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Some recent results on Schrodinger equations
with time-periodic potentials

A. Galtbayar* A. Jensen'! and K. Yajima?

1 Introduction. Statement of Results

We report on some recent results on Schrédinger equations with time-periodic
potentials. The full report on the results will be published in [1]. We consider
the Schrodinger equation

ibu=(-A+V(tz)y (tz)eRxRL (1.1)

Note that the results presented here depend on the configuration space being
of dimension three.

We make the following assumption on the potential V(t,z). We write
T = R/27Z for the unit circle and let (z) = (1 + z?)'/2.

Assumption 1.1. The function V(t,z) is real-valued and is 27 -periodic with
respect to t: V(t,z) = V(t + 2r,z). For B > 2 we assume that

22: sup (z)? (/Ozﬂ A% m)|2dt)% < oo. (1.2)

]=O m€R3

Associated with the equation (1.1) is a unitary propagator U(t, s), which
is a family of unitary operators on H = L2(R3) with the following properties.
We let H2(R3) denote the usual Sobolev space of order 2.

*University Street 3, School of Mathematics and Computer Science, National University
of Mongolia, P.O.Box 46/145, Ulaanbaatar, Mongolia

tDepartment of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G,
DK-9220 Aalborg @, Denmark. E-mail: matarne@math.auc.dk

fMaPhySto — A Network in Mathematical Physics and Stochastics, funded by The
Danish National Research Foundation

$Department of Mathematics, Faculty of Science, Gakushuin University, 1-6-1 Mejiro,
Toshima-ku, Tokyo 171-8588, Japan. E-mail: kenji.yajimaQgakushuin.ac.jp

81



82

1. (t,s) ~ U(t, s) is strongly continuous.
2. U(t,r) =U(t,s)U(s,r) for all t,s,7 € R.
3. Ut +2m,s+2m)=U(t,s) for all t,s € R.

4. U(t,s)H*(R3) = H?*(R?). For up € H%(R?), U(t, s)uo is an H-valued
C*-function of (t, s), which satisfies

i0,U(t, syug = H(t)U(2, 8)uo,
i0,U(t, s)up = =U(t, s)H(s)uo.

To study the properties of U(t, s) in detail one introduces the extended
phase space K = L%(T x R?) = L?(T; H). Define

KQ = —th - A,
K=—i0 - A+V({,z)

These operators are self-adjoint on K, on the natural domain. The relation
to the propagator is as follows. Let U(o) = e~*K. Then

U(o)u)(t) = U(t,t — o)u(t — o)

for u = u(t,) € K. The extended phase space formalism was introduced by
Howland in [2}, and implemented for the time-periodic case by Yajima in [6].

One of the problems considered in [1] is the large time behavior of a
solution u(t) = U(t, 0)uo. The usual approach is to use scattering theory. Let
); € [0,1) be eigenvalues of K with eigenfunctions ; (the spectrum of K is
invariant under integer translations). Under the above conditions the wave
operators exist and are complete:

W:k = 59;151;{.% U(O,t)e““H°, Ho = —A.

Completeness means that Ran W, = H,.(Up) and Hec(Uo) = {0}. Here Up =
U(2m,0) denotes the monodromy (Floquet) operator. Consequently u(t) =
U(t,0)ug can be written as

U(t, {8) = z aje—it’\j(pj(t, Z) + usm(t,x),
where ‘
|| ttacat (t, ) — e HORY(z)|| = 0 fort — oo

for some ¥ € H. Actually, these resuits hold under the short range assump-
tion 8 > 1 in (1.2), see [6], [3], [7].



Here we consider a different approach to the large time behavior of a
solution. Let for § € R

Ms = L3(R®) = {f € L (R®) | (=)’ f(z) € L*(R)}

denote the weighted spaces. Then we take ug € H;s for a sufficiently large
d > 0, and look at the solution U(t,0)up in the space H_;.
To state our. results we introduce the weighted Sobolev spaces

K3 = H*(T,Hs),

where s is a nonnegative integer, and § € R. We introduce the following
definition:

Definition 1.2. n € Z is said to be a threshold resonance of K, if there
exists a solution u(t, z) of the equation

—i0u — Au + Vu = nu,

such that, with a constant C # 0,
Ceint
|z|

Such a solution is called an n-resonant solution.

ult,z) =

+u1(t,a:), U € K.

