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Sequential Versus Parallel Grammar Formalisms
with Respect to Measures of Descriptional Complexity

Henning Bordihn and Suna Aydin
Universitdt Potsdam,

Institut fiir Informatik,
Augwt-Bebel-Stmfle 89,

14482 Potsdam, Germany,
email: henning@cs. $uni$-potsdarn.de, aydin@cs. $uni$-potsdarn.de

Abstract

For tabled Lindenmayer systems and their languages, the degree of synchronization and
the degree of nondeterminism are well investigated measures of descriptional complexity. In
this paper the sequential counterparts of tabled Lindenmayer systems, namely cooperating
distributed grammar systems and their pure variant (working in the so called t-mode of
derivation) are treated with respect to these complexity measures. In the pure case, where
no distinction between terminal and nonterminal symbols is made, the sequential mechanisms
are compared with the parallel ones, investigating whether one mechanism may have a better
descriptional complexity than the other one when the same language is described.

1 Introduction
Cooperating distributed grammar systems (CD grammar systems for short) have been in r0-

duced in [2] as models of distributed problem solving. They can be considered as a generalization
of context-ffee grammars, where the set of rules is divided into a number of parts each of which
is called a component of the system. The components perform derivation steps on a common
sentential form taking turns according to some cooperation protocol, the s0-called derivation
mode.

As EOL systems, that is, extended Lindenmayer systems without interaction, can be viewed
as parallel counterparts of context-free grammars, their tabled version (ETOL systems) can be

considered as parallel counterparts of CD grammar systems working in the $t$-mode of derivation.
In this derivation mode, a component which became active has to continue the derivation as
long as possible, that is, until none of its productions can be applied to the sentential form

derived. In what follows, we always assume this $t$-mode of derivation without further mention.
Analogously, OL systems or TOL systems may be viewed as parallel counterparts of pure

context-free grammars or pure CD grammar systems, respectively, where no distinction be-
tween terminal and nonterminal symbols is made. For a more detailed discussion see [1], where
also the hierarchical relationships between the language families defined by all systems and
thei deterministic variants as well as their location within the classical Chomsky hierarchy are
investigated.

One reason why such pure grammars and systems are of interest is that there is no distinction
between a sentential form and a word in the language generated. Thus, all information about
the derivation process is somehow stored in the language. This may be useful for purposes of
syntax analysis. Moreover it may help to improve the understanding of the relationship between
parallel and sequential rewriting mechanisms.
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In the literature on tabled Lindenmayer systems and languages, the degree of synchronization
and the degree of nondeterminism are considered as measures of descriptional complexity (e.g.,
see $[6, 7])$ . For a TOL or ETOL system, the degree of synchronization is simply its number
of tables, and the degree of nondeterminism is the maximal number $\sigma \mathrm{f}$ strings which can be
substituted for one symbol according to one table. For a TOL or ETOL language $L$ , these degrees
are defined by taking the minimum of the corresponding degrees of the systems generating $L$ .

For CD and pure CD grammar systems these measures of descriptional complexity are de-
fined analogously. The degree of synchronization has been investigated in [2] and [1], respectively,
showing that the number of components can be reduced to three in the case of CD grammar sys-
tems whereas an infinite hierarchy of language families results in the case of pure CD grammar
systems.

The focus of the present paper is twofold. In Section 3 we study the relation between the
degree of synchronization and the degree of nondeterminism. First, it is shown that the degree
of nondeterminism is bounded by 2 in the case of CD grammar systems. Next, we prove that
both degrees are surjective and independent complexity measures with respect to pure CD
grammar systems, that is, for any pair $(n, r)$ of positive integers there is a language with degree

of nondeterminism $n$ and degree of synchronization $r$ . Finally, we demonstrate that, in the pure
case, one can trade off both degrees against each other. Therefore, we consider the complexity
measure Compl which is the product of both degrees.

In Section 4 the sequential mechanism of pure CD grammar systems is compared with its
parallel counterpart, that of TOL systems, with respect to the complexity measure Compl. Thus
we pursue the question of whether one mechanism may have advantages compared to the other
one.

