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On Some Closure Properties of Semilinear Sets

Lészlé Készonyil*, Manfred Kudlek?, Antal Pukler?

1 Dept. of Mathematics, Berzsenyi Déniel College,
H-9700 Szombathely, Hungary
2 Fachbereich Informatik, Universitit Hamburg,
Vogt-Kolin-Strafie 30, D-22527 Hamburg, Germany
3 Széchenyi Istvan University, Gy6r, Hungary

Abstract. We show that closure under the operations of minimum and minimum iteration
holds for special cases of linear sets of dimension 2.

1 Introduction

Multiset languages are important in the fields of Petri nets, molecular computing and membrane
computing [6, 7, 8]. Multisets can be represented by m-dimensional vectors over the natural
numbers. Some research has been done recently [5, 2, 3, 4], especially on characterization
and complexity of multiset languages, and the closure properties of various classes of multiset
languages. Some of them still remain open problems.

Among the operations for which some closure properties are still open problems are the
operations of minimum N and mazimum U of multiset languages, as well as their iteration. The
mimimum ( maximum ) of two multisets is defined componentwise, and extended to multiset
languages.

An important class of multiset languages is the class of semilinear sets, introduced already by
S. Ginsburg [1]. It corresponds to the classes of regular, linear, and context-free word languages
which coincide for multiset languages since the underlying operation + is commutative.

Here we concentrate on the operation minimum and M-iteration for the special case of dimen-
sion 2, and for linear sets. We show that for a linear set its M-iteration is semilinear ( Theorem
18 ), and that the minimum of two ”1-dimensional” linear sets ( lines ) is semilinear ( Theorem
21 ), too.

For all remaining cases as well as for the dual operations of mazimum U and marimum
iteration the closure properties are open problems. We conjecture that closure holds under
these operations in general for all semilinear sets and any dimension m.

2 Preliminaries

Definition 1. A set F C IN™ where IN = {0,1,...} and m > 1 is called a linear set iff either
F = ( or there exist r > 0 and vg, ..., v, € IN™ such that

(S1)  F = F(vo;v1, ..., vr) = {0 + Xizy Kivi | ki € IN}

The vector vy and the vector set P = {v; | { = 1,...,,r} appearing in (S;) are often called
preperiod and the set of periods of F, respectively. O

*This research was supported by the Hungarian-German scientific- technological research project No D 39/2000
in the scope of the treaty contracted by the Hungarian Ministry of Education and his German contractual partner
BMBF.
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The set E is semilinear if it is a finite union of linear sets. We refer to these linear sets as the
components of E. ‘

Definition 2. Let vo € IN™, and P = {v,...,v,} C IN™. The grid is defined by

r
G(up; P) = {vo+ Y Awi | hi € Z,i = 1,...,7} (1)
i=1 .
where Z denotes the set of integers. O
Note that
F'(vo; P) C G(vo; P) (2)

Definition 3. The grid G(v; D) with D = {dl,.;.,dm} C IN™ is a basic grid if the d; are
multiples of basis vectors, i.e. of the form d; = (§;,14y,...,0;rAr), with A; # 0. ( Here §;; is
the Kronecker symbol: 6;; =0ifi# jand §;; =1). If A; =1 fori € [m] = {1,...,m} then the

basic grid U(vg) = G(vo; E) with E = {ey, ..., e, } is called a unit grid. O
Obviously, for any unit grid U(wvg) holds
U(wo) = U(0), (3)

( thus there is only one unit grid U = U(0) ), and for every grid G holds
GCU (4)

In the sequel we will investigate some properties of subsets of the unit grid U. Let A be a
subset of U. As usual, we define a partial order < as follows:

Definition 4. For u,v € A and u = (uy, ..., Um), v = (V1,...,Vm) let u < v if and only if u; < v;
holds for all i € [m] = {1, ...,m}.

