
Title
Procedures for Multiple Input Functions with DNA Strands
(Evolutionary Advancement in Fundamental Theories of
Computer Science)

Author(s) Kamio, Satoshi; Fujiwara, Akihiro

Citation 数理解析研究所講究録 (2004), 1375: 188-194

Issue Date 2004-05

URL http://hdl.handle.net/2433/25595

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

$1\theta\theta$

Procedures for Multiple Input Functions with DNA Strands

上尾智史 (Satoshi Kamio) 藤原暁宏 (Akihiro Fujiwara)
九州工業大学大学院 情報工学研究科

Department of Computer Science and Electronics
Kyushu Institute of Technology

Abstract steps using $\mathrm{O}\{mn$) different DNA strands. The third
procedure mainly consists of $O(n^{2})$ parallel compar-

In recent works for high performance computing, isons, and runs in $O(1)$ steps using $O(mn^{2})$ different
computation with DNA molecules, that is, DNA com- DNA strands.
puting, has considerable attention as one of non-silicon \ln this paper, we propose two procedures for comput-
based computing. In this paper, we propose two proce- ing multiple input functions. An input of the function
dures for computing multiple input functions. We first is a set of n binary numbers of m bits, and an output is
propose a simple procedure for computing AND func- a binary number of m bits, which is defined by a n in-
tion. The procedure runs in $O(1)$ steps using $O(mn)$ put logic function. We first show a simple procedure for
DNA strands for n binary numbers of m bits. We next computing AND function. The procedure runs in $0(1)$

propose a procedure for EX-OR function. The proce- steps using $\mathrm{O}(mn)$ different DNA strands for n binary
dure runs in $0(1)$ steps using $O(mn^{2})$ DNA strands, numbers. The procedure is also applicable to other sim-
and is also applicable to other functions, such as major- ple logic functions, such as OR, NAND and NOR. We
ity and threshold functions. next propose a procedure for EX-OR function. The prO-

cedure runs in $0(1)$ steps using $O(mn^{2})$ DNA strands,
and is also applicable to other functions, such as major-

1 Introduction $\mathrm{i}\mathrm{t}\mathrm{y}$ and threshold functions.

$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{I}\mathrm{n}$retacteionnt $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{D}\mathrm{N}\mathrm{A}\mathrm{m}o\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{s},\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}$

,
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{D}\mathrm{N}\mathrm{A}\mathrm{c}\mathrm{o}\mathrm{m}$ -2 Preliminaries

puting, has considerable attention as one of non-silicon
based computing. The DNA has two important fea- 2.1 Computational model for DNA com-
tures, which are Watson-Crick complementarity and puting
massive parallelism. Using the features, we can solve an
$\mathrm{N}\mathrm{P}$-complete problem, which usually needs exponential A number of theoretical or practical computational
computation time on a silicon based computer, in a poly- models have been proposed for DNA computing[l, 6,
nomial number of steps with DNA molecules. There are 7, 9, 12, 13, 14]. A computational model used in this
a number of works with DNA molecules for combinatO- paper is the same model as [4]. We briefly introduce the
rial NP-complete problems[l, 2, 9, 10, 15]. model in this subsection.

However, procedures for primitive operations, such as A single strand of DNA is defined as a string of sym-
logic or arithmetic operations, are needed to apply $\mathrm{D}\mathrm{N}\mathrm{A}$ bols over a finite alphabet C. We define the alphabet
computing on a wide range of problems. A number of E $=\{\sigma 0,\sigma_{1}, \ldots, \sigma_{m-1}, \overline{\sigma}_{0},\overline{\sigma}_{1}, . . .,\overline{\sigma}_{m-1}\}$, where the
procedures have been proposed for the primitive opera- symbols σ_{i} , $\overline{\sigma}$i $(0\leq i\leq m-1)$ are complements. Two
tions with DNA molecules[3, 4, 5, 6, 7, 12]. Fujiwara single strands form a double strand if and only if the
et a1.[4] have proposed addressable procedures for the single strands are complements of each other. A double
primitive operations. They first showed a DNA repre- strand with $\sigma_{i},\overline{\sigma}_{i}$ is denoted by $[\frac{\sigma}{\sigma}\dot{*}\dot{l}]$.
sentation of n binary numbers of m bits, and they prO-
posed procedures which compute logic operations and The single or double strands are stored in a test tube.
additions of pairs of two binary numbers. The proce- For example, $T_{1}=\{\sigma_{0}\sigma_{1},\overline{\sigma_{1}\sigma_{0}}\}$ denotes a test tube in
dures run in $0(1)$ steps using $\mathrm{O}(mn)$ DNA strands for which two kinds of single strands $\sigma_{0}\sigma_{1}$, $\overline{\sigma_{1}\sigma_{0}}$ are stored.
n pairs oftwo binary numbers. Recently, Kamio et a1.[8] Using the DNA strands, the following eight DNA
proposed three procedures for computing the maximum manipulations are allowed on the computational model.
of n binary numbers of m bits. The first procedure con- Since these eight manipulations are implemented with
sists of a repetition of checking on m bit positions, and a constant number of biological steps for DNA
runs in $0(1)$ steps using $\mathrm{O}(\mathrm{n})$ different DNA strands. strands[11], we assume that the complexity of each ma-
The second procedure consists of a repetition of paral- nipulation is $0(1)$. (See [4] for details of the manipula-
lel comparisons of two numbers, and runs in $O(\log n)$ tions.)

