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On Primitive Multisets *
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Abstract

We consider multisets and present another proof that the set of primitive multisets is
not algebraic. We also present a large class of word languages with semilinear Parikh im-
age, containing the language COPY'. Finally, we show that the class of multiset languages
fulfilling the iteration lemmata for rational multisets has the cardinality of the continuum.

Kewords : Multisets, primitive multisets, iteration lemmata.

1 Introduction

The conjecture from 1991 ( of Démési, Horvéth, Ito [2] ) that for every k& > 2, the set Q of
primitive words over some k-letter alphabet is not context-free, is still unsettled. However, the
related languages Ly, for each k > 2, consisting only of those primitive words all permutations of
which are also primitive, has been shown not to be context-free [21]. That result also implies that
the sets mQ}, of primitive multisets over some k-letter alphabet is not semilinear. Semilinear sets
correspond to algebraic ( context-free ) languages of multisets. Since the underlying operation
+ is commutative in contrast to catenation - the classes of rational, linear and algebraic multiset
languages coincide, and are also identical with the corresponding classes of Parikh sets of regular,
linear and context-free word languages.

Using the iteration lemma for rational multiset languages we present another proof that mQ
is not algebraic ( semilinear ) for k > 2. But m@Q is in PsDCS, the class of Parikh images of
deterministic context-sensitive languages.

We also introduce a large class of word languages with semilinear Parikh image, closed under
homomorphism and containing the language COPY’, but not the languages Ly.

Finally, we show that the class of multiset languages fulfilling the iteration lemma for rational
multiset languages has the cardinality of the continuum. This implies and gives an alternative
proof of the fact that the class of word languages fulfilling the iteration lemma for regular
languages also has the cardinality of the continuum [1].

*Research supported by the German-Hungarian project WTZ HUN 00/040 / D-39/2000
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2 Definitions

In the sequel, a multiset is defined just as an element o = (ay,---,ax) € IN¥. Operations on
multisets are defined by

sum; a+ 8= (ar+by,- -, 0k +br)

order: aEfB&a; <b; (1<j<k)

difference : B —a=(by —a1, - ,bp—ar) ifalC S

The norm of a multiset a = (a1, -, ax) € IN® is defined by |a| = 3¢, a;.

If & = {s1,---, sk} is an alphabet then a multiset @ = (a;, --,ar) € IN* represents the
multiplicities of symbols s; in a word w € E*, especially the word v(a) = s7'--- si*. Let X9
denote the set of all multisets on carrier £. £ can be identified with IN*.

A multiset grammar is 8 quadruple G = (Vy, V1, A, P), where Vi, Vi are disjoint alphabets,
the nonterminal and the terminal one, respectively, A C V® is a finite set of multisets ( its
elements are called azioms ), and P is a finite set of multiset rewriting rules or productions (in
short, rules) of the form u; — p2, where p;, uo are multisets over V = Vy U Vr and |u1|vy 2> 1.

For two multisets aj, ag over V', we write a3 ==> g for some r : 3 — ug € P if uy C a; and
oo = (01 — p1) + po. If r is understood, then we write = instead of == . We denote by =*>the
reflexive and transitive closure of the relation ==. The set of multisets ( language ) generated
by G is defined by

M(G) = {B € VP | a==8, for some a € A}.

We classify such grammars in a Chomsky-like way as follows [19]:

Grammars G as above are said to be arbitrary.

If |uy| < |pe| for all rules u3 — uo in P, then G is said to be monotone.

If |u1| = 1 for all rules u; — pg in P, then G is said to be context-free.

If [u1] =1 and |u2|vy <1 for all rules u; — ug in P, then G is said to be linear.

If |pal = 1,|pe] < 2, and |uglvy < 1 for all rules 43 — po in P, then G is said to be
reqular.