In some of the applications it is convenient to add the elements "oc” and ”—00” to Z, let
Z = Z U {00, —00}. We extend the partial order ”<”, operations ”+” and ”-” to Z as usual: for
any u € Z let u < oo and —oo < u, for u € Z, let u+00 = 00, and 4+ (—00) = u— o0 = —o0, for
u > 0 let u - (+o0) = oo, for u < 0 let u - (+oo) = Foo, and for u = 0 define 0- (+ooc) = 0. We
extend the notions of linear set, grid, basic grid and unit grid to vector sets whose components
are elements of Z. o

Definition 5. Let A be a subset of the unit grid U. An element a € A is a minimal ( mazimal)
element of Aifforanyve A : v <a (a <v) implies a = v. a

Definition 6. Let A be asubset of U: ACU.
For u = (u1, ..., um) € A and i € [m] the i-section S(A;u,i) of A and u is defined by
S(Aiu,i) ={ve Ajv=(v1,...9m),v; =u;,J #1} . (5)
O

Definition 7. Let A C U. An element v = (vy,...,Um) € A is said to be i-section mazimal
( i-section minimal ) if it is maximal ( minimal ) in the i-section S(A;v,1). o

Definition 8. Let A be a subset of U. The set A is closed under maximality ( minimality ) if
all sections have maximal ( minimal ) elements. .
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Definition 9.  Let A be a subset of U. For the i-section S(A;v,i) we define the mazimum
closure ( minimum closure ) [S(A;V,%)]maz ( [S(A;,1)]min ) of A by

[S(A;vv'l;)]nwm = S(A;v,1) , ( [S(A;'in)]mi‘n = S(A;v,1) )
if A(A;v,i) =0 or S(A;v,4) has a maximal ( minimal ) element, and by
[S(A, v, )]maze = S(A;v,8) U {(..vi-1,00,Vis1,--)},

( [S(A;v,9)lmin = S(A;v;) U {(-..vi—1, =00, Vig1, )} ),
if A(A;v,1) =0 and S(4;v,1i) doesn’t have any maximal ( minimal ) element. Let

[A)maz = U U [S(A;v,9)|max (6)
i=1vEA

(Al = L) U 1S(A3 9, lin - )
t=1v€EA

(m}

Obviously, [Almaz ( [Almin ) is closed under maximality ( minimality ).

Definition 10. Let u and v be two elements of the unit grid U. The operations «Mv and uUwv
are defined by

uMv =max{w |(w <u) A(w<Lv)}, (8)
yUv =min{w |(w 2 u)A(w=v)}. - (9)

Lemma1l. Let u = (uy,..., Um) and v = (V1, ..., Um) two vectors in the unit grid U. Then

uMNv = (min(uy,v1),..., Min(Um, Um)) , (10)
uldv = (max(ui,vi),..., MaX(Um,Vm)) - (11)
a

Definition 12. Let A be a nonempty subset of the unit grid U. A is said to be closed under the
operation M (under L) or shortly M -closed ( U -closed ) if u,v € A implies uMv € A (uUv € A).
O

Definition 13. Let A be a nonempty subset of the unit grid U. The M-closure ( U-closure )
An ( Ay ) of A is the smallest set closed under M ( U ) containing A. o

Definition 14. Let A be a nonempty M-closed ( Li-closed ) subset of the unit grid U. A subset
B C Ais a generator set for Aif A=Br (A=By). v O

Lemma 15. Let A be a nonempty subset of the unit grid U. Suppose that A is closed under
section mazimality ( minimality ) and under 1 (U ). Denote by M(A) ( m(A) ) the set of
section mazimal ( section minimal ) elements of A, i.e., let

M(A) = {w | w=maxS(4;v,i),v € A,i =1,..,m}, (12)

(m(A) = {w | w=minS(A;v,i),v € A,;i=1,..,m} ). (13)
Then M(A) ( m(A) ) is a generator system for A.
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Proof. For every v € A

v =M%, max S(A;v, 1), (14)
(v=Uu, minS(A;v,i) ). (15)
O

The vectors v, ..., v» € IN™ are said to be linearly independent if
MU+ + AU =0 (16)

implies A1, ..., Ar = 0. ( Here Ay, ..., Ar are integers and the operations in (16) are meant to be
operations over vectors with integer components. )

Lemmal6. Let F C IN™ be a finite vector set and v any vector in IN™. Then,

min(F + v) = min(F) + v, an
and for any A € IN holds
min(AF) = Amin(F). (18)

Lemmal7. Let E C IN™ and F C IN™ be finite vector sets. Then

min(E U F) = min(min(E), min(F)). ‘ A - (19)

3 Closure properties
Theorem 18. Let
F={’Uo+k1’01+...+k'r’vr I k,;GIN,i=].,---,’)"} (20)

where vy is the preperiod, and {vy,...,v.} the set of periods associated to F. Assume that
Vo, V1, .., Ur € IN? . Then Fr is semilinear.