数理解析研究所講究録 1375巻 2004年 188-194

183

(1) Merge: Given two test tubes T_{1} , T_{2} , $Merge(T_{1},7_{2})$ We first define the alphabet y as follows.
stores the union $T_{1}\cup T_{2}$ in T_{1} .

Σ $=$ { A_{0} , A_{1} , \ldots , A_{n} , B_{0} , B_{1} , \ldots , B_{m-1} ,
(2) Copy: Given a test tube Ti, Copy (T_{1},T_{2}) produces

C_{0} , C_{1} , D_{0} , D_{1} , 1, 0, β ,a test tube T_{2} with the same contents as T_{1} .
$\overline{A}_{0},\overline{A}_{1}$, . . . , $\overline{A}_{n},\overline{B}_{0},\overline{B}_{1}$, .. . , \overline{B}_{m-1} ,

(3) Detecr: Given a test tube T , Detect(T) outputs $\overline{c}1$, $\overline{C}_{2},\overline{D}$1, $\overline{D}_{2},\overline{1},\overline{0}$, $\overline{\beta}$}
“yes” if T contains at least one strand, otherwise,
Detect(T) outputs “no’\cdot . In the above alphabet, A_{0} , A_{1} , . . . , A_{n} denote ad-

(4) Separation: Given a test tube T_{1} and a set of dresses of numbers, and B_{0} , B_{1} , . .., Bm-i denote bit
strings X , $Separati\sigma n$ (T_{1},X , T2) removes all $\sin-$ positions. $C0$, C_{1} and D_{0} , D_{1} are specified symbols cut

gle strands containing a string in X from T_{1} , and by Cleavage. Symbols “0” and “1” are used to denote

produces a test tube T_{2} with the removed strands. values of bits, and $”\#$
” is a special symbol for Separa-

tion.
(5) Selection: Given a test tube T_{1} and an integer L , Using the above alphabeL a value of a bit, whose ad-

$Selecti\sigma n(T_{1}, L, T_{2})$ removes all strands, whose dress and bit position are i and j , is represented by a
length is L , from T_{1} , and produces a test tube T_{2} single strand $S_{i,j}$ such that
with the removed strands. (The length of a strand
is the number of symbols in the strand.) $s_{:,\mathrm{j}}=D_{1}A:B_{j}C_{0}C_{1}V_{i,j}D_{0}$,

(6) Cleavage: Given a test tube T and a string of two where $V_{\dot{\iota},j}=0$ if a value of the bit is 0, otherwise,
symbols $\sigma_{0}\sigma_{1}$, Cleavage(T, aoai) cuts each dou- $V_{i,j}=1.$

ble strand containing $[\frac{\sigma_{0}\sigma_{1}}{\sigma_{0}\sigma_{1}}]$ in T into two dou- We call each $s_{i,j}$ a mmory strand, and use a set
of $O(mn)$ different memory strands to denote n bi-

ble strands as follows. nary numbers of m bits, that is, a number x stored in
address i is represented by a set of memory strands

$[\alpha_{0}\beta 0\alpha_{1}^{\frac{\sigma_{0}\sigma_{1}}{\sigma_{0}\sigma_{1}}}\beta_{1}]\Rightarrow[\alpha_{1}0_{0}^{0}\alpha_{0}$ $]$. $[\frac{\sigma}{\sigma}11J_{1}^{0}]$

$\{S_{i,m-1}, S_{i,m-2}, \ldots, S_{\dot{\iota},0}\}$, which denote binayy bits
Xm-i, x_{m-2} , . . . ’ x_{0} , respectively. We assume that $V\dot{.}$

denotes the number stored in address i as follows.
(We assume that $Clea1’‘ lge$ can only be applied to
some specified symbols over the alphabet X.)

V_{1}. $= \sum_{j=0}^{m-1}\mathrm{V}4_{j},*2^{\mathrm{j}}$.
(7) Annealing: Given a test tube T , Annealing(T)

produces all feasible double strands from single
strands in T. (The produced double strands are still We also assume that $S_{i,j}(V)$ denote a memory strand
stored in T after Annealing.) whose value is V , that is,

(8) Denaturation: Given a test tube T , $S_{\dot{\iota},j}(0)=D_{1:}AB_{j}C_{0}C_{1}0D_{0}$, $s_{:,j}(1)=D_{1}A_{*}.B_{j}C_{0}C_{1}1D_{0}$

Denaturation(T) dissociates each double
strand in T into two single strands.

2.3 Primitive operations
\ln addition to the above, we add a manipulation to

clarify description of this paper. The complexity of the In this paper, four operations ValueAssignment,

manipulation is also $O(1)$. LogicOperation, Subtraction and MaxOperation
are used as primitive operations. The

(9) $En\varphi ty^{1}$: Given a test tube T , Empty(Tl sets $T=$ $ValueAssignment_{-}V(T_{\dot{|}nput},T_{\circ ut\mathrm{p}ut})$ is an op-
ϕ . eration which assigns the same value $V(\mathrm{E}$ {0, 1} $)$

to all memory strands in a test tube $T_{in\mathrm{p}ut}$. The
$LogicOperati\sigma n(T_{\dot{\iota}nput}, L,T_{output})$ is an op-

2.2 Representation of binary numbers eration which executes logic operations, which
with DNA strands are defined by single strands in a test tube L ,

for pairs of two memory strands in T_{nput} . The
In this subsection, we explain a data structure for storing Subtractim$(T_{jnput}, R,T_{output})$ is an operation which
a set of n binary numbers using DNA strands. Let us executes subtractions, which are defined by single
consider a number x such that $x= \sum$ji1’ $xj*2^{j}$, where strands in a test tube R, for pairs of memory strands
x_{m-1},x_{m-2} , \ldots , x_{0} are binary bits. We assume that in T_{input} . The $MaxO\mu rati\alpha\iota(T_{\dot{*}nput},T_{output})$ is
the most significant bit x_{m-1} is a sign bit, and a negative an operation which computes the maximum of values
number is denoted using two’s complement notation. A which are stored memory strands in $T_{\dot{\iota}nput}$. The results
representation of each bit is the same as that in [4], and of all operations are stored in a test tube $T_{out\mathrm{p}ut}$.
is briefly described in the following. For the above four primitive operations, the folowing

Empty(T) is equivalent to $C\varphi y(\phi,T)$. lemmas are obtained in [4] and [8].