2 Definitions and preliminaries

We asume the reader to be familiar with basic notions in the theory of formal languages. With
our notation we mainly follow [3]. In general, we have the following conventions: $\subseteq$ denotes
inclusion, while $\subset$ denotes strict inclusion. The set of positive integers is denoted by IN and the
cardinality of a set $M$ is denoted by $\# M$ . By $V^{+}$ we denote the set of nonempty words over
the alphabet $V$ ; if the empty word A is included, then we use the notation $V^{*}$ . For $x\in V^{*}$ and
$W\subseteq V$ let $|x|W$ denote the number of occurrences of letters from $W$ in $x$ . If $W$ is a singleton
set $\{a\}$ , we simply write $|x|_{a}$ instead of $|x|\{a\}$ .

A context-free grarnrnar is a quadruple $G=(N, T, P, \mathrm{S})$ , where $N$ and $T$ are disjoint alpha-
bets of nonterminals and terminals, respectively, $S\in N$ is the axiom, and $P$ is a finite set of
productions of the form $Aarrow$) $\alpha$ , where $A\in N$ and $\alpha\in(N\cup T)$ ’. For $x$ and $y$ in $(N\cup T)^{*}$ ,
$y$ is derived from $x$ in a direct derivation step according to $G$ , written as $x\Rightarrow y,$ if and only if
$x=$ 71A72 and $y=$ )) $\alpha\gamma_{2}$ for some $71,72\in(N\cup T)$’ and $Aarrow\alpha\in P.$ The language generated
by $G$ is the set

$L(G)=\{w\in T^{*}|S\Rightarrow^{*}w\}$ ,

where $\Rightarrow^{*}$ is the reflexive and transitive closure of $\Rightarrow$ . The family of languages generated by
context-free grammars is denoted by $\mathcal{L}(\mathrm{C}\mathrm{F})$ .

A pure context-free grammar (with single axiom) is a triple $G=(V, P,\omega)$ , where $V$ is some
alphabet, $P\subseteq V\mathrm{x}V^{*}$ is a finite set of pure context-ffee productions, and $\omega$ $\in V^{+}$ is the axiom.
The language $L(G)$ is defined in the natural way, that is, as the set of $\mathrm{a}\mathrm{H}$ words over $V$ which
can be derived by iterated applications of productions in $P$ , starting at the axiom $\omega$ . Note that
every sentential form belongs to the language generated.
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A cooperating distributed (CD) grammar system of degree $n$ , with $n\geq 1,$ is an $(n+3)$-tuple

$G=$ $(N,T, P_{1},P_{2}, \ldots, P_{n}, S)$ ,

where, for $1\leq i\leq n,$ $(N, T, P_{i}, S)$ is a context-free grammar. The production sets $P_{1}$ , $P_{2}$ , $\ldots$ , $P_{n}$

are called components. For $1\leq i\leq n,$ let

$\mathrm{d}\mathrm{o}\mathrm{m}(\mathrm{P}\mathrm{j})=$ { $A|Aarrow\alpha\in P_{i}$ for some at }.

For $x$ , $y$ in $(N\cup T)^{*}$ and $1\leq i\leq n,$ we write $x$
$\supset_{i}y$ if and only if $y$ is derived from $x$ in

a direct derivation step according to $(N,T, P_{i}, S)$ . Hence, subscript $i$ refers to the component
to be used. Let $\supset_{i}^{*}$ denote the reflexive and transitive closure of the relation $\Rightarrow\dot{l}$ . In the

forthcoming we restrict ourselves to the $t$-mode of derivation, which is defined as follows: we
write $x\Rightarrow^{t}!/$ if and only if $x\supset_{i}^{*}y$ and there is no $z$ such that $y$ $\Rightarrow zi$ . The language generated

by $G$ is
$\mathrm{d}^{i}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ as

$L(G)=\{w\in T^{*}|S\Rightarrow w_{1}\Rightarrow\cdots\Rightarrow w_{m}i_{1}i_{2}i_{m}ttt=w$ for some

$m\geq 0$ and $1\leq i_{j}\leq n$ with $1\leq j\leq m$ }.