Bl S

We denote by mARB, mMON, mCF, mLIN, mREG the families of multiset languages
generated by arbitrary, monotone, context-free, linear, and regular multiset grammars, respec-
tively. By FIN, REG, LIN, CF, CS, RE we denote the families of finite, regular, linear,
context-free, context-sensitive, and recursively enumerable languages, respectively. For a family
F of languages we denote by PsF the family of Parikh sets of vectors associated with languages
in F. The family of all semilinear languages is denoted by SLin.

3 Primitive Multisets
We first cite

Proposition 3.1 : ([19] )
mREG = mCF = PsREG = PsCF = SLin. a

Definition 3.1 : ( Primitive multiset )

A multiset o € IN* with o # 0 is called primitive iff there is no m € IN with m > 1 and no
B € IN*® such that o = m - 8, where 0 = 0,---,0).

Let mQy, denote the set of all primitive multisets over IN*. o
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Let ¥ = {s1,-+-,8k}. For any w € T let m(w) = {u | ¥(u) = Y(w)}, i.e. w(w) is the set of
all permutations of w, where ¥(w) denotes the Parikh vector of w.

To mQ)y, are associated two word languages :

Ly ={w|we Z* m(w) C Qk}, and L = v(mQx).

Trivially, Lk = Upes+ ruw)cq, T(w)-

Note that 7(abbaba) € Q. since ababab € w(abbaba) but ababab ¢ Qk.

Clearly, ¥(Lg) = (L) = mQx.

Note that ¥(Qx) = IN*\ (U {n:- e | n: > 1} U {0}) is semilinear, with unit vectors
e; =(0,---0,1,0,---,0). Thus ¥(Qx) € PsCF = SLin.

In contrast to the word case in which the set @y, of primitive words fulfills all known iteration
lemmata for CF and the conjecture is that Qr € CF, we shall show that mQy does not fulfill
the iteration lemma for PsCF, giving another proof that m@Qy, € PsCF ( [21] ).

For a = (a,+++,ar) € IN¥ let T(a) = gcd(ay, -, ax) if Zf___laj # 0 and I'(a) = 0 if
>k 1a;=0(ie ifa=0« ged(a)=0).
Note that ged(0,3,5) = 1, ged(2,0,6) = 2 but ged(0,0,0) = 0.

Lemma 3.1 :
aemQr < Ma)=1

Proof : a =m - (3 implies I'(a) >m > 1. I'(a) =d > 1 impliessa =d - .

Proposition 3.2 : ( Iteration lemma )[18]
For any multiset language M € PsCF there exists a N = N(M) € IN with N > 0 such that
for any a € M with |a| > N there exists 8 € IN* with |3| < N andVm > -1:a+m-8 € M.O

Theorem 3.1 :
mQy does not fulfill the iteration lemma for algebraic multiset languages PsCF.

Proof : Tt suffices to prove this for the case & = 2 since for k¥ > 2 we can consider the subset
mQr N Cy C mQy with Cz = {(a1,42,0,---,0) | a1,02 € IN}.

We have to show that for arbitrary N € IN with N > 0 there exists (p,q) € mQ2 with
p+ q > N such that for all (2,y) € IN? with 0 < z+y < N + 1 there exists an r € IN U {-1}
such that T'(p + rz,q + ry) = ged(p + rx, g+ ry) > 1.

Actually, we shall show that there exist infinitely many such r.

Let N>0,p=(N+1),andg=t-(N+1)!+1witht > N.

(p,q) € mQs since ged((N + 1)L, t- (N + 1)+ 1) = ged((N + 1)},1) = 1.

Casel: 0<z<N+1,y=0. ,

Since p = hx it follows that p+ rz = (h+ r)x for all » > 0. If ¢ = de with d > 1
( e.g. d = q) then for infinitely many r > 0 we have h + r = sd, and therefore it follows
thatged(p + rz,q) = gcd(sdz, de) > d > 1 for infinitely many » > 0.

Case2: 2=0,0<y< N +1.

Then 0 < y < N + 1. From this follows that 1 < y + 1 < N + 1, and therefore also
g+y=t(N+1D!'+1+y=f(y+1), as well as p = h(y + 1). Hence ged(p,q+y) 2y+1> 1.