130

Lemma 1 [4] The $ValueAssignment(T_{input}, T_{output})$ We now summarize an overview of the procedure
can be executed in $0(1)$ steps using $O(1)$ kinds of $DNA\square$

AND, which computes AND function in $O(1)$ steps.
strands.

Procedure AND
Lemma 2 [4] The $LogicOperation(T_{input}, L, T_{output})$

and Subtractim$(T_{input\}}R, T_{output})$, which are for Step 1: Separate memory strands whose addresses are
$O(n)$ pairs of m-bit binary numbers, can be executed A_{n} from Tinput to atest tube T_{1} . Then, execute

in 0(1) steps using $O(mn)$ kinds ofDNA strands. \square value s.gnment-l for T_{1} .

Lemma 3 [8] The $MaxOperati\alpha n(T_{input},T_{output})$, Step 2: Separate memory strands whose output value

which is $fi_{J}r$ $O(n)$ binary numbers of m bits, can be must be 0, from T_{1} to T_{0} . Then, execute

executed in $0(1)$ steps using $O(mn^{2})$ kinds c)
$fDNA\square$

$Valu”” gnment_{-}0$ for T_{0} .
strands. Step 3: Return memory strands in T_{1} and T_{0} to $T_{\dot{|}nput}$.

2.4 Input of procedures (End of the procedure)

We assume that an input of a function is a set of n binary We now describe details of the procedure step by step.
numbers of m bits, and given by a test tube T_{input} such At the beginning, we show test tubes used in the descrip-
that, tion.

$T_{input}=\{S_{i,j}|0\leq i\leq n, 0\leq j\leq m-1\}$, T_{tmp} :Memory strands are temporarily stored in T_{tmp} .

where $\{S_{i,j}|0\leq i\leq n-1,0\leq j\leq m-1\}$ is $T_{1arrow 0}$: Single strands, which separate memory strands
a set of memory strands which denote n input binary from T_{1} to T_{0} , are stored in $\mathrm{J}1arrow 0$.
numbers, and $\{S_{n,j}|0\leq j\leq m-1\}$ is a set ofmemory
strands in which an output of the procedures is stored.

T_{0} , T_{1} : Memory strands, whose value must be 0 and 1,
are stored in T_{0} and T_{1} . respectively.(All memory strands are stored in T_{input} again at the

end of each procedure.) We also assume that f is a given T_{trash} : Unnecessary strands are di scarded into $T_{t\mathrm{r}a\epsilon h}$.
logic function such that $V_{n}=$ f(V0, $V_{1},$

$\cdots,$ V_{n-1}).
In this paper, we consider multiple input functions Step 1 consists of the following manipulations.

such that an output value of each bit does not depend
on output values of the other bits. For example, we Step 1
consider a multiple input function f , and assume that Separation$(T_{input}, \{A_{n}\},T_{1})$

$\{V_{0}, V_{1}, \ldots, V_{n-1}\}$ and V_{n} are input and output bi- $ValueAssignment_{-}1(T_{1},T_{1})$

nary numbers such that $V_{i}-- \sum_{j=0}^{m-1}V_{i,j}*2^{j}$, respec-
tively. Then, we can define a function $f_{\dot{J}}$ whose input In Step 2, we merge the following test tube $T_{1arrow 0}$ with
and output are of Boolean values in j -th bit, that is,

the input test tube.
$v_{n,j}.=f_{j}$ $(V_{0,j,j}V,, \cdots, V_{n-1,j})$.

$T_{1arrow 0}$ $=$ $\{D_{1}\# D_{0}\}\cup\{\overline{S_{i,j}(0)D_{1}\# D_{0}D_{1}A_{n}B_{j}}$

3 Procedure for AND function $|0\leq i\leq n-1,0\leq i\leq m-1$ }

The logic function AND for multiple input is defined as Then, we execute manipulations Annealing,
follows. Cleavage, Denaturation and Separation.

After execution of the manipulations, the test tube
$V_{n,j}=f_{j}$ $(V_{0,j}, V_{1,;}, \cdots, V_{n-1,j})$ contains a single strand $D_{1}*D_{0}D_{1}A_{n}B_{j}$ if and only

if $V_{n,j}$ must be 0. (If there is at least one 0 in input of
$=V_{0,j}\wedge V_{1,j}\wedge\cdots\Lambda V_{n-1,j}$ AND function, its output must be 0.)