The main results on the large time behavior of a solution can be stated
as follows:

Theorem 1.3. Let 5, = max{2k+1,4}. Let V satisfy the Assumption 1.1 for
some B > Bi, k € N, and let {¢;} be an orthonormal basis of eigenfunctions
of K corresponding to the eigenvalues 0 < \; < 1. Set § = (3/2 and gy =
min{1, &5@*} We have the following results.

(1) Suppose K has neither threshold resonances nor integer eigenvalues.
Then there ezist finite rank operators By, ..., By from Hs to K, such that
B; = 0, unless j is odd, and such that, for any ug € Hs, and for any €,
0<e<egg, ast — o0,

U(t, O)UU = ZCj6~it)‘j¢j(t, IE) + t_-Bl’ll’Q(t iL') + -
J

lBkuo(t :l?) + O(t_ 1),

where c; = 27(¢;(0), ug)», and O(t"‘*’ 1Y stands for an H_s-valued function
of t such that its norm in H_s is bounded by C ¢~ "5~ “Yiuol|n,, whent > 1.
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(2) Suppose K has either threshold resonances, integer eigenvalues, or
both, and assume that B > B, k > 2. Furthermore, {¢o1, ..., bom} C {¢;} is
an orthonormal basis of eigenfunctions of K with eigenvalue 0. Then there
exist a 0-resonant solution Y(t,z), finite rank operators Bi,..., By_o from
Hs to K1, such that B; = 0, unless j is odd, and such that, for any uo € Hs
and for any 0 < e < €, ast — o0,

U(t) O)u() = Z cje—“’\quj (ta .’Z?) + t—% (dod)(t, 2:) + Z de¢02(ta I))
j £=1

473 Biuo(t, z) + - -+ + £~ By_quo(t, 7) + O™ ),

where ¢; and O(t=*3™-1) are as in Part (1), do = 27 (uo, ¥(0))n, and d; are
linear functionals of uo of the form

de(ug) = ag (o, $01(0))n + - - - + agn(to, Pom(0))x, £€=1,...,m.

In particular, all dg vanish on the orthogonal complement of the 1-eigenspace
of the monodromy operator Uy = U(2,0).

The statement in Part (2) is written for the case that we have both a
zero threshold resonance and zero eigenvalues. In the other cases obvious
modifications are needed.

2 Remarks on the Proof

The proof of Theorem 1.3 is quite long and rather involved. The starting
point is a detailed study of the resolvent Ry(z) = (Ko — 2)71, in the form
of asymptotic expansions, in the norm topology of the bounded operators
B(K3,K*;) for 6 > 1/2 and s > 0 an integer. This study is based on the
explicit integral kernel of (—A — 2)~! on L2(R3). This fact explains why the
results depend on the dimension being equal to three. The expansions are
needed around every z € R, the integers being particularly important, since
they are the thresholds for our operators Ky and K.

Let us briefly state some of the results on Ry(z). Using Taylor’s theorem
the integral kernel of 7o(z) = (—A — z)~! can be expanded as

eivzlz-ul I T .
infe—y| 2 43! (VY |z -y~ + di(2; 7,v),
j=0 T’

with the remainder given by

iz k T — -1 1 )
) S s s,




Using the terms above to define operators we get an expansion
kte
ro(2z) = go+ Vzg1 + - - + 2ge + di(2),  di(2) = O(2'T),

in the topology of B(H,, H_,), ¥ > B = max{2k +1,4},and 0 < e < go =
min{1,y — &}.

Now use K = L*(T) ® H, and let p, denote the projection onto the
subspace of L?(T) spanned by e'*!. We can then write

Ro(z) = (Ko —2)"! = Z ®pm ® To(z — m).

meZ

Inserting the expansion for ro(z) we get an expansion

Ro(z+n) = Rf(n) + VZDi(n) + - - - + 2*/2Di(n) + Rox(n, 2),

where the coefficients can be found explicitly in terms of the g;’s introduced
above. :

The next step is the study of 1 + Re(2)V. Invertibility of the boundary
values of 1 + Rg(A +40)V in B(K4,K¢;) for 6 > 1/2, and s > 0 an inte-
ger, is first studied. The relation to eigenvalues and threshold resonances is
also established. Based on the asymptotic expansion of Ry(z) one obtains
an asymptotic expansion of (1 + Ro(z)V)~!, which then together with the
ssecond resolvent equation R(z) = (1 + Ro(2)V) 'Ry(2) yields asymptotic
expansions for R(z). We use the technique developed by Murata [5] to obtain
these results. One can also use the techniques developed in [4].

