;8V,;®--® Va1,

We describe an overview of the procedure for
computing EX-OR function intuitively. (Details. of
the procedure is slightly different from the following
overview.) An output value of EX-OR function is “1”
if and only if the number of “1” in its input is odd,
otherwise, the output value is “0”. Thus, we com-
pute the number of “1” in its input by concatenating
memory strands whose values are “1”. To compute

191

the number in O(1) steps, we concatenate all possi-
ble pairs of memory strands in ascending order. More
precisely, a memory strand S;; can be concatenated
with one of memory strands Siy1,5, Si+2,5, > Sn—1,
in case that {So,;,S1,j, -, Sn—1,j} is a set of memory
strands in which input values are stored. For example,
let {So,0(1), S1,0(1), S2,0(0), S3,0(1)} be aset of the in-
put memory strands. Then, we obtain the following set
of single strands after the concatenation.

{S0,0(1), S1,0(1), Ss,0(1), So,0(1)S1,0(1), So,0(1)Ss3,0(1),
S1.0(1)S3,0(1), So0,0(1)51,0(1)S3,0(1)}

In the above single strands, a length of the longest strand
means the number of “1” in its input. However, we can-
not compute the length directly using O(1) manipula-
tions.

To obtain the length of the longest strand, we use ad-
ditional single strands, which denote length of strands.
The additional strand consists of two parts. The first
part consists of dummies to make a length of the sin-
gle strand constant, and the second part consists of con-
catenated memory strands which denote the length of
the strand. (The length is represented by a binary num-
ber.) We assume that « is a single strand whose length
is equal to length of a memory strand. The single strand
« is used as a dummy, and is concatenated according to
a binary number in the second part. (Let k4 be the num-
ber of & in the first part. Then, a binary number stored
in the second part is n — k,.) Figure 1 shows a set of
additional single strands for the above example, where
j denote the bit number.

We concatenate the above two kinds of single strands,
and separate single strands whose length is (n +
([logy(n+1)1)) x ||, where || is a length of a memory
strand. In the above example, single strands in Figure 2,
whose length is (4 + 3) * |a| = 7|a|, are separated.

By cutting the separated single strand into first and
second parts, we obtain length of single strands as
binary numbers in the second parts. Since we can
compute the maximum of n binary numbers using
M azOperation, which is described in Section 2, we
obtain a binary number which denotes length of the
longest single strand in O(1) steps. Then, finally, we
find whether the length is odd or even by checking the
lowest bit of the binary number. _

We now summarize an overview of a procedure EX-
OR, which computes EX-OR function in O(1) steps.
Some substeps are added to complete the procedure.

Procedure EX-OR
Step 1:

(1-1) Separate memory strands whose addresses
are A, from Tippys to Tn. Then, execute
ValueAssignment 0 for T,.

(1-2) Separate memory strands which denote a value
“1” from Tipput to T1.

192

I

L

[o T & JSmn+1)i+n+1+0,2(0)S(nt1)j+n+140,1(0)Snt1)j+n+1+0,0(0),
[a | @ Sunt)jtnt1+1,200)Smi1)j+n+141,1(0)Stnt1)j4nt141,0(1);
(e [o Sntnitnii+2208minientir2,1 (1S man)j4ns142,000),
[o Bmr1)jtnt143,20)S(n+1)j+nt143,1 (1) Sn1)jtnt1+3,0(1)s
S(n+1)j+n+1+4,2(I)S(n+1)j+n+1+4,1(O)S(n+1)j+n+1+4,0(0)}

Figure 1. An example of additional single strands.