A strategy for computing AND is simple. We first We next execute Annealing and Denaturation for
separate output memory strands $\{S_{n,j}|0\leq j\leq m-1\}$ the above single strand and memory strand in T_{1} . Then,

from a test tube $T_{\dot{\iota}nput}$, store the memory strands in a we obtain a single strand $D_{1}fD_{0}S_{n,j}$ if and only if $V_{n,j}$

test tube T_{1} , and assign 1 to all memory strands in T_{1} . must be 0.
We next choose output memory strands, whose output We separate the single strand from T_{1} to T_{0} and
value must be 0. An output value of AND function remove an unnecessary part $D_{1}\# D_{0}$ from the single
is 0 if there exists one 0 in input values. We separate strand using Cleavage. Finally, we assign 0 to the
the output memory strands using input memory strands memory strands in T_{0} . The Step 2 is summarized be-
and additional strands, which indicate a feature of AND low.
function. We move the separated output memory strands
from T_{1} to T_{0} , and assign 0 to all memory strands in Step 2
T_{0} . Finally, we retum memory strands in T_{0} and T_{1} into $Empty(T_{tmp})$

T_{input} . $C\varphi y(T_{input}, T_{tm\mathrm{p}})$

I $\mathrm{E}\mathrm{I}\mathrm{I}$

$Merge(T_{tmp},T_{1arrow 0})$

Annealing(Ttmp)
$Cleavage(T_{tmp},D_{0}D_{1})$

Denaturation(Ttmp)
Soperation $(T_{tmp}, \{C_{0}C_{1},\overline{C_{0}C_{1}}\}, T_{trash})$

$Merge(T_{1},T_{tmp})$

$Annealing(T_{1})$

$Denaturation(T_{1})$

Separati\sigma n (T_{1} , {Di #Dq}, T_{0})
Separation(Tu $\{\overline{D_{1}\# D_{0}}\},T_{tra\epsilon h}$)

the number in $O(1)$ steps, we concatenate all possi-
ble pairs of memory strands in ascending order. More
precisely, a memory strand $S_{i,j}$ can be concatenated
with one of memory strands $S_{i+1,j}$, $S_{i+2,j}$, \cdots , $S_{n-1,j}$

in case that $\{S_{0,j}, S_{1,j}, \cdot\cdot. , S_{n-1,j}\}$ is a set of memory
strands in which input values are stored. For example,
let $\{50)0(1), S_{1,0}(1), S_{2,0}(0), S_{3,0}(1)\}$ be a set of the in-
put memory strands. Then, we obtain the following set
of single strands after the concatenation.

$\{S_{0,0}(1)$, $S_{1,0}(1)$, $S_{3,0}(1)$, $S_{0,0}(1)S_{1,0}(1)$, $S_{0,0}(1)S_{3,0}(1)$,
$S_{1,0}(1)S_{3,0}(1)$, $S_{0,0}(1)S_{1,0}(1)S_{3,0}(1)\}$

$Merge(T_{0}, \{D_{0}D_{1}\})$

$Cleavage(T_{0},$ $D_{0}D_{1}$

$Merge(T_{0}, \{\overline{D_{0}D_{1}}\})$ \ln the above single strands, a length of the longest strand
$Cleavage(T_{0}, D_{0}D_{1})$ means the number of $‘ \mathrm{T}$

’ in its input. However, we can-
Separation $(T_{0}, \{D_{1}\# D_{0}, \overline{D_{0}}, \overline{D_{1}}\},T_{tras}h)$ not compute the length directly using $O(1)$ manipula-

tions.
$ValueAssignment_{-}0(T_{0})$ To obtain the length of the longest strand, we use ad-

ditional single strands, which denote length of strands.
In Step 3, all memory strands in T_{0} and T_{1} are re- The additional strand consists of two parts. The first

turned to T_{input} . This step consists of the following part consists of dummies to make a length of the sin-
manipulations. gle strand constant, and the second part consists of con-

catenated memory strands which denote the length of
the strand. (The length is represented by a binary num-

Step 3
$\mathrm{b}\mathrm{e}\mathrm{r}.)$ We assume that cc is a single strand whose length

$Merge(T_{\dot{\iota}nput},T_{0})$

is equal to length of a memory strand. The single strand
NI$erge(T_{\dot{l}n\mathrm{p}ut},T_{1})$

α is used as a dummy, and is concatenated according to
a binary number in the second part. (Let k_{α} be the num-

We now consider complexity of the above procedure. $\mathrm{b}\mathrm{e}\mathrm{r}$ of α in the first part. Then, a binary number stored
Each step consists of a constant number of DNA ma- in the second part is $n-k_{\alpha}$.) Figure 1 shows a set of
nipulations, which are described in Section 7 In addi- additional single strands for the above example, where
tion, $O(mn)$ kinds of strands are used in the procedure. j denote the bit number.
Then, we obtain the following theorem. We concatenate the above two kinds of single strands,

and separate single strands whose length is $(n+$
Theorem 1 Procedure AND, which computes the re-

$(\lceil\log_{2}(n+1)\rceil))\mathrm{x}|$’ $|$, where $|\alpha|$ is a length ofa memoyy
sult ofAND operation of n binary numbers of m bits, strand. \ln the above example, single strands in Figure 2,
runs in 0(1) steps using $\mathrm{O}(mn)DNA$ strands. \square

whose length is $(4+3)*|$ cw $|=7|\alpha|$, are separated.
By cutting the separated single strand into first and

The procedure AND are easily modified to be ap- second parts, we obtain length of single strands as
plied to other simple logic functions, such as, OR,

binary numbers in the second parts. Since we can
NAND and NOR. Thus, we can compute the logic func- compute the maximum of n binary numbers using
tions with the same complexity. MaxOperati\sigma n, which is described in Section 2, we

obtain a binary number which denotes length of the

4 Procedure for EX-OR function longest single strand in $O(1)$ steps. Then, finally, we
find whether the length is odd or even by checking the

The logic function $\mathrm{E}\mathrm{X}$-OR for multiple input is defined lowest bit of the binary number.
We now summarize an overview of a procedure EX-as follows.

