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1. Introduction

Let A be a bounded linear operator on & complex Banach space, and r(A) the spectral
radius. The Gelfand spectral radlus asserts that

r(4) = inf ||A™|[V" = lim [lA™}]/",
n>1 n—oo

In 1960, Rota and Strang[6] introduced the notion of joint spectral radlus as follows :
Let X be a bounded subset of n x n matrices. Define

¢ = {14z Ak A €5,i=1,2,...,k}, where k=1,2,....
The joint spectral radius r(X) of ¥ is defined to be

#(32) ..-hmsup sup ||A||%.

k—o00 AexT
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1992, Daubechies and Lagarias [2] introduced the notion of generalized spectral radius
r(X) as follows.
r(X) = limsup ri(%)V*,

k—o0

where rx(X) = sup r(A). It is easy to see that the notion of the joint spectral radius
A€z
is independent of all equivalent matrix norm. They also conjectured that

(1) r(E) = #(%).

This conjecture is not true whenever ¥ is not bounded. For example,

s=¢[7 ¥
={|2 % |n=12..}

2

This conjecture was solved by Berger and Wang in 1992 (1].

In 1995, Lagarias and Wang [3] studied the following problem:
For every finite set ¥ of n X n matrices, is there a positive integer k such that

(2) - r(B) = #(Z) = re(Z)V/* ?

They also showed that if ¥ is a finite set of contraction n x n matrices, then this problem
is true whenever the associated norm is #P-norms with p rational. They also proved the
following result.

Theorem L-W. Let ||-||2 be the Euclidean norm on R™, and ¥ a set of m contraction
matrices on R™. Put 7o = 1 and 744y = m™ + 7 for k=0,1,2,...,n— 1. If r(Z) =1,
then there exists some finite product A4, A4, , - A4, With k < r,_;, which has spectral
radius r(Ag, Ag,_, -+ Ady) = 1. |

If T consists of a single matrix X = {A}, Theorem L-W says that if || Al|s = ||A"||2 = 1

then r(A) = 1 (since r,—1 = n). Note that if A = 8 (1) then ||A||2 = 1 and r(A4) = 0.

So, the bound n is the best integer. This result is not true when the space is infinite
dimensional. We give a counterexample as follows :
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Example. Let H = ¢2 with the coordinate unit vectors ei,eg,... as an ordered .
basis and the 2-norm || - ||2. Define the linear operator A determined by Aer41 = ek
for k = 1,2,...,n and Ae; = 0 for j = 1l orn+2,n+3,.... It is easy to see that

[l4]lz2 = |]A"||2 = 1 and n(A) = n. But r(A) = 0 because A™*! = 0. Therefore the
constant n in the result of Lagarias and Wang is not the best constant when H is infinite
dimensional.
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2. Main Theorems

In this paper, we shall study how to generalize Theorem L-W to the infinite dimen-
sional Hilbert spaces. Let H be a complex Hilbert space with the inner product (,-) and
the associated norm || - ||, and B(H) the algebra of all bounded linear operators on H.
An operator A € B(H) is called a contraction on H if ||Az|| < ||z|| for all z € H; and A
is said to be compact if it maps the unit ball of H onto a totally bounded set in H. It is
a well-known fact that the set of all compact operators on H forms a two sided ideal of
B(H) (cf. [7]). It is readily seen from the Cauchy-Schwarz inequality that if A is positive,
ie., (Ay,y) > 0 for all y € H, and (Az,z) = 0 for some z € H, then Az = 0. Therefore,
if A is a contraction, then the null space of I — A*A becomes

(3) ker(I — A*A) = {z € H;||Az|| = ||=||}.
For a contraction A, we define
(4) n(A) = dim ker(I — A*A).

In particular, if n(A) < co and A is an eigenvalue of A with |A| = 1, then dim N (Al - A) <
n(A). When A is of finite rank, it is easy to see that n(A) < dim R(A), where R(A) is the
range of A.

In [4], we showed that (2) holds for a finite set X of compact contractions on H except
an operator in X is not compact. We showed that if A is a compact contraction on H and
||All = 1A2"*|| = 1 then r(A4) = 1. Such constant 24 is not optimal. In this paper,
we will show that n(A) + 1 is the best constant. First, we list the properties of n(-) as
follows.

Lemma 1. (see also [4]) Suppose A, B are two contractions on H.
(a) n(A) =n(A*).
(b) n(AB) < min{n(A),n(B)}.
(c) If A is compact, then n(A) is finite.
(d) If A is compact and n(A) = 0, then ||A|| < 1.

For a finite set X of operators in B(H), we define |X| = the number of all elements

o]
in ¥ and the semigroup generated by ¥ to be the set ¥' = {J X™.
m=1

Proposition 2. Let Ay, Ag,..., A, be contractionson H andlet B= A, App—1 -+ A;.
Suppose ‘
(a) there are nonnegative integers j,k,p with 1 < j < k < k+p < m such that

AjrpAjtp—1° - Aj = AptpArsp-1 - Ak;
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(b) 1 <€=n(B) =n(4j4pAjtp-1- - 4;) < 0.