Proof. Without loss of generality we may assume that 1o = 0, and for i € [r] holds
Vi2/Vi1 2 Vit1r,2/Vi4,1 - (21)

(If v, = 0, then we write v;2/v;,1 = 00 ).
For u € F and i # j we define T'(u;v;,v;) and Q(u; v, v5) by

T(u;vi,v5) = {u+tvg + tju; |0t <1, 05t < 1} (22)
and
Q(u;vi, v5) = Fn N T(u;v;,v;) - (23)

If we write simply Q(u), then we mean Q(u) = Q(u;v1,v,). Obviously,



104

Fn= G G Q(wl + jur) . (24)

i=1j=1
Consider the function pu(u) defined on the elements of F' as follows:
w(u) = |Qu)| (25)

The function u(u) is monotone in some sense, i.e. : for j = 1,7 holds that if v € Q(u) then
v +v; € Q(u + v;), therefore p(u) < u(u + v;). Let v’ be a vector from F such that

() = max{u(u) | u € F} (26)

where u' = \v1 + lyur, and ky + I is minimal ( &, lp € IN ).
For any fixed [ € {0, ...,1} let

ko(l) = min{k | u(kv; + lv,) mazimal}, (27)
and
ko = max{ko(l) |l =0,...,[{}. (28)
Similarly, for any fixed k € {0, ...,k }, let
lo(k) = min{l | p(kv; + lv.) mazimal}, (29)
and
lo = max{lo(k) | k=0,...,kp} (30)

Note that by definition, ko > kjj and lp > .
We shall show that

Fn = QUQIUG2UQ2 (31)
where
ko—1lg—1
@ = U U Qv+, (32)
k=0 =0 4
lo~1
& = U U {(u+kulk=0}, (33)
=0 ueQ(kovy+ivs)
Ql,2 = U {u + kvy + Loy | kal 2 0} ’ (34)
u€Q(kovy +lovr)
ko—-1
Q= U U {w+inji=>0}. (35)

k=0 ueQ(kvi+iovr)

By (24), for any u € Fn there are integers k and [ such that u € Q(kv;, +{v,) holds. If k < kg
and [ < lp then u € Qp. If I < lp, but & > kg, then there is a k' > 0 such that k = ko + k.
Because of the maximality of u(kov1 + lv,) and the monotony of u(v) ”in direction v;”, there is
a v in Q(kovy + lv,) such that u = v' + k’vy holds, hence u € @;. ( Recall that 0 < I < lp ).
Similarly, if k > ko and | > lp, then u € Q1,2, and if k < kp and | > I, then u € Q2 .
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a

Lemma 19. Let my,...,m, be integers with the property ged(my,...,my) = 1. ( As usually,
ged (v, ..., Urs) denotes the greatest common divisor of the numbers in question ). Then for any
fized i € {1,...,v} there exist integers K and L such that any number k with k > K may be
written in the form

k - llml + cee + lrmr (36)
such that for any j # i holds that
0<l;<L. (37)

Proof. Using the algorithm of Euclid, it is easy to prove that there are numbers ay, ..., ar such
that

]. - a]ml + wen + armr (38)

holds. Let M = lem(my, ..., m,), the least common multiple of numbers ms, ...,m,, and let o
be the least integer such that aM + a,m, > 0 holds for v = 1,...,r. Then

T
raM+1 = Y (aM +aym,)

v=1

= > (aM/m, + a)m, (39)
v=1

: r

= Z’YVmV . (40)

v=1
Let N = raM. Then
r
N + 1 - Z ’y,/my
v=1

2N +2 = Y 2y,m,
v=1
r
pN+p = Z By
v=1

(N-1)N+N-1 = Y (N-1)npmy.
v=1

It is easy to check that for 4 =0,1,..., N —1 holds that
(N-1)N+pu = (N-1)N—-uN+uN+pu (41)
(N=(1+p)N+ Z WMy . (42)

v=1
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Let K = (N —1)N, L = max{(N — 1)7, | v = 1,...,r}, and assume that k > K. There are
integers I and J such that k = K +IN + J holds with 0 < J < N — 1. Then, by (42), it follows
that

,
k = IN+(N-1)N4+J=IN+(N-Q1+)N+>_Jnm,
=v

I+ (V= (1 D)N/myms + Y Jm, (43)

v=1

Thus (36) and (37) hold with numbers i; = (I +(N = (1+J))N/m;+Jv) and l; = Jv; (§ #19).
]

In the sequel we will prove that Q(kov1 + lovy) is of a special structure.