{Soo(V)[o T & T o 1S(n+1)s04n+14+1,2(0)S(n+1)s04n+141,1 (0)S(rn+1)s0+n+1+41,0(1),
Soo(M[o T a | a Sn+i)st+nt1+41,2(0)Sns1)14n4141,1(0)S(n+1)s1+n+141,0(1),
S o | a | a PSwm+ysatnt1+1,2(0)Snt1)easnt141,1(0)S(ns1)es4nt141,0(1),
Soo(DS1o() & | @ Sint1)so+n+1+42,2(0)S(ns1ys04nt+142,1(1)S(n+1)s04+n+142,0(0),
So,0(1)S3,0(1) & [_a Stnt1)so+n+1+2,2(0)S(ns1)s04+nt1421 (1) S(nt1)s0+n+1+2,0(0),
S12(D)S32(1)_a_ [_a Sn+1)se+nt1+2,2(0)S(ns1)e2+nt142,1(1)Sint1)e24n+142,0(0),
S0,3(1)51,3(1)S3,3(1)_&_JSint1)s3+n+1+3,2(00S(nt1)s3+nt+14+8,1 (1)S(nt1yss+ns143,0(1)}

Figure 2: An example of single strands after concatenation.

(1-3) Concatenate memory strands in 7} in ascending
order, and move the concatenated strands from T}
to Tt‘mpn .

Step 2:

(2-1) Concatenate additional single strands in Tipp,,
and separate single strands, whose length are (n +
([logz(n + 1)1)) x |of, from Tymp, t© Timp, -

(2-2) Cut single strands into memory strands in Ty, ,
and execute M axOperation in Typp, . Then, store
memory strands, which denote the maximum, in

 Tout-

Step 3:

(3-1) Merge from T, to T,, and execute
LogicOperation for T,, and the output is
stored in Tp,.

(3-2) Separate memory strands, which denote the out-
put from Ty, to Timp,, and return all memory
strands in Tymp, 10 Tinput-

(End of the procedure)

We now describe details of the procedure step by step.
At the beginning, we summarize test tubes used in the
description.

Ttm,,_l, Ttmpy: Memory strands are temporarily stored
in Tynp, and Typmp, .

To,T1: Memory strands, whose value must be O and 1,
are stored in Ty and 77, respectively.

Tirasnt Unnecessary strands are discarded into Tyrquh.

Teonys Teonys Toongt Single strands which concatenate
memory strands are stored in Teon1, Teonz and
Tcona-

Taummy: Additional memory sfrands for

M azOperation are stored in Tgymmy-

Tietetet Memory strands which remove unnecessary
memory strands are stored in Tyymmy.

Taetect: Single strands which denote the lowest bit are
stored in Tgetect.

First of all, substeps (1-1) and (1-2) consist of the fol-
lowing manipulations.

Substep (1-1)
Separation(Tinput, {An} Tn)

Substep (1-2)
Copy(Tinput 3 Ttmm)
Separation(Ttmm) {1} ’ Tl)

In Substep (1-3), we first merge the following
test tube T,on, to Tj, and execute Annealing and
Denaturation for Ty. This operations concatenate an
auxiliary single strand A; B; to a memory strand S; ;(1)
so that the memory strands can be concatenated in as-
cending order. (We obtain a single strand S; ;(1)A;B;
after the operations.)

Teon, = {AiB;CoCi1DoA;B;,

AiBj!OSiSn—l,OSjsm—‘l}

Then, we move single strands, whose length &, from
Ty 10 Tymp,, Where k is the length of a single strand
Si,j(l)A,'Bj.

Next, we merge the following test tube T¢op, to
Tymp, » and exccute Annealing and Denaturation for
Timps -

{A,B,D:4,B;
0<i<n-1,0<j<m~1}

Tcong

Since single strands in T,,,, concatenate the above
strands in ascending order, we can concatenate all pos-
sible pairs of the above strands as a long single strand.
Then, using Separation with a symbol D;, we move
the strands from Timp, t0 Tymp,. Details of the substep
are given below.

Substep (1-3)
Empty(Timp,)
Merge(Ty, Teon,)
Annealing(T)
Denaturation(T;)
Selection(T1 s k, Ttmm_)

M erge (Ttmm) Tconz)
Annealing(Timp,)
Denaturation(Timp,)

Empty (Ttmpa)
Separation(Ttmm 3 {Dl } 3 Ttmpz)

In Substep (2-1), we first merge the following test
tube Teons t0 Timps,» and execute Annealing and
Denaturation for Timp,.