OR, which computes EX-OR function in $O(1)$ steps.
$” n\mathrm{J}$ $=f_{j}(V_{0,j}$, $V_{1,j}$, \cdot .., $V_{n-1,j})$ Some substeps are added to complete the procedure.

$=V_{0_{\dot{\beta}}}\oplus V_{1,j}\oplus\cdot\cdot$. $\oplus V_{n-1,j}$ Procedure EX,OR

We describe an overview of the procedure for Step 1:
computing EX-OR function intuitively. (Details of
the procedure is slightly different from the following (1-1) Separate memory strands whose addresses
overview.) An output value of EX-OR function is $‘ \mathrm{T}$

’ are A_{n} from T_{input} to T_{n} . Then, execute
if and only if the number of “1” in its input is odd, $ValueAssignment_{-}0$ for T_{n} .
otherwise, the output value is $” fJ”$. Thus, we com-
pute the number of “1” in its input by concatenating $(1\cdot 2)$ Separate memory strands which denote a value
memory strands whose values are “1”. To compute “1” from T_{inpul} to T_{1} .

192

Figure 1: An example of additional single strands.

Figure 2: An example of single strands after concatenation.

(1-3) Concatenate memory strands in T_{1} in ascending T_{trash} : Unnecessary strands are discarded into T_{trash} .
order, and move the concatenated strands from T_{1}

to T_{tmp2} . $T_{con_{1}}$, $T_{con_{2}}$, $T_{con_{\theta}}$: Single strands which concatenate
memory strands are stored in T_{con1} , T_{con2} and

Step 2: $T_{con_{\theta}}$.

(2-1) Concatenate additional single strands in T_{tmp2} , T_{dummy} .\cdot Additional memory strands for
and separate single strands, whose length are ($n+$ MaxOperati\sigma n are stored in T_{dummy} .
($\lceil\log_{2}$ ($n+$ l)1) $)\mathrm{x}|\alpha|$, from T_{tmp2} to T_{tmp1} .

T_{delete} : Memory strands which remove unnecessary
(2-2) Cut single strands into memory strands in T_{tmp1} , memory strands are stored in T_{dummy} .

and execute MaxOperation in $T_{tmp_{1}}$. Then, store
memory strands, which denote the maximum, in T_{detect} : Single strands which denote the lowest bit are

stored in T_{detect} .
T_{out} .

Step 3: First of all, substeps (1-1) and (1-2) consist of the fol-
lowing manipulations.

(3-1) Merge from T_{out} to T_{n} , and execute
LogicOperation for T_{n} , and the output is Substep (1-1)

stored in T_{n} . Separatim(Ttmpi, $\{A_{n}\},T_{n}$)

(3-2) Separate memory strands, which denote the out- Substep (1-2)
put from T_{n} to $T_{tmp_{1}}$, and retum all memory $C\varphi y(T_{nput}, T_{tmp_{1}})$

strands in $T_{tm\mathrm{p}1}$ to T_{input} . $Separati\sigma n(T_{tmp_{1}}, \{1\},T_{1})$

(End of the procedure) In Substep (1-1) we First merge the following
test t he $T_{con_{1}}$ to T_{1} , and execute Annealing andWe now describe details of the proccdure Step by step. Denaturation for T_{1} . This operations concatenate anAt the beginning, we summarize test tubes used in the
auxiliary single strand $A_{i}B_{j}$ to a memory strand $\mathrm{s}_{:,\mathrm{j}}(1)$

description so that the memory strands can be concatenated in as-
$T_{tm\mathrm{p}1}$, $T_{tm\mathrm{p}2}$: Memory strands are temporarily stored cending order, (We obtain a single strand $S_{\dot{\mathrm{s}},j}(1)A_{\dot{1}}Bj$

in $T_{tmp_{1}}$ and $T_{tm\mathrm{p}_{2}}$. after the operations)

T_{0} , T_{1} : Memory strands, whose value must be 0and 1, $T_{c\circ n_{1}}$ $=$ $\{\overline{A_{\dot{l}}B{}_{j}C_{0}C_{1}1D_{0}A_{ij}B}$,
are stored in T_{0} and T_{1} , respectively. $A_{i}B_{j}|0\leq i\leq n-1,0\leq j\leq m-1$ }

03

Then, we move single strands, whose length k , from In Substep (2-2), we first merge $\{D_{0}D_{1}\}$ to $T_{tmp_{1}}$,
T_{1} to $T_{tmp_{1}}$, where k is the length of a single strand and execute Annealing, Cleavage and Denaturation
$S_{i,j}(1)A_{ij}B$. for $T_{tm\mathrm{p}1}$. Then, we move single strands, whose length

Next, we merge the following test tube $T_{con_{2}}$ to is $k’$, from $T_{tmp_{1}}$ to T_{\max} , where $k’$ is the length of a
T_{tmp1} , and execute Annealing ancl Denaturation for memory strand.
$T_{tmp_{1}}$. Next, we use the following test tubes T_{dummy} and

T_{delete} . The memory strands of all addresses are stored
in the following test tube T_{dummy} .