A pure $CD$ grammar system ( $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar system for short) of degree 71 is an $(n+2)$-tuple
$G=$ $(V,P_{1}, P_{2}, \ldots, P_{n},\omega)$ such that, for $1\leq i\leq n$, $(V, P_{i},\omega)$ is a pure context-ffee grammar
with single axiom. For technical reasons, the $t$-derivation step according to component $P_{i}$ is

defined as follows: for $x$ , $y\in V’,$ we write $x\supset_{i}^{t}y$ if and only if one of the following conditions

hold:

(i) there exist strings $x\mathit{0}$ , $x_{1}$ , $\ldots$ , $xk$ , $k\geq 0$ , such that $x_{0}=x$ , $x_{\mathrm{k}}=y$ , $Xj\Rightarrow Xj+1i$ ’

$0\leq j\leq k-1,$ and there is no $z$ such that $y$ 5 $z$ , or

(ii) $y=x.$

$\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}\supset_{i}$ denotes a direct derivation step according to the pure context-free grammar $(V, P_{i},\omega)$ .

The set $\mathrm{S}\mathrm{F}(x\Rightarrow^{t}|. y)$ of the sentential forms of the $t$ derivation step $x\Rightarrow^{t}yj$ is the set of the

strings $\{X_{0},7), \ldots, xk\}$ .
A $t$-derivation in a pure CD grammar system is a sequence of $t$-derivations according to

arbitrary components of the system: for $x$ , $y\in V^{*}$ , we write $x\underline{\underline{t_{\backslash }}}y$ if and only if there are
strings $x_{0},x_{1}$ , $\ldots$ , $x_{k}$ , $k\geq 0,$ such that $x0=x,$ $x_{k}=y$ , and $xj\supset^{t}i_{\mathrm{j}}Xj+1$ , for $1\leq ij\leq n,$

$0\leq j\leq k-1.$ The set $\mathrm{S}\mathrm{F}(\#\supset^{t}y)$ of its sentential forms is defined to be the union of the sets
$\mathrm{S}\mathrm{F}(x_{ji_{j}}\Rightarrow^{t}x_{\mathrm{j}+1})$. The language $L(G)$ generated by a pure CD grammar system $G$ is the set of

all sentential forms in a $t$-derivation in $G$ starting at the axiom $\omega$ :

$L(G)=$ { $w\in V^{*}|w\in$ SF(# $\Rightarrow^{t}y)$ for some $y\in V^{*}$ } .

Note that the language consists of all words generated by iterated $t$-derivation steps and all the

intermediate words appearing along these derivations. Sentential forms of derivations where the

active component will not terminate are not included, however.
The family of languages generated by (pure) CD grammar systems in $t$-mode of derivation

is denoted by $\mathcal{L}(\mathrm{C}\mathrm{D})$ ( $\mathcal{L}(\mathrm{p}\mathrm{C}\mathrm{D})$ , respectively).
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An ETOL system is a quadruple

$G=$ $(\Sigma, \triangle, H, \omega)$ ,

where $\Sigma$ is the total alphabet, $\Delta\subseteq\Sigma$ is the terminal alphabet, $H$ is a finite set of finite
substitutions from I into $\Sigma^{*}$ , and $\omega\in$ C’ is the axiom. For $x$ and $y$ in $\Sigma^{*}$ , we write $x\overline{\overline{h}}\backslash j/$

for some $h$ in $H$ if and only if $y\in h(x)$ . A substitution $h$ in $H$ is called a table. The language
generated by $G$ is defined as

$L(G)=\{w\in\Delta^{*}|$ rv
$\supset_{1}h.\cdot w_{1}\Rightarrow\cdots\Rightarrow w_{m}h_{i_{2}}h_{m}=\mathit{4}n$

for some

$m\geq 0$ and $h_{\dot{l}}j\in H$ with $1\leq j\leq m$ }.

If $\Delta=\Sigma$ , then $G$ is called TOL system and it is written $(\Sigma,H,\omega)$ . The family of languages
generated by ETOL systems or TOL systems is denoted by $\mathcal{L}(\mathrm{E}\mathrm{T}0\mathrm{L})$ or $\mathcal{L}(\mathrm{T}0\mathrm{L})$ , respectively.