Teons = {BjaiDoBij, o' DoBi;
[0<i<n-1,0<j<m-1}

In the above description, o is a single strand whose
length is equal to S;;A;Bj, and o* means a single
strand aa - - - a such that o is repeated 4 times. In ad-
dition, 3; ; is a single strand such that,

Bi,i

S(n+1)j+2n+1—i,logg nS(n+1)j+2n+1—i,1032 n—1
“o* S(nt1)j+2n+1—i,00

and means a concatenated memory strands which de-
note a binary value n — 4 such that Vi, 11y on41-i =
n — i. Then, we move single strands whose length of
|| x n + |8 from Tymp, to Timp,. where |a| and |3
are length of a and 3, respectively. We summarize the
substep as follows.

Substep (2-1)
E mpty (Ttmm)
Merge(Timp,» Teons)
Annealing(Timp,)
Denaturation(Timp,) '
Selection(Tymp,, laf x n + 181 Temp,)

183

In Substep (2-2), we first merge {DoD1} to Timyp,,
and execute Annealing, Cleavage and Denaturation
for Tymp, . Then, we move single strands, whose length
is k', from Tymp, 10 Tpaz, Where k' is the length of a
memory strand.

Next, we use the following test tubes Tgymmy and
Taetete. The memory strands of all addresses are stored
in the following test tube Taummy-

Tdummy = {Si,j(o) l n<i< (n + l)m +n-1,
0<j < logy(n ~1)}

The test tube Tgummy is prepared because all addresses
are required to execute MaxOperation. The values
of all memory strands in Tyymmy are set to 0. In this
substep, we remove memory strands S; ;{0) in Taummy
such that there is a memory strands S; ;(1) in Tppa, and
then, merge memory strands in Tyymmy into Tmaz. To
achieve this procedure, we use single strands stored in
the following test tube Tgetete-

Taerete = {#D14;B;CoC11 | n<i<(n+1)m+n -1,
0 <y <logy(n—1)}

Details of this substep is as follows. We first
copy Trmaez 10 a test tube Timp,, and then, move
memory strands, whose values are 1, from Ty, to
Timpa- Next, we merge Tgelete into Tymp,, and ex-
ecute Annealing, Cleavage and Denaturation for
Timps- After the above operation, there exists a sin-
gle strand #D1A;B;Cy if and only if S;;(1) is in
Tmaz. Finally, we merge the above single strands to
Taummy. and execute Annealing, Denaturation and
Separation. Then, we can remove memory strands
S;,;(0) in Tgummy such that there is a memory strands
Si,;(1) in Tinae-

Finally, we execute MaxOperation for addresses
An, Antts -+ A(n+1)m+n—1, and store the output in
T,z Details of the substep are given below.

Substep (2-2)
Merge(Timp,, {DoD1})
Annealing(Timp,)
Cleavage(Timp,, {DoD1})
Denaturation(Timp,)
Selection(Timp, !, Trmaz)

E mpty (Ttmpl) ’ E mpty (Ttmpz)
CUP!I (Tmam Ttmm)
Separation(Timp, » {1}, Ttmps)
Merge (Ttmpg s Tael ate)
Annealing(Timp,)
Cleavage(Timp,;, {CoC1})
Denaturation(Timp,)

Empty (Ttmpx)
Selection(Ttmm » T, Ttmm)

194

S(nt1)j+ntogan Sn,i | Sint1)itnlogy n Snii

- O

0 0
1 I 0
0 0 : 1
1 1 1

—

Figure 3: A truth table for LogicOperation

Me'l'ge(Tdummy’ T;Smm)
M erge (Tdummya { # })
Annealing(Tjummy)
Denaturation(Taummy)

Separation(Tdummy y {#3 #}, Tt"'ash)
Me"'ge(Tmaz: Tdummy)

MazOperation(Timaz, Tout)

In Substep (3-1), we first merge the test tube Ty
to T, and execute LogicOperation, which is defined
by a truth table in Figure 3, for T,,. The output of
LogicOperation is stored in T),.

Substep (3-1)
Merge(Ty, Tout)
LogicOperation(T,, L, T,)

In Substep (3-2), we first perform Separation with
a symbol A, in order to extract the output strands, we
move the strands from T}, to Tymp, . Finally, we merge
the test tube Tymp, 10 Tinput.