$T_{con_{2}}$ $=$ $\{\overline{A_{x}B_{j}D_{1}A_{y}B_{j}}$

$|0\leq i\leq n-1,0\leq j\leq m-1\}$ T_{dummy} $=$ $\{S_{i,j}(0)|n\leq i\leq(n+1)m+n-1,$

$0\leq j\leq\log_{2}(n-1)\}$
Since single strands in $T_{con_{2}}$ concatenate the above
strands in ascending order, we can concatenate all pos-
sible pairs of the above strands as a long single strand. The test tube T_{dummy} is prepared because all addresses
Then, using Separation with a symbol D_{1} , we move are required to execute MaxOperation. The values

the strands from $T_{tm\mathrm{p}1}$ to T_{tmp2} . Details of the substep of all memory strands in T_{dummy} are set to 0. In this
substep, we remove memory strands $S_{i,j}(0)$ in T_{dummy}are given below.
such that there is a memory strands $S_{\dot{l},j}(1)$ in T_{\max} , and

Substep (1-3) then, merge memory strands in T_{dummy} into T_{\max} . To
$Empty(T_{tm\mathrm{p}1})$ achieve this procedure, we use single strands stored in
Merge $(T_{1}, T_{c\circ n1})$ the following test tube T_{detete} .
$Annealing(T_{1})$

Denaturati (Ti) $T_{delete}=\{\overline{\# D_{1}A_{i}B_{j}C_{0}C_{1}1}|n\leq i\leq(n+1)m+n-1,$

Selection$(T_{1}, k,T_{tm_{\mathrm{P}1}})$ $0\leq y\leq\log_{2}(n-1)\}$

Merge(Ttmpl’ T_{con2}) Details of this substep is as follows. We first
$Annealing(T_{tm\mathrm{p}_{1}})$ copy T_{\max} to a test tube T_{tmp1} , and then, move
Denaturatim$(T_{tmp_{1}})$ 1 $\mathrm{r}\mathrm{e}$

1 from tomemory strands, whose values are 1, from T_{tmp1}

$Empty(T_{tmp2})$
T_{tmp2} . Next, we merge $T_{del\mathrm{e}t\mathrm{e}}$ into $T_{tmp_{2}}$, and ex-

Separatim$(T_{tmp_{1}}, \{D_{1}\},T_{tm_{\mathrm{P}2}})$ ecute Annealing, Cleavage and Denaturation for
$T_{tm_{\mathrm{P}2}}$. After the above operation, there exists a sin-

In Substep (2-1), we first merge the following test gle strand $\overline{\# D_{1}A_{i}B_{j}C_{0}}$ if and only if $S_{,\mathrm{j}}(1)$ is in
tube $T_{con\mathrm{s}}$ to $T_{tm\mathrm{P}2}$, and execute Annealing and T_{\max} . Finally, we merge the above single strands to
Denaturation for $T_{tm_{\mathrm{P}2}}$. T_{dummy} , and execute Annealing, Denaturation and

Separation. Then, we can remove memory strands
$T_{con\mathrm{s}}$ $=$ { $\overline{B_{j}\alpha^{\dot{\mathrm{a}}}D_{0}\beta_{i,j}}$, $\alpha^{i}D_{0}\beta_{i,j}$ $S_{i,j}(0)$ in T_{dummy} such that there is a memory strands

$|0\leq i\leq n-1,0\leq j\leq m-1\}\mathrm{S}\mathrm{i},\mathrm{j}(1)$ in T_{\max} .
Finally, we execute MaxOperation for addresses

In the above description, α is a single strand whose A_{n} , A_{n+1} , \cdots , $4_{(\mathrm{t}\mathrm{a}11)m1n-1}$, and store the output in
length is equal to $S_{\dot{\iota},j}A:B_{j}$, and α^{1}

.
means a single T_{ovt} . Details of the substep are given below.

strand $\alpha\alpha\cdots\alpha$ such that cz is repeated 2 times. In ad-
dition, $\beta_{i,j}$ is a single strand such that, Substep (2-2)

$Merge(T_{tm_{\mathrm{P}1}}, \{\overline{D_{0}D_{1}}\})$

$\beta_{:,j}$ $=$ $S(n\dagger 1)j+2n+1-i,\mathrm{l}\circ \mathrm{g}_{2}n5(\mathrm{v}\mathrm{u}\mathrm{l} 1)\mathrm{j}12n$ $11-\mathrm{i},\mathrm{l}\circ \mathrm{g}_{2}n-1$ Annealing (T_{tmp1})

$\ldots s(n+1)j+2n+1-\mathrm{i},0$, $Cleavage(T_{tmp1}, \{D_{0}D_{1}\})$

Denaturation $(T_{tm\mathrm{p}_{1}})$

and means a concatenated memory strands which de- $Selecti\sigma n(T_{tmp_{1}}, l,T_{\max})$

note a binary value $n-i$ such that $V_{(n+1)j+2n+1-i}=$

$n-i.$ Then, we move single strands whose length of
$|\alpha|\mathrm{x}n+|fj|$ from T_{tmp2} to T_{tmp1} . where $|\alpha|$ and $|\beta|$

Empty $(T_{tm_{\mathrm{P}1}})$, Empty(T_{tmp2})

are length of α and β , respectively. We summarize the $C\varphi y(T_{mat},T_{tmp1})$

substep as follows. $Separation(T_{tmp_{1}}, \{1\},T_{tm_{\mathrm{P}2}})$

Merge $(T_{tmp\mathrm{a}},T_{d\mathrm{e}l\epsilon te})$

Substep (2-1) Annealing$(T_{tmp_{2}})$

$Empty(T_{tm_{\mathrm{P}1}})$
$Cleavage(T_{tm\mathrm{p}2}, \{C_{0}C_{1}\})$

Mer$ge(T_{tmp\mathit{2}},T_{\mathrm{c}on3})$

Denaturati $\sigma n(T_{tm\mathrm{p}_{2}})$

Annealing $(T_{tmp_{2}})$ Empty $(T_{tm\mathrm{P}1})$

Denaturation $(T_{tm\mathrm{p}\mathrm{a}})$

$Selecti\alpha\iota(T_{tm_{\mathrm{P}2}}, x,T_{tmp1})$

$Selectim$($T_{tmp_{\underline{7}}}$, $|$ a $|\mathrm{x}n+|\beta|$, $T_{tmp_{1}}$)