Theorem 20. Let
F = {'UO + klvl + ees + krvr I kl, veey kr Z 0} (44)

where vy is the preperiod, and {vi,..,vr} the set of periods associated to F. Assume that
V0, V1, - Up € IN2 . Let by = Aje; and by = Agep with unit vectors e; = (1,0), ez = (0,1), and
A; = ged(vy g, -y Urs) for i = 1,2, ( By definition ged(0,...,0) =1 ). Let us define the linear
vector set G by

G = G(vo; b1, bg) = {vo + kib1 + koba | k1,k2 >0} . (45)
Then the set Q1,2 in the decomposition of Fn given in (81) may be chosen as

Q1,2 = T1,2(Vo;v1,v:) NG, (46)

where V € F is a suitable vector and

Ti2(Vosv1,vr) = {Vo + 8101 + ety [ t1,82 € R,0< 8 <1, 0< 82 < 1} (47)

Proof. For t = 1,2 let A, = ged(vie, oy, ..., Urt). As in the proof of (18 ) we assume that for
ier—1

Vi2/Vit 2 Vig1,2/Vis1,1 (48)

and v = 0.
( wi2/vi1 = oo, whenever v;; = 0. ) By Lemma 19, for t = 1,2 there exist integers K; and L,
such that any number k; with k; > K; may be written in the form

ke = (lie/Avig + . + et/ Ae)vpg - (49)
Thus
Aiky = l1gv1 + oo + bt (50)
such that for any j # 1 holds that

0<ljz < Ly (51)
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Let us choose the vector Vp in (46) as
Vo = Vo1, Vo2) = (K1 + (r — 1) L)vr + (K2 + (r — 1) L2)vs . (52)

It is easy to prove that

FnhCG. (83)
We shall show that
T1,2(Vo;v1,v-) NG C Fy (54)
holds as well. Let
z € T1o(Vou1,v,) NG, 2z =(21,22). (55)

Since z € G, we have z = k1 A1e; + kzAsges for some ki, k; € IN. By the choice of Vo, ks > K
for t = 1,2. Thus k; may be written in the form (50) such that (51) holds. Consider the vectors

ug = (ug1,Us2) = lv1 + .. + lgvr, (E=1,2) (56)

By definition, u;,; = k1A, and ug 2 = koAs. Using (48),(50), and (51) it is easy to see that

uy2 > 22. (87)
Similarly,

up,1 2 21 (58)
Thus u; Nug = (u1,1,u2,2) = 2. « [=

Theorem 21. Let A and B be "one dimensional” linear sets, i.e., let

A = {ug+ku | k>0}
B = {vw+lv |1>0}

Then AT B is a semilinear set.

Proof. For i = 0,1 let u; = (us1,%2) and v; = (vi1,vi2). If w1 = (0,u1,2) and v1 = (v1,1,0),
then
AN B = up MNup.

Assume that u; = (0,u1,2) and vy = (v1,1,1,2), where vy 2 > 0. Then
ANB =AU {ug,1e; + (vo2 + IC’U1,2)62 | kK >0},

where e; = (1,0) and ez = (0,1). In the sequel we will assume that for i =1,2 u;; > 0 and
v1,; > 0. We distinguish two further cases. '

Case 1. uz2/u1,1 = v1,2/v1,1. Consider the ”lines” f and g defined by the equations

f(t‘) =u+wmt teR, (59)

git) =w+ut teR, (60)
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respectively. We may assume that line f lies "above” line g, i.e., if (z,y) € f and (z,2) € g,
then y > z. Let ko be the least integer such that

up,1 + kou1,1 = max(uo,1,vo,1) (61)
holds, and
¢ =lem(uy,vi,1) - (62)
Consider the sets
Qo = {(z,y) € ANB | z < kou,1}, (63)
Q1 ={(z,y) € AN B | kour,1 <z < kouy,1 +¢} . (64)
We shall show that
ANB=Qo+ |J {z+kw|k >0} (65)
Z€Qy '
where
w = (c/ur,1)u = (c/v1,1)v. (66)
Let
(p,g) € ANB. (67)

