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In the previous work [1], we studied interface regularity of three dimensional
Maxwell system when the interface is $C^{2}$ , and that of Stokes system when

it is flat. In this article, we continue the study and show refined interface

vanishing theorems for general interface.
Geometric situation which we are concerned in is described as follows.

Nam $\mathrm{e}\mathrm{l}\mathrm{y}$, $\Omega\subset \mathrm{R}^{3}$ denotes a bounded domain with Lipschitz boundary $\partial\Omega$ ,

and $\mathrm{M}$
$\subset \mathrm{R}^{3}$ is a Lipschitz hypersurface cutting $\Omega$ transversally. Thus, it

holds that

$\mathrm{M}$ $\cap\Omega 4$ $\phi$

$\Omega$ $=\Omega_{+}\cup$ ( $\Omega\cap$ M) $\cup\Omega_{-}$ (disjoint union) (0.1)

with the open subsets $\Omega_{\pm}$ of Q. First, we consider the Maxwell system in

magnetostatics,
$\mathit{7}\cross B=J\nabla\cdot B=0\}$ in $\Omega_{\pm}$ , (0.2)

where $B=t(\mathrm{f}1^{1} (x), B^{2}(x)$ , $B^{3}(x))$ and $7={}^{t}(J^{1}(x), J^{2}(x)$ , J3 (x) $)$ stand for

th ee dimensional vector fields, indicating magnetic field and total current

数理解析研究所講究録 1368巻 2004年 65-71



se

density, respectively. Furthermore, $\nabla=t$ $(\partial_{1}, \partial_{2}, \partial_{3})$ denotes the gradient
operator and $\cross$ and are outer and inner products in $\mathrm{R}^{3}$ , so that $\nabla\cross$ and
$\nabla$ . are the operations of rotation and divergence, respectively.

In the context of magnetoencephalography, Suzuki, Watanabe, and Shi-
mogawara [3] introduced an interface vanishing theorem when the interface
is given by the boundary $\partial D$ of a smooth bounded domain $D\subset \mathrm{R}^{3}$ in use of
the layer potential. More precisely, if $J$ is continuous on $\overline{\Omega_{\pm}}$ and system (0.2)
has a solution $B\in C(\mathrm{R}^{3})^{3}\cap C^{1}(\mathrm{R}^{3}\backslash \partial D)^{3}$ for $\Omega_{-}=D$ and $\Omega_{+}=\mathrm{R}^{3}\backslash D,$

then
$[\nabla(n\cdot B)]_{-}^{+}=0$ on $\partial D$

follows, regardless with the continuity of $J$ across $\partial D$ . Here, $n$ denotes the
outer unit normal vector to $\partial D$ , $[A]_{-}^{+}=4_{+}-$ $4$ , and

$A_{+}( \xi)=\lim_{xarrow\xi,x\in \mathrm{R}^{3}\backslash D}$
$A(x)$ , $A_{-}( \xi)=\lim_{xarrow\xi,x\in D}A(x)$

for ( $\in\partial D$ . Then, Kobayashi, Suzuki and Watanabe [1] studied local version,

the case where the bounded domain $\Omega$ is given with the interface $\mathcal{M}$
”

$\mathrm{L}$ as
in (0.1), and showed that even if $n\cross J$ has an interface on $\mathcal{M}\cap\Omega$ , the normal
component $n$ $B$ of $B$ gains the regularity in one rank. In this article, we
refine the argument and reduce smoothness of the interface. This refinement
is very useful to study similar problems for the Stokes system as will be
described later.