~ With r=g(y+1)+1and g > 0 follows that g+ ry =g +g(y+1) +1 =(f + gy + 1),
hence gcd(p,q + ry) = y + 1 > 1 for infinitely many r > 0.
Case3:0<2,0<y,24+y<N+1L
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0 <z < N+1 impliesp = hz, h < (N+ 1)}, and y < N. Therefore y < N — 1 and
hy < (N —-1)(N +1)L. Now let A = ¢~ hy. Sincet > N —1, thus ¢t > N, it follows that
A=t(N+D)I+1-hy> NN+ D= (N-1)(N+1)=(N+1)L

Assume A = de with d > 1 (eg. d = A ). Then, for any » > 0, we have the fact that
(p+rz,q+ry) = ({(h+r)x, A+ (h+r)y). Now, for infinitely many » > 0 we have h + r = ds,
and therefore also ged(p + rz, g+ ry) = ged((h+r)z, A+ (h+7r)y) > d > 1.

Thus, mQ2 does not fulfill the iteration lemma for algebraic multiset languages. ]
Immediate consequences are

Corollary 3.1 :
m@z & PsCF, mQy & PsCF. ' O

and

Corollary 3.2 :
Ly ¢ CF, L, ¢ CF, and L), ¢ CF, L, ¢ CF a

Theorem 3.2 :
mQ, € PsDCS = PsDLBA.

Proof : Consider »(m@Qy). A DLBA A with input w = si*---s;* = v(a1,---,ax) can check
whether ged(a,,---,ax) = 1. If so, A accepts w, otherwise A rejects w. Thus, A accepts exactly
v(mQy). Therefore, mQ; € PsDCS C PsCS. ' o

The next theorem is analogous to an earlier result of ours concerning the sets @ of primitive
words [11].

Theorem 3.3 :
mQx s indecomposable, i.e. mQ, = A + B implies either A = {0} and B = mQy, or
B = {0} and A =mQx.

Proof : We shall use induction on the length of multisets.

AN B =@. Since 0+ 0 = 0 € mQ); it follows that 0 ¢ AN B. Assume o € AN B. Then
a + a € mQyk, a contradiction.

Now e; € mQy. Thene; € Aore; € B. Assume e; € A. This implies 0 € B, and furthermore

ej€ Aforalll <j<k.

Thus for all & € mQy with || = 1 holds a € A and B contains no multiset 8 with |8| = 1.

Now assume that for all @ € mQy with [a| < n holds & € A and B contains no § with
0<|B] <n.

Let o € mQy with |a] = n+1. Then a = y+46 with 0 < |§| < n. By the induction hypothesis
follows that § € B. Therefore § =0 and o =7y € A.

For B & mQy, with || = n + 1 follows § = s -y for some s > 1 and 7 € mQy. But then,
by the induction hypothesis, 7 € A and therefore (s + 1) - v € mQx, a contradiction. Thus B
contains no § with 0 < |8| <n + 1.

The case A = {0} and B = mQ is symmetric. a

In the following we introduce a large class of word languages with semilinear Parikh image,
containing e.g. COPY, and being closed under word homomorphism.

Let H,X denote the following class of languages :
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xr(L) = {hy(w) -+ hp(w) | w € L} with L € X where

hj (j = 1,--+,r ) are word homomorphisms. The corresponding class with non-erasing
homomorphisms is denoted by H,X. Define also H,X = (J;_, HsX.

Especially, we will consider X = REG, X = LIN, and X = CF.

Let -
HX = |J HX,
r=1
and -
H.X = | H:X.
. r=1
Note that COPY € HoREG, since COPY = {ww | w € ¥*}.
Clearly,

>
HX = | H;X = lim H;X

r=1

and REG = HREG C H4REG.
The following lemmata state some closure properties.

Lemma 3.2 :
H.X is closed under word homomorphism.