Then Ax—1Ak—2---A; has an eigenvalue A with |\| = 1. In particular, we have
’I‘(Ak_lAk_z coe Aj) =1.

Proof. Let K = N(I — B*B). Then we have
(5) T € K <= ||AmAm—1--- Aiz|| = ||]|.

Since each A; is contraction, this implies that for every 1 < i < m A;A;_;---A; is an
isometry on K and fori =1,2,...,m

AjAiy - AiK C N(I = (AirpAitp-1- - A)" (AippAigp-1--- Ai)).
It follows from Lemma 1(b) that for every i =1,2,...,m,
(6) dimA4;_;--- A1 K = dim K = n(B) < n(AitpAitp—1--- Ai)-
Therefore we obtain from the condition (b) that

Aj1Ajg- ALK

= N(I — (AjrpAjip-1-- - A5)* (AjrpAjsp-1-- 45))
= N(I — (Ak+pArip-1--" Ak)" (Ar+pAk+p—1- -+ Ak))
= Ap_14k—2--- A1 K.

Since Ak—1Ag—a-+A; is an isometry on A;_1A;_g--- A1 K by (5), this shows that Ax_1
Ag—2---Aj is an isometry from A;_1A4;_3--- A1 K onto itself. It follows from (6) that
Ag_1Ak_2 -+ A; has an eigenvalue A with |A| = 1. In particular, we have r(Ag—1Ak—2 - - Aj)
= 1. This completes the proof.

If X is a finite subset of contractions on H, we define n(X) = max n(A).

Corollary 3. Let A be a contraction on H, m = n(A), and let & = {A}. If
n(A™*1) > 1, thenr(A) = 1. In particular, if A is a compact contraction, then ||A™}|| =
1 implies r(A) = 1.

Proof. Suppose 7,(A) < 1. Then r(A¥) < 1 for all k = 2,3,... by the spectral
mapping theorem. Since X is a singleton, by Proposition 2 with 7 = 1, we have

n(A™) < n(A™) < n(A™ 1) < ... < n(A) =m.
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Then n(A™*!) = 0. This is impossible. Therefore r(A) = 1. The proof is complete.

Lemma 4. Let ¥ be a finite set of contractions on H. Letr =|X|, s > 1, and &1 =

ri+s
4. Suppose n(X1) < o0 and rp(B) < 1 for all B € |J X7, where rp(B) = sup{\; A =
i=1
0 or is an eigenvalue of B}. Then there is a smallest integer ¢ with s < g < r° + s such
that n(X7) < n(%1).

Proof. Let ¢ = r® + s. Suppose B € X7 be such that n(B) = n(X;). Let us write
B = AqAq_1--+ A for some Ay, Aj,...,Ag € X. Then

Ai+s—1Ai+s—-1 - A; €X® fori= 1,2,.. .,7'3 + 1.
Since r® > |X*|, there are integers ¢ and j with 1 <i < j <r° + 1 such that
Aits14i4s 2 Ai=Ajy 1Aj1s2+ Aj

Since n(B) < n(Aits—14iys—2° -+ 4i) < n(X;) = n(B) by Lemma 1(b), it follows from
Proposition 2 that Aj_;---A; has an eigenvalue A with |A| = 1. This contradicts to

rét+s |
rp(B)<1lforallBe |J ¥.
Jj=1

Remark 5. If A is an n x n matrix with ||A|| = 1, where ||-||2 is the 2-norm on C*,
then n(A) = n implies that A is an isometry from C" onto itself. Therefore r(A4) = 1.
From this, we see that if ¥ is a finite set of contractions on C™ and r(A) < 1 for every
A€, thenn(X) <n-1

Corollary 6. If A is an n x n matriz with ||A||2 < 1, then r(A) < 1 if and only if
||4%]]2 < 1.

Proof. Suppose r(A) < 1. By Remark 5, we have n(4) < n — 1. It follows from
Proposition 2 that
n(A") <n(A" ) <---<n(d)<n-1

This implies n(A™) = 0 and hence ||A™||2 < 1. The converse is obvious.

Theorem 7. Let ¥ be the set of finite contractions A1,Az,---,Ar on H and m =
n(¥) <oo. Putry =r+1landry =711 471y fork=23,...,m. If n(=¥™) > 1,

T'm R
then there is some B € |J ¥7 such that rp(B) = 1. In particular, if each A; is a compact
Jj=1

Tm |

contraction on H and ||A|| = 1 for some A € L™, then there is some B € |J X7 such
j=1

that rp(B) = 1.
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Tm .
Proof. Suppose 7,(B) < 1 for all B € |J ¥7. It follows from Lemma 4 m-times that
j=1

n(E™) < n(Z™1) << n(BT < n(X) =
Therefore we must have n(X™) = 0. This contradicts our assumption that n(X™) > 1.

