

Title	Some recent results on Schrodinger equations with time- periodic potentials (Spectral and Scattering Theory and Related Topics)
Author(s)	Galtbayar, A.; Jensen, A.; Yajima, Kenji
Citation	数理解析研究所講究録 (2004), 1364: 81-88
Issue Date	2004-04
URL	http://hdl.handle.net/2433/25320
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Some recent results on Schrödinger equations with time-periodic potentials

A. Galtbayar, A. Jensen, and K. Yajima

1 Introduction. Statement of Results

We report on some recent results on Schrödinger equations with time-periodic potentials. The full report on the results will be published in [1]. We consider the Schrödinger equation

$$i\partial_t u = (-\Delta + V(t, x)) u, \quad (t, x) \in \mathbf{R} \times \mathbf{R}^3.$$
 (1.1)

Note that the results presented here depend on the configuration space being of dimension three.

We make the following assumption on the potential V(t, x). We write $\mathbf{T} = \mathbf{R}/2\pi\mathbf{Z}$ for the unit circle and let $\langle x \rangle = (1 + x^2)^{1/2}$.

Assumption 1.1. The function V(t,x) is real-valued and is 2π -periodic with respect to $t: V(t,x) = V(t+2\pi,x)$. For $\beta > 2$ we assume that

$$\sum_{j=0}^{2} \sup_{x \in \mathbf{R}^{3}} \langle x \rangle^{\beta} \left(\int_{0}^{2\pi} |\partial_{t}^{j} V(t, x)|^{2} dt \right)^{\frac{1}{2}} < \infty.$$
 (1.2)

Associated with the equation (1.1) is a unitary propagator U(t, s), which is a family of unitary operators on $\mathcal{H} = L^2(\mathbf{R}^3)$ with the following properties. We let $H^2(\mathbf{R}^3)$ denote the usual Sobolev space of order 2.

^{*}University Street 3, School of Mathematics and Computer Science, National University of Mongolia, P.O.Box 46/145, Ulaanbaatar, Mongolia

[†]Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg \emptyset , Denmark. E-mail: matarne@math.auc.dk

[†]MaPhySto — A Network in Mathematical Physics and Stochastics, funded by The Danish National Research Foundation

[§]Department of Mathematics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan. E-mail: kenji.yajima@gakushuin.ac.jp

- 1. $(t, s) \mapsto U(t, s)$ is strongly continuous.
- 2. U(t,r) = U(t,s)U(s,r) for all $t,s,r \in \mathbf{R}$.
- 3. $U(t + 2\pi, s + 2\pi) = U(t, s)$ for all $t, s \in \mathbb{R}$.
- 4. $U(t,s)H^2(\mathbf{R}^3) = H^2(\mathbf{R}^3)$. For $u_0 \in H^2(\mathbf{R}^3)$, $U(t,s)u_0$ is an \mathcal{H} -valued C^1 -function of (t,s), which satisfies

$$i\partial_t U(t,s)u_0 = H(t)U(t,s)u_0,$$

 $i\partial_s U(t,s)u_0 = -U(t,s)H(s)u_0.$

To study the properties of U(t, s) in detail one introduces the extended phase space $\mathcal{K} = L^2(\mathbf{T} \times \mathbf{R}^3) \equiv L^2(\mathbf{T}; \mathcal{H})$. Define

$$K_0 = -i\partial_t - \Delta,$$

$$K = -i\partial_t - \Delta + V(t, x).$$

These operators are self-adjoint on \mathcal{K} , on the natural domain. The relation to the propagator is as follows. Let $\mathcal{U}(\sigma) = e^{-i\sigma K}$. Then

$$(\mathcal{U}(\sigma)u)(t) = U(t, t - \sigma)u(t - \sigma)$$

for $u = u(t, \cdot) \in \mathcal{K}$. The extended phase space formalism was introduced by Howland in [2], and implemented for the time-periodic case by Yajima in [6].