The main results can be stated as follows. Here E,, denotes multiplication
by eint.

Theorem 2.1. Let V satisfy the Assumption 1.1 for 8 > [ = max{2k +
1,4}, k € N. Let 6 = 3/2 and g0 = min{1, £}

(1) Suppose that there are no integer eigenvalues or resonances. Then, as
a B(K3, K ;)-valued function of z € C¥, s = 0,1, for any 0 < £ < &, we
have

R(z+n) = Fy(n) + VZzFi(n) + 2F3(n) + - - + 2/ Fi(n) + O(z*+9/%)

in a neighborhood of z = 0.

(i) Fj(n) = E,F;(0)E;, foralln € Z and j =0,1,....

(ii) If j is odd, F;(0) are operators of finite rank and may be written as a
finite sum Y_ aj, ® by, where aj,,b; € K14

(iil) The first few terms are given as

Fy(n) = G*(n)Rg (n)(= R*(n)),
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Fi(n) = G*(n) Di(n)G™(n)",
Fy(n) = G*(n) [Da(n) — D1(n)VG*t(n)D1(n)] G~ (n)*,

where GX(n) = (1 + RE(n)V)~, and where D;(n) are the operators defined
in result on the free resolvent.

(2) Suppose that we have either integer eigenvalues, threshold resonances,
or both. Then, as a B(K3, K2;)-valued function of z € C+, s=0,1,

R(z +n) =V——i-F_2(n) + %F_l(n) + Fy(n) + - -

e 4 z(k—2)/2Fk__2(n) + O(z(k—2+e)/2)

in a neighborhood of z = 0. Here

(i) Fj(n) = E,F;(0)E;, forn € Z and j = -2,-1,....

(ii) Fj(n) is of finite rank, when j is odd, and may be written as a finite sum
Y- aj, ® bj,, where aj,, b, € K.

(i) F_a(n) = Bx({n}). ) )

(iv) F_1(n) = Ex({n})V Ds(n)V Ex({n}) — 4iQn, where Qn = (-, )3,
and Y™ is a suitably normalized n-resonant function.

Now we use the relation

N

. 1 N
e Ky =lim lim —— e AR(X + ig)udA,
€l0 N—oo 278 J_ N

where the right hand side should be understood as a weak integral. It is com-

bined with the asymptotic expansion results, to obtain the following result.
Let J: H — K be given by (Ju)(t,z) = u(z). We then have the following

asymptotic expansion for e™K Juy, ug € Hs (6 sufficiently large).

k
K g = 3O (e ) )+ O~

Jj=1 nez
Here €; = 0 for j even, and ¢; = 1 for j odd. The expansion coefficients
satisfy Fj(n) = E,F;(0)E;}, and
-F}(O) = Z fju ® Gjv-
ﬁrrite

By the Sobolev embedding theorem K ; is continuously embedded in H_;
such that

sup [[u(t)lls_; < Cllullic,-
teT



Using the expansion for e~*X we get

k
G ke
sup Ut = oYuo — Y e50~9D2Z;(0) Jun(t)lln_s < Co™ 5" juglln;.
i=1

Now let t = ¢, and then replace o by t to get

k
U, 0)uo — Y et~ U*D2B; (t)ugllr_, < Ct 3 |luglz,.
j=1

These computations are for the Part (1) of Theorem 1.3. For Part (2) a
somewhat more involved argument is needed.

To get the properties of the coeflicients stated above we use the following
Lemma.

Lemma 2.2. Let B= f®gy, f,g € K1;. Let ug € Hs, and let

[o o]
Z(o)uo= Y e E,BE}Ju,.

n=-—oo

Then Z(o) € B(Hs, K ;) has the integral kernel

2nf(t,z)g(t — 0,9).

Let us briefly outline the proof. We compute as follows, where we use the
Fourier inversion theorem in the last step.

Zoyo= 3 e e pta) [ [ gl e umdyds

n=-00

16,2 3 @ [[en( [ oo upuatuiin)ds

n=—co

= 2nf(t, ) /R 9t = 0,y)uos)dy.
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