Substep (3-2)
Empty(Ttmm)
Separation(Tn, {An}, Timp,)
MeTge (Tinput’ Ttmzn)

We now consider complexity of the above procedure.
Each step of the procedure consists of a constant num-
ber of DNA manipulations described in Section 2, and
O(mn?) kinds of strands are used in the procedure.
Then, we obtain the following theorem.

Theorem 2 Procedure EX-OR, which computes EX-OR
Junction of n binary numbers of m bits, runs in O(1)
steps using O(mn?) different DNA strands. m|

The procedure EX-OR are easily applied to other mul-
tiple input functions, such as, majority and threshold
functions by modifying substep (3-2). Thus, we can
compute such functions with the same complexity.

5 Conclusions

In this paper, we propose procedures for computing
multiple input logic. We first show a simple procedure
for computing AND function, which runs in O(1) steps
for n binary numbers. We next propose a procedure for

the EX-OR function, which runs in O(1) steps for n bi-
nary numbers.

However, every DNA manipulation used in the model
has been already realized in lab level, and some proce-
dures can be implemented practically. Since logic and
arithmetic operations are primitive and important, we
believe that our results play an important role in the fu-
ture DNA computing.

References

[1] L.M. Adleman. Computing with DNA. Scientific Amer-
ican, Vol. 279, No. 2, pp. 54-61, 1998.

{2] E.B. Baum and D. Boneh. Running dynamic program-
ming algorithms on a DNA computer. Proceedings of
the Second Annual Meeting on DNA Based Computers,
1996.

[3] P. Frisco. Parallel arithmetic with splicing. Ro-
manian Journal of Information Science and Technol-
0gy(ROMIJIST), Vol. 2, No. 3, pp. 113-128, 2000.

[4] A. Fujiwara, K. Matsumoto, and W. Chen. Address-
able procedures for logic and arithmetic operations with
DNA strands. 5th Workshop on Advances in Parallel and
Distributed Computational Models, 2003. (to appear)

[5] F. Guarnieri, M. Fliss, and C. Bancroft. Making DNA
add. Science, Vol. 273(5272), pp. 220-223, 1996.

[6] V. Gupta, S. Parthasarathy, and M.J. Zaki. Arithmetic
and logic operations with DNA. Proceedings of the 3rd
DIMACS Workshop on DNA Based Computers, pp. 212—
220, 1997.

[7] H. Hug and R. Schuler. DNA-based parallel computa-
tion of simple arithmetic. Proceedings of the 7th Inter-
national Meeting on DNA Based Computers(DNA7), pp.
159-166, 2001.

[8] S. Kamio, A. Takehara, A. Fujiwara. Procedures for
Computing the Maximum with DNA strands. Proceed-
ings of the 2003 International Conference on Paral-
lel and Distributed Processing Techniques and Applica-
tions, Vol. 1, pp. 351-357, 2003.

[9] R.J.Lipton. DNA solution of hard computational prob-

lems. Science, Vol. 268, pp. 542-545, 1995.

Q. Ouyang, P.D. Kaplan, S.Liu, and A. Libchaber. DNA

solation of the maximal clique problem. Science, Vol.

278, pp. 446-449, 1997.

G. Pdun, G. Rozeberg, and A. Salomaa. DNA comput-

ing. Springer-Verlag, 1998,

Z.F. Qiu and M. Lu. Arithmetic and logic operations for

DNA computers. Proceedings of the Second IASTED

International conference on Parallel and Distributed

Computing and Networks, pp. 481486, 1998.

Z.F Qiu and M. Lu. Take advantage of the computing

power of DNA computers. In Proceedings of the Third

Workshop on Bio-Inspired Solutions to Parallel Process-

ing Problems, IPDPS 2000 Workshops, pp. 570-577,

2000.

J.H. Reif. Parallel biomolecular computation: Models

and simulations. Algorithmica, Vol. 25, No. 2-3, pp.

142175, 1995.

H. Yoshida and A. Suyama. Solution to 3-SAT by

breadth first search. American Mathematical Society,

pp. 9-22, 2000.

(10]

(i

[12]

[13]

[14]

(15]