Proof : Consider x.(L) € H,X, and let h be a word homomorphism. Thenb
h(h1(w) - - - he(w)) = h(h1(w)) - - - h(hr(w))
= hy(w) -+ - by (w)
with h;- = hh;. ‘
Therefore h(xr(L)) = {hi(w)---h.(w) | w € L} e A, X. a

Lemma 3.3 :
H,X and H.X are closed under nonerasing word homomorphism.

Proof : As in the previous lemma. o
An immediate consequence is

Corollary 3.3 :
H.X is closed under word homomorphism.
H.X is closed under nonerasing word homomorphism. a

The following iteration lemma holds :

Lemma 3.4 : ( Iteration lemma )

For any I’ € H,REG there exists a N(L') such that for any z € L' there exist words
uj,vj,w; (1< j<r ) such that : .

1. Z = UWVIWj - - UpUp Wy

2. |ujuyil KN@) forall1 <j<r

3. Jj|>0foralll1<j<r

4. wviw;--uviwe € L' foralli> 0.
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Proof : Let N(L) be the constant for the iteration lemma for REG. Define the constants
m = min{h;(s) | s € £,1 < j <r}, M = maz{h;(s) | s € £,1 < j < r}. Then we have
m|w| < |hy(w) -+« Ar(w)] < M|w|. Choose N(L') = MN(L).

Now, if z € L’ with |z| > N(L'), and since z = hy(t) - - - hy(t) for some t € L, it follows that
M|t] = |z| > MN(L), and therefore |t| > N(L).

Thus, there exist u, v, w with t = wow, juvw| < N(L), |v| > 0, and uv'w € L for all 5 > 0.

Now define u; = h;(u), v; = h;(v), and w; = hj(w) for 1 < j < r.

Since m > 0 it follows that |v;] >0 forall 1 <j <.

Trivially, u1viw; - - - upviw, € L' for all i > 0. m]

From this follows the proper hierarchy

Lemma 3.5 :
REG = HREG C HbREG C --- C HLREG C H’H_lREG c---C H.REG.

Proof : Consider the languages L, = {(we)” | w € {a,b}*} (» > 0). It is easy to see that
f;,.H € H;+1REG, but f}r+1 ¢ HREG for s <.

To see this assume that L,,; € HLREG with s < r. But the iteration lemma ( Lemma 3.4)
allows only s parts of a word (wc)™t?! to be iterated, yielding a word not in L, ;, a contradiction.
0

Another iteration lemma is :

Lemma 3.6 : ( Iteration lemma )

For any L' € H,CF there exists « N(L') such that for any z € L' there exist words
Uj, V5, Wi, L5, Y5 (1< j<r ) such that

1. 2 = U\ WGT5Yj - - - UpVpWr Ly Yy

2. Jujwjz]| S NWL) foralll<j<r

3. [vjzj| >0 foralll <j<r

4. wviwaly; - ueviweaiy, € L' for all i > 0.

Proof : Let N(L) be the constant for the iteration lemma for L € CF. Define constants
m = min{h;(s) | s € £,1 < j <r}, M = max{hj(s) | s € £,1 < j < r}. Then we have
mlw| < |hy(w) - - - he(w)] < M|w|. Choose N(L') = MN(L).

Now, if z € L' with |z| > N(L'), and since z = hy(t) - - - hy(t) for some t € L, it follows that
Mit| > |2| > MN(L), and therefore |t| > N(L).

Thus, there exist u,v,w, z,y with t = uwvwzy, |uvw| < N(L), |ve| > 0, and w*wzty € L for
all i > 0.

Now define u; = hj(u), v; = h;j(v), w; = hj(w), z; = hj(z), and y; = h;j(y) for 1 < j <r.

Since m > 0 it follows that jv;z;| >0forall1 <j < r.

Trivially, u1viw;2ty; - - - urviwrziyy € L' for all i > 0. ]

In a similar way we get the hierachy

Lemma 3.7 :
CF=HCFCcH),CFc---cH]CFcH,,,CFC---CHCF.