The following result gives an infinite-dimensional version of Theorem L-W.
Theorem 8. Let ¥ be the set of finite contractions A1, Az, -+, Ar on C*. Put
rm=r+1landry=r"1+ry fork=23,...,n—1. Ifn(E™1) > 1, then there is

Tn-1 X
some Be |J X7 such that r(B) = 1.
Jj=1
Tn—1
Proof. Suppose r(B) < 1 for all B€ |J X. By Remark 5, we have n(X) <n —1.
Jj=1

It follows from Lemma 4 n — 1-times that
n(E-1) <p(EZ?) << (B <n(E) <n-1
Therefore we must have n(X"»-1) = 0. This contradicts our assumption that n(%™-1) > 1.

Proposition 9. Let T(-) be a Co-semsigroup on H with the infinitesimal generator A.
Suppose T(to) is contraction withm = n(T(to)) < oo for some o > 0. If |T(to)™ || = 1,
then A has an eigenvalue p with Rey = 0.

Proof. If ||T(to)™t!|| = 1, it follows from Proposition 2 that there is some 1 <n <
m + 1 such that T(tg)® = T'(nty) has an eigenvalue A with |A| = 1. By the spectral
mapping theorem (cf. [5, Theore A-I11.6.3.]) of Co-semigroup for the point spectrum, we
have o, (T(t)) \ {0} = e?#{4) for t > 0. Therefore X € e™toop(4) | that is, A = et# for some
p € gp(A). Since |A| = 1, we have Rep = 0. This completes the proof.

We denote the ideal of all compact contractions on H by K¢ (H).

Lemma 10. Let {An} be a sequence of contractions on H and let A € B(H).
Suppose
(a) A is compact,
(b) there is a positive integer v such that n(Ap) > 1 for ailm=1,2,...;
(¢) ||Am — A|| = 0 as m — co. Then n(A) > r. Moreover, for every positive integer r
the set {A € Ko(H);n(A) < r} is open in Ko (H).

Proof. Since each A, is a contraction, so is 4 by (c). By (b), for every m > 1 there
is an orthonormal set {Zm1,Zm2,.-.,Tmr} contained in N(I — A} An). Since A, is an
isometry on N(I — A%, Ar), {AmTmk; 1 < k <7} is also an orthonormal set.
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Since A is compact, there are integers 1 < n; < ng < - - such that {Az,,;} converges
to some element y; € H for j = 1,2,...,r. Since ||[Am — Al —» 0 as m — oo, it
is easy to see that A, zn,; — y; strongly as &k — oo for j = 1,2,...,r. Since each
{An,Zn,j;1 < j < r}is an orthonormal set, so is {y1,%2,...,¥r}. On the other hand, for
every k and j, Tn,; € N(I — A}, Ayn,) implies A} A, Tpn,; = Tn,;. Therefore we have for
every j =1,2,...,r

yj = Hm An Ay A, 2o, ;= AA™Y;.

This shows that n(A*) > r and hence n(A) = n(A*) > r. The proof is complete.

Proposition 11. Let ¥ be a compact set of compact contractions on H. Suppose
(a) X is a countable set;
(b) r(A) <1 for all A€ Z'. Then T is asymptotically stable (a.s.).

Proof. Since X is compact, so are the ™ (m > 1). By Lemma 1(b), {n(X™)} is
a decreasing sequence. We show that n(X™) = 0 for some m. Since ¥™ is compact, by
Lemma 1(d), this will imply ||A|| < 1 for all A € £™. Thus the compactness of ¥™ shows
that X is a.s. Suppose n(X™) is never zero. Then there is some integer mg > 1 such
that the n(X™) (m > my) are all equal to a positive integer £. Put Q = X™° and let
S = {E C O E is compact and n(E™) = £ for all m = 1,2,...}. Then (S, C) is a partially
ordered set. We claim that S has a minimal element.

If {E;} is a decreasing chain in S, then E = () E; is nonempty compact set. If

n(E™) < £ for some positive integer m, then, by Lerx;ma 10, there is an open subset V'
of K¢ (H) such that E™ C V and n(V) < £. Since {E;} is a decreasing chain of compact
sets, so is { E/*}. Therefore there must have some 7 such that E™ C V. This contradicts
to E; € S. Hence E is a lower bound of {E;}. By Zorn’s Lemma, S has a minimal
element, say (1. Clearly, € is also countable. So, ¢ has an isolated point, say B. Since
Q1 = Qo \ {B} is not in S, there is some positive integer m; such that

* | n(Q™) < £.

We claim that n(2™) < £. Thus Qo ¢ S; a contradiction. We part the proof into three
cases.

Let Ay, Ao, ..., Ao, € So. : : -
Case 1. A; = A; for some 1 < j < k < 2m;. Then, by Proposition 2 with p = 0, we
have r(Ag-1Ax—2- -+ Aj) = 1. This contradicts to (b). So, we can assume A; # A; for all
1<i#7<2m;. :
Case 2. B # A; for all i = 1,2,...,2m,. Then Agp; Aom,~1---Ay € Qf'"‘. By (%),
n(AzmlAzml._l TR Al) <. : e
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Case 3. B = A; for some 1 < i < 2m;. Then either 1 < <mj orm; +1 <1 < 2m;y.
Anyway, we have either A, Apm 1+ A1 € QT or Aom, Agm,—1+* Amy41 € . It
follows from Lemma 1(b) and (*) that n{Agm, A2m,-1---41) < £

This completes the proof.
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