One of the problems considered in [1] is the large time behavior of a solution $u(t) = U(t,0)u_0$. The usual approach is to use scattering theory. Let $\lambda_j \in [0,1)$ be eigenvalues of K with eigenfunctions φ_j (the spectrum of K is invariant under integer translations). Under the above conditions the wave operators exist and are complete:

$$W_{\pm} = \underset{t \to \pm \infty}{\text{s-}\lim} U(0,t)e^{-itH_0}, \quad H_0 = -\Delta.$$

Completeness means that Ran $W_{\pm} = \mathcal{H}_{ac}(\mathcal{U}_0)$ and $\mathcal{H}_{sc}(\mathcal{U}_0) = \{0\}$. Here $\mathcal{U}_0 = U(2\pi, 0)$ denotes the monodromy (Floquet) operator. Consequently $u(t) = U(t, 0)u_0$ can be written as

$$u(t,x) = \sum a_j e^{-it\lambda_j} \varphi_j(t,x) + u_{\rm scat}(t,x),$$

where

$$||u_{\text{scat}}(t,x) - e^{-itH_0}\psi(x)|| \to 0 \text{ for } t \to \infty$$

for some $\psi \in \mathcal{H}$. Actually, these results hold under the short range assumption $\beta > 1$ in (1.2), see [6], [3], [7].

Here we consider a different approach to the large time behavior of a solution. Let for $\delta \in \mathbf{R}$

$$\mathcal{H}_{\delta} = L_{\delta}^{2}(\mathbf{R}^{3}) = \{ f \in L_{loc}^{2}(\mathbf{R}^{3}) \mid \langle x \rangle^{\delta} f(x) \in L^{2}(\mathbf{R}^{3}) \}$$

denote the weighted spaces. Then we take $u_0 \in \mathcal{H}_{\delta}$ for a sufficiently large $\delta > 0$, and look at the solution $U(t,0)u_0$ in the space $\mathcal{H}_{-\delta}$.

To state our results we introduce the weighted Sobolev spaces

$$\mathcal{K}^s_{\delta} = H^s(\mathbf{T}, \mathcal{H}_{\delta}),$$

where s is a nonnegative integer, and $\delta \in \mathbf{R}$. We introduce the following definition:

Definition 1.2. $n \in \mathbb{Z}$ is said to be a threshold resonance of K, if there exists a solution u(t,x) of the equation

$$-i\partial_t u - \Delta u + Vu = nu,$$

such that, with a constant $C \neq 0$,

$$u(t,x) = rac{Ce^{int}}{|x|} + u_1(t,x), \quad u_1 \in \mathcal{K}.$$

Such a solution is called an n-resonant solution.

The main results on the large time behavior of a solution can be stated as follows:

Theorem 1.3. Let $\beta_k = \max\{2k+1, 4\}$. Let V satisfy the Assumption 1.1 for some $\beta > \beta_k$, $k \in \mathbb{N}$, and let $\{\phi_j\}$ be an orthonormal basis of eigenfunctions of K corresponding to the eigenvalues $0 \le \lambda_j < 1$. Set $\delta = \beta/2$ and $\varepsilon_0 = \min\{1, \frac{\beta - \beta_k}{2}\}$. We have the following results.

(1) Suppose K has neither threshold resonances nor integer eigenvalues. Then there exist finite rank operators B_1, \ldots, B_k from \mathcal{H}_{δ} to $\mathcal{K}^1_{-\delta}$, such that $B_j = 0$, unless j is odd, and such that, for any $u_0 \in \mathcal{H}_{\delta}$, and for any ε , $0 < \varepsilon < \varepsilon_0$, as $t \to \infty$,

$$U(t,0)u_0 = \sum_{j} c_j e^{-it\lambda_j} \phi_j(t,x) + t^{-\frac{3}{2}} B_1 u_0(t,x) + \cdots$$
$$\cdots + t^{-\frac{k}{2}-1} B_k u_0(t,x) + O(t^{-\frac{k+\varepsilon}{2}-1}),$$

where $c_j = 2\pi(\phi_j(0), u_0)_{\mathcal{H}}$, and $O(t^{-\frac{k+\epsilon}{2}-1})$ stands for an $\mathcal{H}_{-\delta}$ -valued function of t such that its norm in $\mathcal{H}_{-\delta}$ is bounded by $C t^{-\frac{k+\epsilon}{2}-1} ||u_0||_{\mathcal{H}_{\delta}}$, when $t \geq 1$.