To state our result for (0.2), we take some preliminaries on function spaces
fr$\mathrm{o}\mathrm{m}$ Girault and Raviart [2]. Namely, if $D\subset \mathrm{R}^{3}$ is a bounded domain with
Lipschitz boundary $\partial D$ and $n$ denotes the unit normal vector to $\partial D$ , then
for $p\in[1, \infty]$ , $LP(D)$ denotes the standard $L^{p}$ space on $D$ provided with the
norm $||$ $||_{L^{\mathrm{p}}(D))}$ and the Sobolev space $W^{m,p}(D)$ is defined by

$W^{m,p}(D)=$ { $u\in L^{p}(D)|\partial^{\alpha}u\in L^{p}(D)$ for $|\alpha|\leq m$ }

for a positive integer $m$ , where $\partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}}\partial_{x_{2}}^{\alpha_{2}}\partial_{x\mathrm{a}}^{\alpha_{3}}$ for the multi-index $\alpha=$

$(\alpha_{1}, \alpha_{2}, \alpha_{3})$ . Put $H^{m}(D)=W^{m,2}(D)$ . Given $\sigma\in(0,1)$ , we say that $u\in$

$H^{m+\sigma}(D)$ if $u\in H^{m}(D)$ and

$\int_{D}\int_{D}\frac{|\partial^{\alpha}u(x)-\partial^{\alpha}u(y)|^{2}}{|x-y|^{n+2\sigma}}dxdy<+\mathrm{o}\mathrm{o}$

for any $\alpha$ in $|\alpha|=m$ and $n=3.$ The space $H^{s}(\Gamma)$ is defined similarly with
$n=2$ through the local chart of $\Gamma_{:}$ where $s\in[0,1]$ and $\Gamma\subset\partial D$ is a relatively
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open connected set. Then, we set $H^{-s}(\Gamma)=H_{0}^{s}(\Gamma)’$ , where $H_{0}^{s}(\Gamma)$ denotes

the closure in $H^{s}(\Gamma)$ of the space composed of Lipschitz continuous functions
on $\Gamma$ with compact supports. Thus, we have $H_{0}^{s}(\Gamma)=H^{s}(\Gamma)$ if $\Gamma\subset\partial D$ is

a closed surface, and in particular, it holds that $H^{1/2}(\partial D)=H_{0}^{1/2}(\partial D)$ . In

this context, let us remember the standard $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ theorem that $H^{1}(D)|_{\partial D}\cong$

$H^{1/2}(\partial D)$ . We also put

$H(\mathrm{d}\mathrm{i}\mathrm{v}, D)=\{u\in L^{2}(D)^{3}|\mathit{7}$ . $u\in L^{2}(D)\}$

and
$H$ (rot, $D$ ) $=\{u\in L^{2}(D)^{3}|\mathit{7}$ $\cross u\in L^{2}(D)^{3}\}$

He$\mathrm{r}\mathrm{e}$ and henceforth, $(\cdot, \cdot)_{D}$ and $((\mathrm{v}, \cdot))_{D}$ denote $L^{2}(D)$ and $L^{2}(D)^{3}$ inner
products, respectively, and $\langle\cdot, \cdot\rangle_{\partial D}$ and $\langle(‘$ .: $.\rangle\rangle_{\partial D}$ the duality pairing between
$H^{-1/2}(\partial D)$ and $H^{1/2}(\partial D)=H_{0}^{1/2}(\partial D)$ , and $H^{-1/2}(\partial D)^{3}$ and $H^{1/2}(\partial D)^{3}$ ,

respectively. Then we have the following.

Proposition 0.1 Each $\prime v$ $\in H(div, D)$ admits the trace

$n\cdot v|_{\partial D}\in H^{-1/2}(\partial D)$ ,

and Green’s formula
$((v, 7\mathrm{t}))_{D}+(\nabla\cdot v, \mathrm{f})_{D}=\langle n\cdot v, \mathrm{j})\rangle_{\partial O}$

holds for $?\in$ $H^{1}(D)$ .

Proposition 0.2 Each $v\in H^{1}$ (rot, $D$ ) admits the trace

$n\cross$ $v|_{\partial D}\in H^{-1/2}(\partial D)^{3}$ ,

and the Stokes fomula
$((\nabla\cross v, \mathrm{p}))_{D}-((v, 7\cross w))_{D}=\langle\langle n\cross v, \mathit{1}I\rangle\#_{\partial D}$

holds for $w\in H^{1}(D)^{3}$ .