Let $G=(\Sigma, \Delta, H,\omega)$ be some ETOL system. The degree of synchronization of $G$ , Sync(G)

i$\mathrm{s}$ defined as $\#\mathrm{H}$ , that is, the number of tables of $G$ . The degree of synchronization of an ETOL
language $L$ is given by

$\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{E}\mathrm{T}0\mathrm{L}}(L)$ $=$ min{ Sync(G) $|G$ is a ETOL system with $L(G)=L$ }.

The degree of nondeterrninisrn of $G$ is defined by

$\mathrm{D}\mathrm{e}\mathrm{t}(G)=$ max{ nh| $n7=$ max{ $\# h(a)$ |a $\in\Sigma\}$ , h $\in H$ } $.$

The degree of nondeterminism of a ETOL language $L$ is given by

$\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{E}\mathrm{T}0\mathrm{L}}(L)=$ min{ $\mathrm{D}\mathrm{e}\mathrm{t}(G)|G$ is a ETOL system with $L(G)=L$ }.

The degrees of synchronization and of nondeterminism for TOL systems, CD grammar systems,
and $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar systems and their languages are defined analogously. In the case of (pure) CD
grammar systems, one simply has to consider components instead of tables. Thus, the degree
of synchronization of a (pure) CD grammar system is identical with its number of components
which has been called its degree in the above definitions.

Note that an ETOL system or TOL system $G$ with Sync(G) $=1$ is just an EOL system or OL
system, respectively. Correspondingly, a CD grammar system $G$ with Sync(G) $=1$ is a context-
ffee grammar. In the pure case, we have a pure context-free grammar only if we disregard the
$t$-mode of derivation.

Furthermore, an $\mathrm{L}$ system $G$ with $\mathrm{D}\mathrm{e}\mathrm{t}(G)=1$ is said to be dete rministic if its only table is a
homomorphism rather than a substitution. Analogously, one defines the notion of deterministic
(pure) CD grammar systems as considered in $[1, 5]$ .

In [1, 2, 6, 7], the following facts has been proved.

Theorem 1
(i) For any ETOL language $L$ , $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}\mathrm{B}\mathrm{T}0\mathrm{L}(\mathrm{L})$ $\leq 2;$ there is an ETOL language $L$ with

$\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{E}\mathrm{T}0\mathrm{L}}(L)=2.$

(ii) For any ETOL language $L$ , $\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{E}\mathrm{T}0\mathrm{L}}(L)$ $\leq 2;$ there is an ETOL language $L$ with

$\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{E}\mathrm{T}0\mathrm{L}}(L)=2.$

(Hi) For any language $L\in L$(CD), $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{C}\mathrm{D}}(L)\leq 3;$ there is a language $L\in \mathcal{L}(\mathrm{C}\mathrm{D})$ with
$\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{C}\mathrm{D}}(L)=3.$
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(iv) $\mathcal{L}(\mathrm{C}\mathrm{D})$ $=$ $\mathrm{C}(\mathrm{E}\mathrm{T}\mathrm{O}\mathrm{L})$ and $L\in$ $\mathcal{L}(\mathrm{C}\mathrm{D})$ is a context-free language if and only if

$\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{C}\mathrm{D}}(L)\leq 2.$

(v) For every pair $(n, r)$ ofpositive integers there is a TOL language $L_{n,r}$ such that

$\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{T}0\mathrm{L}}(L_{n,r})=n$ and $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{T}0\mathrm{L}}(L_{n,r})=r.$

(vi) For every positive integer $n$ there is a language $L_{n}\in$ $\mathcal{L}(\mathrm{p}\mathrm{C}\mathrm{D})$ with $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}(L_{n})=n.$

Results on the degree of nondeterminism for (pure) CD grammar systems have not yet been
presented. Moreover its relation to the degree of synchronization is unknown in the sequential
case. The subsequent section aims to fill this gap. The only result in this respect is that the
degree of nondeterminism cannot be reduced to 1 for both CD grammar systems and their pure
variants (see [1, 5]), that is, the deterministic mechanisms are strictly less powerful than the
nondeterministic ones.