Proof : As in Lemma 3.5, showing that L,,; € Hr41CF but L4+, € H,CF. o

Lemma 3.8 :
H,CF c CS.



19

Proof : Consider xr(L) = {hy(w) - ho(w) | w € L} € H,CF with L C Z*.

Let ; ( 1 <4 < r ) be disjoint alphabets. Define letter to letter homomorphisms f; by
fi(s) = s; for s € £. Then, trivially L' = {fi(w) - fr(w) | w € L} € CS.

Now define a homomorphism A on U5, &; by h(fi(s)) = hi(s) for s € £. This gives
x~(L) = h(L'). Since CS is closed under homomorphism, it follows that x,(L) € CS, and
therefore H,CF C CS.

H,CF c CS follows from the fact that CS contains word languages not being semilinear.
a

From this follows immediately

Corollary 3.4 : v
H.CF C CS. ]

Theorgm 3.4 : . A
PsH,.REG = PsH,LIN = PsH,CF = SLin.

Proof : P(h1(w) - - - hr(w)) = (A1 (w)) + -+ + Y (hr(w))
= q1(Y(w) + - + g (P(w))
= g(y(w))

where g = g1 + « -+ + g» is a multiset homomorphism.

Therefore, ¥(x-(L)) = g(¥(L)) for any L € H,CF.

Since PsREG = PsLIN = PsCF = SLin, and SLin is closed under multiset homomor-
phism [20], it follows that PsH,CF C SLin.

Trivially, SLin = PsSREG = PsHREG ¢C PsH,CF.

" Therefore, PsH,REG = PsH,LIN = PsH,CF = SLin. m)

An immediate consequence is that all the families of Parikh sets of such languages are

identical, and that they don’t contain L.

Corollary 3.5 : X R
PsH,REG = PsH,LIN = PsH,CF = SLin. m]

and

Corollary 3.6 : A
L, ¢ H,CF, L, ¢ 0,CF, and L, ¢ A,CF, L, ¢ A,CF o

4 Multiset Languages Fulfilling the Iteration Lemma

Theorem 4.1 :
The cardinality of the set of multiset languages fulfilling the iteration lemma is the cardinality
of the continuum, 2%°.

Proof : Let P = {p1,-+-,px} C IN* be a set of linearly independent vectors, i.e. we have
Ef__.l m;j-pj = Zf___l n; - p; implies m; =n; for 1 < j < k.

Let H C IN be any infinite, also not recursively enumerable, subset of IN. Define the multiset
language , ,

My ={n1-p1+¥i=2n; pj | € Hnj € IN,(2<j <k)}
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U{ni-m |n; e IN\ H}.

Mp fulfills the iteration lemma for algebraic multiset languages. To show this assume |z| > 0
for & € My where N > maz{|p;| | 1 < j < k}. Then there exists a j with n; > 0. Trivially,
x+m-pj € My forallm > —1.

H # H' implies My # Mpy.

To show this assume My = Mpy:. Consider x = ny -p1 +nz - p2 € My with ny € H. It
follows that z = ny -pr +ng-p2 =n} -p1 + E;Lz n; - pj € My implies, because of the linear
indepence, n} = ny € H', nj =ng, n; = 0 for j > 2. Hence H C H'. By symmetry also follows
H' C H. Therefore H = H’, a contradiction.

Thus |[{My | H C IN}| = 2V = 2%,

Note that also 2V = 2%, 0
Remark

By similar arguments we can prove also in the case of various iteration lemmata for word
languages that each of the corresponding language classes fulfilling them has the cardinality of
the continuum. E.g., in the case of the iteration lemma for regular languages, we get a completely
different, alternative proof of the following result [1].

Theorem 4.2 :
The cardinality of the set of word languages fulfilling the iteration lemma for REG is the
cardinality of the continuum, 2%°. @]

All these results with detailed proofs will be presented in a forthcoming paper.
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