To discuss the interface regularity of the solution $B$ to the Maxwell system

(0.2), we take that
$\Gamma_{\pm}=\partial\Omega_{\pm}\cap \mathcal{M}$
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with $\partial\Omega_{\pm}$ being the boundary of $\Omega_{\pm}$ . This means that $\Gamma_{+}$ and $\Gamma$-coincide as
sets, but are regarded as parts of the boundaries of $\Omega_{+}$ and $\Omega_{-}$ , respectively.
Henceforth, $n$ denotes the outer unit normal vector to $\Gamma$-so that $-n$ is the
outer unit normal vector to $\Gamma_{+}$ . Unless otherwise stated, if $\mathcal{M}$ is $C^{k,1}$ , then
$C^{k,1}\cap W_{lo\mathrm{c}}^{k+1,\infty}$

.
extension of the normal vector $n$ defined on $\Gamma=\mathcal{M}\cap\Omega$ is always

taken to 0 henceforth, where $k$ is a non-negative integer. Furthermore, given
a function $4(x)$ on $\Omega_{\pm}$ , we set

$[A]_{-}^{+}=A_{+}-A_{-}$ on $\Gamma$ ,

where $A_{\pm}( \xi)=\lim_{xarrow\xi,x\in\Omega}A(\pm x)$ for $\xi\in\Gamma$ are always taken in the sense of
traces to $\Gamma_{\pm}$ .

Suppose that $B$ and $J$ are in $L^{2}(\Omega_{\pm})^{3}$ and satisfy (0.2). This means that
those relations hold piecewisely in $\Omega_{\pm}$ in the sense of distributions $\mathrm{P}’(\mathrm{q}_{\pm})$ ,
that is,

$\int_{\Omega}\pm B\cdot \mathit{7}\mathrm{x}$ $C= \int_{\Omega}\pm J\cdot C$ and $\int_{\Omega}\pm B$ . $\nabla\varphi=0$

for any $C\in C_{0}^{\infty}(\Omega_{\pm})^{3}$ and $\varphi\in C_{0}^{\infty}(\Omega_{\pm})$ . Unless otherwise stated, those
vector fields $B\in L^{2}(\Omega_{\pm})$ and $J\in L^{2}(\Omega_{\pm})^{3}$ are identified with the elements
in $L^{2}(\Omega)^{3}$ .

For the moment, we assume that $\mathcal{M}$ is Lipschitz continuous and relation
(0.2) holds for $B\in L^{2}(\Omega_{\pm})^{3}$ and $J\in L^{2}(\Omega_{\pm})^{3}$ . This implies that $B\in$

$H$ (rot, $\Omega_{\pm}$ ) $\cap$ $(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega_{\pm})$ , which assures the well-definedness of

$n\cross B|_{\mathrm{r}_{\pm}}\in H^{-1/2}(\Gamma_{\pm})^{3}$ and $n\cdot B|_{\mathrm{r}_{\pm}}\in H^{-1/2}(\Gamma_{\pm})$ ,

and hence $B|_{\mathrm{p}_{\pm}}\in H^{-1/2}(\Gamma_{\pm})^{3}$ follows. Furthermore,

$[n\cross B]_{-}^{+}--0$ and $[n\cdot B]_{-}^{+}=0$ (0.3)

if and only if

$\mathit{7}\cross B=J\in L^{2}(\Omega)^{3}$ and 7. $B=0\in L^{2}(\Omega)$ (0.4)

as distributions in $\Omega$ , respectively. If both relations of (0.4) are satisfied,
then $B\in H^{1}(\Omega)^{3}$ follows, because $B\in H^{1}(\Omega)^{3}$ is equivalent to $[B]_{-}^{+}=0$ on
$\Gamma$ for $B\in H^{1}(\Omega_{\pm})^{3}$ . A slightly weaker fact $B\in H_{loc}^{1}(\Omega)^{3}$ is also obtained by
Corollary 1.2.10 of [2],

$H$ (rot, $\Omega$ ) $\cap H$ (div, $\Omega$ ) $\subset H_{loc}^{1}(\Omega)^{3}$ , (0.5)
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as (0.4) implies $B\in H_{loc}^{1}(\Omega)^{3}$ .
O $\mathrm{u}\mathrm{r}$ first result is stated as follows. There, $\mathcal{M}$ is supposed to be $C^{1,1}$ and

hence $C^{1,1}\cap W_{loc}^{2,\infty}(\Omega)$ extension is taken to $n$ .