Theorem 2
(i) There is a language in $\mathcal{L}(\mathrm{C}\mathrm{D})$ with $\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{C}\mathrm{D}}(L)>1.$

(ii) For every positive integer $n$ there is a language $L\in$ $\mathrm{C}(\mathrm{p}\mathrm{C}\mathrm{D})$ with $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n})=n$ and
$\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n})>1.$

In the following section it is shown that, for some $\mathrm{p}\mathrm{C}\mathrm{D}$ languages, one can trade the degree
of nondeterminism for the degree of synchronization. This is achieved using the complexity

measure Compl defined for TOL and $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar systems $G$ as

Compl(G) $=\mathrm{D}\mathrm{e}\mathrm{t}(G)$ . Sync(G) .

This measure has been considered in [4] for $k$-limited TOL systems. This measure depends on
the total number of productions of $G$ and, therefore, reflects its complexity well if the size of
the alphabet is fixed. Let $X\in$ {TOL, $\mathrm{p}\mathrm{C}\mathrm{D}$ }. For a language $L\in \mathcal{L}(X)$ , this measure is defined
to be

Comply (L) $=$ min{ Compl(G) $|G$ is of type $X$ and $L(G)=L$ } $1$

By definition, we have
$\mathrm{D}\mathrm{e}\mathrm{t}_{X}(L)\cdot \mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{X}(L)\leq \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{X}(L)$ .

3 On the complexity of CD grammar systems and their pure
variants

In this section we first show that one can reduce the degree of nondeterminism of a CD grammar
system $G$ to 2.

Theorem 3 There is an algorithm which constructs, for any CD grarnrnar systems G, an equiv-

alent CD grarnrnar system $G’$ with $\mathrm{D}\mathrm{e}\mathrm{t}(G’)=2.$

Proof. Let $G=$ ($N$, $T$, $P_{1}$ , $P_{2}$ , $\ldots$ , $P_{k}$ , S) be a CD grammar system with $\mathrm{D}\mathrm{e}\mathrm{t}(G)=n$ , $n\geq 2.$

Construct $G’=$ $(N’,T, P_{1}’, P_{2}’, \ldots, P_{k}’, S)$ from $G$ as follows. The axiom remains the same.
We introduce new nonterminal symbols, such that

$N’=N\cup$ { A. $|A\in N,$ $1\leq\dot{\mathrm{f}}\leq n$ }.



18

For $1\leq i\leq k$ , $P_{i}$
’ is defined as the union

$)P_{i,A}$ .
$A\in \mathrm{d}\mathrm{o}\mathrm{m}(P_{t})$

where $P_{i,A}$ is constructed in the following way. Let $\{v|Aarrow v\in P_{i}\}=\{v_{1},v_{2}, \ldots, v_{m}\}$ , $m\leq n.$

If $m\leq 2,$ then
$P_{i,A}=\{Aarrow v|Aarrow v\in P_{i}\}$ .

Otherwise we set

$P_{i,A}=\{Aarrow A_{1}\}\cup\{A_{j}arrow A_{j+1}|1\leq j\leq m-1\}\cup\{Ajarrow vj|1\leq j\leq m\}$ .

Then $\mathrm{D}\mathrm{e}\mathrm{t}(G’)=2.$

Both grammars $G’$ and $G$ generate the same language in the $t$-mode, that is, $L(G’)=L(G)$ ,
which can be seen ffom the fact that the $t$-derivations in $G$ can be simulated in $G$’ by the newly
introduced nonterminal symbols. Except these simulating derivations no others derivations

$\mathrm{c}\mathrm{a}\mathrm{n}\square$

be obtained.
Together with Theorem 2 (i), we have the following Corollary.

Corollary 4 For any language $L\in$ $\mathcal{L}(\mathrm{C}\mathrm{D})$ , we have $\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{C}\mathrm{D}}(L)\leq 2,$ and there is a language
$L\in$ $\mathcal{L}(\mathrm{C}\mathrm{D})$ with $\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{C}\mathrm{D}}(L)=2.$

$\square$

According to the constructions in the proofs of Theorem 1 (iii), see [2], and Theorem 3
above, for any CD grammar system $G$ one can reduce the degree of synchronization to 3 and
the degree of nondeterminism to 2 independently from each other.