184

$S_{n+1)j+n}$,1o$\mathrm{g}_{2}nnS,j$ $S[perp] n+1$)$j+n,10$ nns,j the EX-OR function, which runs in $O(1)$ steps for n bi-
0000narynumbers.
0110However, every DNA manipulation used in the model

$1|$ 01 $0]$ 11

has been already realized in lab level, and some proce-
dures can be implemented practically. Since logic and
arithmetic operations are primitive and important, we
believe that our results play an important role in the fu-

Figure 3: A truth table for LogicOperation ture DNA computing.

S
$n+1)j+$n,1Og2 n

$S_{n,j}$ $s_{[perp] n+1)j+n,10}$
n

$s_{n,j}$

0 0
0]

l 0
1 1

0 0
$]$ 0

$0]$ 11

merge(T_{dummy},T_{tmp1}) References
$Merge(T_{dummy},\{\#\})$

$Annealing(T_{dummy})$ [1] $\mathrm{L}.\mathrm{M}$. Adleman. Computing with DNA. Scientificc Amer-
Sepa ration(T_{dummy}) ican, Vol. 279, No. 2, pp. 54-61 , 1998.
$Separati\epsilon m(T_{dummy}, \{\#, \overline{\#}\}, T_{tra\epsilon h})$ [2] $\mathrm{E}.\mathrm{B}$. Baum and D. Boneh. Running dynamic program-
$Merge_{(}^{(}T_{\max}$, $T_{dummy})$ ming algorithms on a DNA computer. Proceedings of

the Second Annual Meeting on DNA Based Computers,
1996.

MaxOperatim(T_{\max}, T_{out})
[3] P. Frisco. Parallel arithmetic with splicing. R0-

manian Journal of Information Science and Technol-
In Substep (3-1), we first merge the test tube T_{out} $ogy(ROMJIST)$, Vol. 2, No. 3, pp. 113-128, 2000.

to T_{n} , and execute LogicOperati\sigma n, which is defined [4] A. Fujiwara, K. Matsumoto, and W. Chen. Address-
by a truth table in Figure 3, for T_{n} . The output of able procedures for logic and arithmetic operations with
LogicOperati\sigma n is stored in T_{n} . DNA strands. 5th Workshop on Advances in Parallel and

Distributed Computational Models, 2003. (to appear)
Substep $(3\cdot 1)$

[5] F. Guarnieri, M. Fliss, and C. Bancroft. Making DNA
$Merge(T_{n}, T_{out})$ add. Science, Vol. 273(5272), pp. $2\underline{)}0-223$,1996.
LogicOperatim(T_{n}, L, T_{n}) [6] V. Gupta, S. Parthasarathy, and M J. Zaki. Arithmetic

and logic operations with DNA. Proceedings of the 3rd
In Substep (3-2), we first perform Separation with DIMACS Workshop on DNA Based Computers, pp. 212-

a symbol A_{n} in order to extract the output strands, we 220, 1997.
move the strands from T_{n} to T_{tmp1} . Finally, we merge [7] H. Hug and R. Schuler. DNA-based parallel computa-

the test tube T_{tmp1} to T_{input} . tion of simple arithmetic. Proceedings $oJ^{\cdot}tlte$ 7th Jnter-
national Meeting on DNA Based Computers(DNA7), pp.

Substep $(3\cdot 2)$ 159-166, 2000.
$Empty(T_{tm\mathrm{P}1})$ [8] S. Kamio, A. Takehara, A. Fujiwara. Procedures for
Separatim$(T_{n}, \{A_{n}\}, T_{tmp_{1}})$ Computing the Maximum with DNA strands. Proceed-
Merge $(T_{input}, T_{tmp_{1}})$ ings of the 2003 Inte rnational Conference on Paral-

lel and Distributed Processing Techniques and Applica-
tions, Vol. 1, pp. 351-357, 2003.We now consider complexity of the above procedure. [9] R J. Lipton. DNA solution of hard computational prob-

Each step of the procedure consists of a constant num- lems. Science, Vol. 268, pp. 542-545, 1995.
ber of DNA manipulations described in Section 2, and [10] Q. Ouyang, $\mathrm{P}.\mathrm{D}$. Kaplan, S.Liu, and A. Libchaber. $\mathrm{D}\mathrm{N}\mathrm{A}$

$O(mn^{2})$ kinds of strands are used in the procedure. solution of the maximal clique problem. Science, Vol.
Then, we obtain the following theorem. 278, pp. 446-449, 1997.

[11] G. PMun, G. Rozeberg, and A. Salomaa. DNA comput-
Theorem 2 Procedure EX-OR, which computes EX-OR ing. Springer-Verlag, 1998.
function of n binary numbers of m bits, runs in

$O(1)\square$
[12] $\mathrm{Z}.\mathrm{F}$.Qiu and M. Lu. Arithmetic and logic operations for

steps using $O(mn^{2})$ different DNA strands. 0DNA computers. Proceedings of the Second IASTED
International conference on Parallel and Distributed

The procedure EX-OR are easily applied to other mul- Computing and Networks, pp. 481-486, 1998.
tiple input functions, such as, majority and threshold [13] $\mathrm{Z}.\mathrm{F}$. Qiu and M. Lu. Take advantage of the computing
functions by modifying substep (3-2). Thus, we can power of DNA computers. In Proceedings of $tt_{l}e$ Third

compute such functions with the same complexity. Workshop on Bio-Inspired Solutions to Parallel Prvcess-
ing Problems, IPDPS 2000 Workshops, pp. 570-577,
2000.