Theorem 0.1 If $\mathcal{M}$ is $C^{1,1}$ , and B $\in H^{1}(\Omega)^{3}$ and J $\in H(rot, \Omega\pm)$ satisfy

(0.2), then it holds that n. B $\in H_{loc}^{2}(\Omega)$ .

Above theorem is a slight improvement of a theorem of [1], but new
argument for the proof is presented. Similarly to that case, $B\in H^{1}(\Omega)^{3}$

solves (0.2) in $\Omega$ as a distribution, so that

$\int_{\Omega}B\cdot \mathit{7}\cross C=\int_{\Omega}J\cdot C$ and $\int_{\Omega}B\cdot \mathit{7}p$ $=0$

hold for any $C\in C_{0}^{\infty}(\Omega)^{3}$ and $\varphi\in C_{0}^{\infty}(\Omega)$ . We note that $J\in H(\mathrm{r}\mathrm{o}\mathrm{t}, \Omega\pm)$

belongs to $\mathit{7}\in H$(rot, $\Omega$) if and only if $[n\cross 7]_{-}^{+}=0$ on $\Gamma_{\}}$ and if this condition
is satisfied furthermore, then we have

$-bB=\nabla\cross J\in L^{2}(\Omega)^{3}$

(as distributions in $\Omega$ ), because 7 $\cross B=J\in H$ (rot, $\Omega$ ) and 7 $B=0\in$

$L^{2}(\Omega)^{3}$ are valid similarly in 0. Then, $B\in H_{loc}^{2}(\Omega)^{3}$ is obtained from the
standard elliptic regularity. Theorem 0.1 says, ill contrast, that even if $n\cross J$

has an $\mathrm{i}_{11}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}$ on $\Gamma=\mathrm{A}/$[ ,$|$

$\Omega$ , the normal component $n\cdot B$ of $B$ gains

the regularity in one rank. It is not difficult to suspect that the solenoidal
condition 7 $B=0$ plays an essential role in such a regularity. In this
connection, it must be noted that in Theorem 0.1, interface to $n$ . $J$ is not

permitted. III fact, the first equation of (0.2) holds in $\Omega$ , and therefore,

7 $J=/\cdot$ $(\mathit{7}\cross B)=0_{\vee}\backslash$

follows there. Thi$\mathrm{s}$ implie$\mathrm{s}$
$J\in H(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ , and hence $[n\cdot J]_{-}^{+}=0$ holds on

$\Gamma$ .
Th$\mathrm{e}$ second theme of this article is the stationary Stokes system;

$-bv=\mathit{7}p+f\nabla v=0$ ’ in $\Omega_{\pm}$ (0.6)

where $v={}^{t}(v^{1}(x), v^{2}(x)$ , $v^{3}(x))$ denotes the velocity of fluid, $p=p(x)$ the
pressure, and $\mathrm{f}(x)={}^{t}(f^{1}(x), 7^{2}(x)\mathrm{J}^{3}(x))$ the external force. The following

th or$\mathrm{e}\mathrm{m}$ is proven by Theorem 0.1 and the vorticity formulation. There,
$\mathcal{M}$ is supposed to be $C^{2,1}$ so that $C^{2,1}\cap W_{loc}^{3,\infty}(\Omega)$ extension is taken to $n$ .
Actually, [1] showed the theorem when $\mathcal{M}$ is flat.
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Theor$\mathrm{e}\mathrm{m}$ 0.2 If $\mathcal{M}$ is $C^{2,1}$ , $v\in H^{2}(\Omega)^{3}$ , $p\in H^{1}(\Omega)$ , and $f\in H^{1}(\Omega_{\pm})^{3}$

satisfy (0.6), an 1 $[n\cdot\nabla p]_{-}^{+}=0$ holds on $\Gamma$ , then the condition $(n\cdot\nabla)^{2}(n\mathrm{x} v)\in$

$H^{1}(\Omega)^{3}$ implies that $v\in H_{lo\mathrm{c}}^{3}(\Omega)^{3}$ and $p\in H_{loc}^{2}(\Omega)$ .