Next, we consider the pure case. We are going to show that both the degree of nondetermin-
ism and the degree of synchronization are surjective measures of descriptional complexity, that
is, they give rise to an infinite hierarchy of families of languages. Moreover, they are independent
measures.

Theorem 5 For every pair of integers $(n,r)\in \mathrm{I}\mathrm{N}^{2}$ there exists a language $L_{n,r}\in \mathcal{L}(\mathrm{p}\mathrm{C}\mathrm{D})$ with
DetpCD (Lnjf) $=n$ and $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n,\mathrm{r}})=r.$

The proof is omitted here due to lack of space.

Next, we show that there are languages with respect to which one can trade the degree
of nondeterminism with the degree of synchronization or vice versa. A similar effect has been
observed in [6] for TOL languages.

Theorem 6 For any integer $n\geq 1,$ there exists a language $L_{n}\in$ $\mathcal{L}(\mathrm{p}\mathrm{C}\mathrm{D})$ with
$\mathrm{D}\mathrm{e}\mathrm{t}_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n})$ $\mathrm{S}\mathrm{y}\mathrm{n}\mathrm{c}_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n})=1$ and $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n})=n.$

The proof is left out here because of space reasons.

4 TOL versus pure CD grammar systems

In this section the sequential mechanism of pure CD grammar systems is compared with its
parallel counterpart, the TOL systems, investigating whether there are languages which can be
described with one mechanism type more economically than with the other type. Here, the
economy is measured by the complexity measure CompL

First, it is shown that there is an infinite sequence of languages where parallel mechanisms
turn out to be much more efficient than the sequential ones. In fact, the measure Compl for
$\mathrm{p}\mathrm{C}\mathrm{D}$ grammar systems is growing asymptotically faster than Compl for TOL systems.
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Theorem 7 For any positive integer $n$ , there exists a language $M_{n}$ , such that $M_{n}\in$ $\mathcal{L}(\mathrm{p}\mathrm{C}\mathrm{D})$ $\cap$

$\mathcal{L}(\mathrm{T}\mathrm{O}\mathrm{L})$ and
$\lim_{narrow\infty}\frac{\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}(M_{n})}{\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}(M_{n})}=0.$

Proof: For $n\geq 1,$ consider the finite language

$M_{n}=$ $\{(bc)^{n+1},d\})$ $\{b^{l1}a^{n+2}cb 2a^{n+2}c...b^{\mathrm{J}n+1}a^{n+2}c|2\leq j1, ... , j_{n11} \leq n+1 \}$ .

For $n\geq 1,$ the language $M_{n}$ is generated by the $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar system $G_{n}=(\{a, b, c, d\}, P_{1}, d)$

where
$P_{1}=\{darrow tw|w\in M_{n}, w\neq d\}$ .

Since there are $K=n^{n+1}+1$ words in $M_{n}$ which are different from $d$ , there are exactly
$K$ productions in the single component $P_{1}$ of $G_{n}$ . Hence, $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1(M_{n})\leq K.$

On the other hand, all these $K$ productions are needed in order to generate $M_{n}$ by some
pure CD grammar system. This is seen as follows. Let $H$ be a $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar system with
$L(H)=M_{n}$ .

Using analogous arguments as in the proof of Theorem 5 it is shown that, except from
productions of the form $xarrow x,$ only productions with the letter $d$ on the left-hand sides can be
applied in terminating derivations in $H$ . Hence, $\omega$ $=d$ has to hold.

Furthermore, it follows that the axiom $d$ is the only word in $M_{n}$ which can derive other
words in $M_{n}$ . Thus, all the $K$ productions in $P_{1}$ above are needed in $H$ . Since a distribution
of these productions to different components does not affect the size of $\mathrm{D}\mathrm{e}\mathrm{t}(H)$ . Sync(#), it
follows that $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}(M_{n})=K=n^{n+1}+1.$

Next, for $n\geq 1,$ we present a TOL system generating $M_{n}$ . Clearly, this is done with the
system $\Gamma_{n}=(\{a, b, c, d\}, h, d)$ where the substitution $h$ is defined by

$h(a)=h(b)=\lambda$ , $h(c)=\{b^{i}a^{n+2}c|2\leq i\leq n+1\}$ , and $h(d)=(bc)^{n+1}$

Therefore1, we have $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}(M_{n})\leq n.$ In conclusion,

$\lim_{narrow\infty}\frac{\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}(M_{n})}{\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}(M_{n})}=\lim_{n\prec\infty}\frac{o(n)}{n^{n+1}+1}=0$ .
Cl

It turns out that there is also an infinite sequence of languages for which the sequential
mechanism is more economical, although the advantage is not of the same degree as presented
in Theorem 7.