If p < kouy,y, then (p,q) € Qo. ( See: (63) ). If p > kouy,1, it is easy to see that there is a
z = (21,22), and an integer k such that kou1,1 < z1 < kous,1 + ¢ and (p,q) = z + kw. By (67),
there are vectors a € A and b € B such that

(p,q) =anb. (68)

By the choice of w, a — kw € A and b — kw € B, thus z = (a — kw) M (b — kw) and z € Q.
Assume now that

Pe)eQ+ |J{z+kw|k20}. | (69)
ZEQ1

If (p,q) € Qo then (p,q) € AN B. ( See: (63) ). Let (p,q) € Q. There are vectors a’ € A and
b € B with (p,q) = a’ M ¥. Then for any integer k for the vector (p,q) + kw holds that

(p,q) + kw = (a’ + kw) N ¥ + kw), (70)
where (o’ + kw) € A and (¥ + kw) € B.

Case 2. uy2/u1,1 > v1,2/v1,1-

Claim 1. Let ¢ = lem(uy,1,v1,1), and define the two vectors uy = (u) 1,u)2) = (¢/uy1)ur,
vy = (1,1, 2) = (¢/v1,1)v1. Consider the halflines f and g defined by the equations

fi)=ug+ut teR,t>0, (71)

gty =v+unt teR,t>0, . (72)

respectively. Assume that f lies above g.
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1. Then z € AN B implies z + v} € AN B.

2. Ifz=anb witha,a —uj € A and b,b—v| € B, then z — v} € AN B.

Let z = aMb where a € A and b € B. For u}; and v ; we have
uh g = (c/u)ur = ¢ = (¢/vi1)vi) = vy, (73)
thus
2+ v] = (a+u}) N (b+v)). (74)

Here a + 4} € A and b+ v € B. Therefore z + v} € AN B. If additionally a — uj € A and
b— v} € B, then

z—vp=(a~up)N(b-n) (75)

holds as well.
Claim 2. Let d = lem(uy2,v12), and define the two vectors uj = (uf 1, u),) = (d/ur2)u1,
of = (v 1,v]2) = (d/v1,2)v1. Consider the halflines f and g defined by the equations

f@t) =uo +uit teR,t>0, (76)

gt) =vo+ut teR,t>0, (™M
respectively. Assume that f lies over g.
1. Then z € AN B implies z +uf € AN B.
2 Ifz=anbwitha,a—u) € A and b,b—v{ € B, then z —v{ € ANB.

Claim 2 may be proved similarly to Claim 1.

In the sequel we shall show that A M B may be decomposed as follows :

ANB=QuU |J {z+kvi+luj|k!=0}. (78)
2€Q1,2

Here v = (v} ;,v}) and u{ = (u],,u]) are defined in Claim 1 and Claim 2. In order to
define Qg and @ 2, consider the halflines f and g given by equations (76) and (77) respectively.
Let u} € A and v§ € B be vectors such that the halfline f* lies over the halfline g*, where f*
and g* are defined by the equations

f*(t) =ug+uit teR,t>0, (79)

gt)y=vy+wnut teR,t>0, (80)

respectively. Note that such u§ and v always exist by ui2/u1,1 > v1,2 Jv1,1. Let ug = (ug 1,%0,2),
vg = (v5,1:715,2), m= maX(ua,l,vS,l), n=uj,+ V1,1, and

Q={(z,y) €eANB |z <m}, (81)
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Q2= {(z,y) e ANB|m<z<m+n}. (82)
Let (p,q) = aMb where a € A and b € B. We have to prove

(g) € QU | {z+kvy+1luj|k1>0} (83)
2€Q1 2

If p < m, then (p,q) € Qo. If p > m, then there is a vector z = (21, 22), and there are integers
k, | such that (p,q) = 2+ kvj +{uf holds withm <z <m+n. But thenz € Q1,2 by Claim 1
and Claim 2, and by the choice of Q1.

Similarly, if (p,q) € Qo, then by definition, (p,q) € AM B, and if (p,g9) € Q1,2, then
(p,q) + kvi + luf € AN B by Claim 1 and Claim 2. m}
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