5 Conclusions [14] $\mathrm{J}.\mathrm{H}$. Reif. Parallel biomolecular computation: Models
and simulations. Algorithmica, Vol. 25, No. 2-3, pp.
142-175, 1995.

In this paper, we propose procedures for computing [15] H. Yoshida and A. Suyama. Solution to 3-SAT by
multiple input logic. We first show a simple procedure breadth first search. American Mathematical Society,
for computing AND function, which runs in $O(1)$ steps pp. 9-22, 2000.
for n binary numbers. We next propose a procedure for

$ogy(ROMJIST)$, $\mathrm{V}\mathrm{o}\mathrm{l}.2$, No. 3. pp. 113-128, 2000.
[4] A. Fujiwara, K. Matsumoto, and W. Chen. Address-

able procedures for logic and arithmetic operations with
$\mathrm{D}\mathrm{N}\mathrm{A}\mathfrak{N}\mathrm{r}mathrm{l}\mathrm{n}\mathrm{d}\mathrm{s}$. $\mathit{5}thWorks.l_{l\cdot O}p$ on $Ad\mathrm{t}^{J}oncesjn$ Parallel and
Distributed Computational Models, 2003. (to appear)

[5] F. Guamieri, M. Fliss, and C. Bancroft. Making $\mathrm{D}\mathrm{N}\mathrm{A}$

add. Science, $\mathrm{V}\mathrm{o}\mathrm{l}.273(5272)$, pp. $2\underline{)}0-223,1996$.
[6] V. Gupta, S. Parthasarathy, and $\mathrm{M}.\mathrm{J}$. Zaki. Arithmetic

and logic operations with $\mathrm{D}\mathrm{N}\mathrm{A}$. Proceedings of the $\mathit{3}\kappa l$

DIMACS $Work^{r}shop$ on DNA Based Computers, $\mathrm{p}\mathrm{p}.212-$

$220,1997$.
[7] H. Hug and R. Schuler. $\mathrm{D}\mathrm{N}\mathrm{A}$-based parallel computa-

tion of simple $\mathrm{a}\mathrm{l}\cdot \mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}$. Proceedings $oJ^{\cdot}tlte7th$ $J_{ll}ter-$

national Meeting on DNA Based Computers(DNA7), $\mathrm{p}\mathrm{p}$.
159-166, 2000.

[81 S. Kamio, A. Takehara, A. Fujiwara. Procedures for
Computing the Maximum with $\mathrm{D}\mathrm{N}\mathrm{A}$ strands. Pmceed-
ings of the 2003 International Conference on Paral-
lel and Distributed Pmcessing Techniques and Apptjca-
tions, $\mathrm{V}\mathrm{o}\mathrm{l}$. 1, pp. 351-357, 2003.

[91 $\mathrm{R}.\mathrm{J}$. Lipton. $\mathrm{D}\mathrm{N}\mathrm{A}$ solution of hard computational prob-
lems. Science, $\mathrm{V}\mathrm{o}\mathrm{l}.268$, pp. 542-545, 1995.

[10] Q. Ouyang, $\mathrm{P}.\mathrm{D}$. Kaplan, S.Liu, and A. Libchaber. $\mathrm{D}\mathrm{N}\mathrm{A}$

solution of the maximal c[jque problem. Science, $\mathrm{V}\mathrm{o}\mathrm{l}$.
278, pp. 446-449, 1997.

[11] G. Paun, G. Rozeberg, and A. Salomaa. DNA compute
ing. Springer-Verlag, 1998.

[2] $\mathrm{Z}.\mathrm{F}.\mathrm{Q}\mathrm{i}\mathrm{u}$ and M. $\mathrm{L}\mathrm{u}$. Arithmetic and logic operations for
$\mathrm{D}\mathrm{N}\mathrm{A}$ computers. Proceedings of the Second lASTED
International conference on Parallel and Distributed
Computing and Networks, pp. 481-486, 1998.

[13] $\mathrm{Z}.\mathrm{F}$. $\mathrm{Q}\mathrm{i}\mathrm{u}$ and M. $\mathrm{L}\mathrm{u}$. Take advantage of the computing
power of $\mathrm{D}\mathrm{N}\mathrm{A}$ computers. In Proceedings of $tt_{l}e$ Tout
Workshop on Bio-lnspiredSolutions to Parallel P:vcess-
ing Problems, JPDPS 2000 Workshops, $\mathrm{p}\mathrm{p}$. 570-577,
$2\propto h$.

[14] $\mathrm{J}.\mathrm{H}$. Reif. Parallel biomolecular computation: Models
and simulations. Algorithmica, $\mathrm{V}\mathrm{o}\mathrm{l}$. 25, No. 2-3, $\mathrm{p}\mathrm{p}$.
142-175, 1995.

[15] H. Yoshida and A. Suyama. Solution to 3-SAT by
breadth $\mathrm{f}\mathrm{i}_{\mathrm{R}}\mathrm{t}$ search. American Mathemtical Society,
$\mathrm{p}\mathrm{p}$. 9-22, $20\mathrm{t}\mathrm{n}$.