Standard regularity associated with the above theorem is obvious, so that
$v\in H^{2}(\Omega)^{3}$ , $p\in H^{1}(\Omega)$ , and $f\in H^{1}(\Omega)^{3}$ imply $v\in H_{loc}^{3}(\Omega)$ and $p\in H_{l\circ \mathrm{c}}^{2}(\Omega)$

in (0.6). On the other hand, $f\in H(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ can take place of the assumption

$[$yz . $\nabla p]_{-}^{+}=[\frac{\partial p}{\partial n}]_{-}^{+}=0$ on $\Gamma$ (0.7)

in Theorem 0.2, because (0.6) holds in $\Omega$ and therefore, $f\in H(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ gives
that

$-bp=-$ $\mathit{7}$ . $\mathit{7}p=\mathit{7}$ . $f\in L^{2}(\Omega)$ ,

in $\Omega$ , or $\mathit{7}p$ $\in H(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ . This implies (0.7) and also $p\in H_{1oc}^{2}(\Omega)$ from the

standard elliptic regularity. In other words, if (0.6) holds in a natural $L^{2}$

setting in $\Omega$ , then $f\in H^{1}(\Omega_{\pm})^{3}\cap$ $\#(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ implies $H^{2}$ interface vanishing

of the pressure and $H^{3}$ interface of the velocity only in the second normal
derivative of the tangential component. Namely, we have the following.

Theorem 0.3 If $\mathcal{M}$ is $C^{2,1}$ and $v\in H^{2}(\Omega)^{3}$ , $p\in H^{1}(\Omega)$ , and $f\in L^{2}(\Omega)^{3}$

satisfy (0.6), then $f\in H(div, \Omega)$ implies $7\in H_{loc}^{2}(\Omega)$ , and $f\in H^{1}(\Omega_{\pm})^{3}$ with
$(n. \nabla)^{2}(n\cross v)\in H^{1}(\Omega)^{3}$ , furthermore, gives that $v\in H_{loc}^{3}(\Omega)^{3}$ .

This$\mathrm{e}$ interface $\mathrm{v}$ anishing theorems are optimal in the sense that there is
$v\in H^{2}(\Omega)^{3}$ , $p\in H^{2}(\Omega)$ , and $f\in H^{1}(\Omega_{\pm})^{3}\cap H(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ satisfying (0.6), (0.7),

and $[(n. \nabla)^{2}(n\mathrm{x}v)]\mathrm{j}$ $\mathrm{z}$ $0$ on $\Gamma$ Among them is the case that

$\mathcal{M}=\{x=(x_{1}, x_{2}, x_{3})|x_{3}=0\}$

with $n=t$(0, 0, 1), $\Omega=\{x=(x_{1}, x_{2},x_{3})|x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1\}$,

$v=(\chi\chi(x_{1}-x_{2})x_{3}|x_{3}|(x_{1}-x_{2})x_{3}|x_{3}|0)\in H^{2}(\Omega)^{3}$ ,

and $p=x_{3}|x3|\in H^{2}(\Omega)$ , where $\chi$ is a smooth function on $\mathrm{R}$ with the support
containing 0. In fact, we have

$f=-\{$ $2\chi(x_{1}-x_{2})H(x_{3})+\chi’,’,(x_{1}-x_{2})x_{3}|x_{3}|2\chi(x_{1}-x_{2})H(x_{3})+\chi(x_{1}-x_{2})x_{3}|x_{3}|2|x_{3}|)$ ,
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where $H=H(s)$ is the Heaviside function:

$H(s)=\{-11$ $(x_{3}(x_{3}><0)0)$

aztd this $f$ is in $H^{2}(\Omega_{\pm})^{3}\cap H(\mathrm{d}\mathrm{i}\mathrm{v}, \Omega)$ . Thus, here actual interface arises in

the second normal derivative of the tangential component of the velocity, in

spite that any other assumption in Theorems 0.2 and 0.3 is satisfied.
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