Theorem 8 For any positive integer $n\geq 1$ there is a language $K_{n}$ such that $K_{n}\in \mathcal{L}(\mathrm{p}\mathrm{C}\mathrm{D})\cap$

$\mathrm{C}(\mathrm{T}\mathrm{O}\mathrm{L})$ and $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}(L_{n})-\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}(L_{n})=n.$

Proof. For any positive integer, consider the language

$K_{n}=\{a^{2}\}\cup\{acb^{:}c|1\leq i\leq n\}\cup\{cb^{i}ca|1\leq i\leq n\}\cup\{(cb^{i}c)^{2}|1\leq i\leq n\}$ .

Obviously, $K_{n}$ is generated by the $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar

$G_{n}=(\{a, b, c\}, P_{1}, P_{2}, \ldots, P_{n}, a^{2})$

1A similar language has been considered in [6] in the proof of the statement given in Theorem $1(\mathrm{v})$ . Prom the
arguments in that proof we know that $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}(M_{n})=n$ holds.
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with $P_{i}=\{aarrow| cb^{i}c\}$ , $1\leq i\leq n.$

Using arguments as in the proofs above, one shows that all productions are needed in order
to generate $K_{n}$ with a $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar system and, moreover, that they need to be contained as
single productions in separate components. Hence, $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}(K_{n})=n.$

On the other hand, $L_{n}$ is generated by the TOL system

$\Gamma=$ $(\{a,b, c\}, h_{1}, h_{2}, \ldots, h_{n}, a^{2})$ ,

where, for $1\leq i\leq n$ , $h_{i}(a)=$ $\{a, cb^{i}c\}$ , $h(b)=b,$ and $h(c)=c.$

We can simulate sequential rewriting by introducing productions of the form $xarrow x.$ As
in the sequential case, one verifies that this is the only possibility to generate $K_{n}$ with a TOL
system. Since the supplemental of the tables increase the degree of nondeterminism to two,

$\square \mathrm{i}\mathrm{t}$

follows that $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}(K_{n})=2n.$

5 Concluding remarks

The degree of synchronization and the degree of nondeterminism are well-investigated measures
of descriptional complexity in the theory of tabled Lindenmayer systems. In this paper, these
measures are considered with respect to cooperating distributed grammar systems and their pure
variants which can be viewed as sequential counterparts of ETOL and TOL system, respectively.
The results proved correspond to analogous ones known for $\mathrm{L}$ systems, but do not exists for CD
grammar systems.

Moreover, the pure sequential mechanisms are compared with their parallel analogues with
respect to the complexity measure Compl, the product of the degrees of synchronization and
nondeterminism. It is shown that there are TOL systems more succinct than pure CD grammar
systems and, vice versa, there are examples of the sequential mechanism being more economical.
More precisely, there is an infinite sequence of languages for which the measure $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}$ is
growing asymptotically faster than $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}$. The converse result is obtained with the help of
an infinite sequence of languages for which both $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{p}\mathrm{C}\mathrm{D}}$ and $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}1_{\mathrm{T}0\mathrm{L}}$ are growing as linear
functions. Nevertheless, it is shown that the difference between these measures can be arbitrarily
large. One could have the impression that this result cannot be improved since any sequential
mechanism can be simulated by a parallel one when just the productions for all $x$ in alphabet,
$xarrow x$ are added to each component of the given pure CD grammar systems. On the other
hand, one has to be aware of the facts that only $\mathrm{p}\mathrm{C}\mathrm{D}$ grammar systems are treated which are
generating TOL languages and that the resulting TOL systems have to rule out all derivations
which are, in principle, possible but not eventually terminating. Whether or not this is possible
is left open here.
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