(2) Suppose K has either threshold resonances, integer eigenvalues, or both, and assume that $\beta > \beta_k$, $k \geq 2$. Furthermore, $\{\phi_{01}, \ldots, \phi_{0m}\} \subset \{\phi_j\}$ is an orthonormal basis of eigenfunctions of K with eigenvalue 0. Then there exist a 0-resonant solution $\psi(t,x)$, finite rank operators B_1, \ldots, B_{k-2} from \mathcal{H}_{δ} to $\mathcal{K}^1_{-\delta}$, such that $B_j = 0$, unless j is odd, and such that, for any $u_0 \in \mathcal{H}_{\delta}$ and for any $0 < \varepsilon < \varepsilon_0$, as $t \to \infty$,

$$U(t,0)u_0 = \sum_{j} c_j e^{-it\lambda_j} \phi_j(t,x) + t^{-\frac{1}{2}} \left(d_0 \psi(t,x) + \sum_{\ell=1}^m d_\ell \phi_{0\ell}(t,x) \right) + t^{-\frac{3}{2}} B_1 u_0(t,x) + \dots + t^{-\frac{k-2}{2}-1} B_{k-2} u_0(t,x) + O(t^{-\frac{k-2+\varepsilon}{2}-1}),$$

where c_j and $O(t^{-\frac{k-2+\epsilon}{2}-1})$ are as in Part (1), $d_0 = 2\pi(u_0, \psi(0))_{\mathcal{H}}$, and d_{ℓ} are linear functionals of u_0 of the form

$$d_{\ell}(u_0) = a_{\ell 1}(u_0, \phi_{01}(0))_{\mathcal{H}} + \cdots + a_{\ell n}(u_0, \phi_{0m}(0))_{\mathcal{H}}, \quad \ell = 1, \dots, m.$$

In particular, all d_{ℓ} vanish on the orthogonal complement of the 1-eigenspace of the monodromy operator $\mathcal{U}_0 = U(2\pi,0)$.

The statement in Part (2) is written for the case that we have both a zero threshold resonance and zero eigenvalues. In the other cases obvious modifications are needed.

2 Remarks on the Proof

The proof of Theorem 1.3 is quite long and rather involved. The starting point is a detailed study of the resolvent $R_0(z) = (K_0 - z)^{-1}$, in the form of asymptotic expansions, in the norm topology of the bounded operators $B(\mathcal{K}^s_{\delta}, \mathcal{K}^s_{-\delta})$ for $\delta > 1/2$ and $s \geq 0$ an integer. This study is based on the explicit integral kernel of $(-\Delta - z)^{-1}$ on $L^2(\mathbf{R}^3)$. This fact explains why the results depend on the dimension being equal to three. The expansions are needed around every $z \in \mathbf{R}$, the integers being particularly important, since they are the thresholds for our operators K_0 and K.

Let us briefly state some of the results on $R_0(z)$. Using Taylor's theorem the integral kernel of $r_0(z) = (-\Delta - z)^{-1}$ can be expanded as

$$\frac{e^{i\sqrt{z}|x-y|}}{4\pi|x-y|} = \sum_{j=0}^{k} \frac{1}{4\pi j!} (i\sqrt{z})^{j} |x-y|^{j-1} + d_{k}(z;x,y),$$

with the remainder given by

$$d_k(z;x,y) = rac{(i\sqrt{z})^k|x-y|^{k-1}}{4\pi(k-1)!} \int_0^1 (1-s)^{k-1} (e^{is\sqrt{z}|x-y|}-1) ds.$$

Using the terms above to define operators we get an expansion

$$r_0(z) = g_0 + \sqrt{z}g_1 + \dots + z^{k/2}g_k + d_k(z), \quad d_k(z) = \mathcal{O}(z^{\frac{k+\epsilon}{2}}),$$

in the topology of $B(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma})$, $\gamma > \beta_k = \max\{2k+1, 4\}$, and $0 \le \varepsilon < \varepsilon_0 = \min\{1, \gamma - \frac{\beta_k}{2}\}$.

Now use $\mathcal{K} = L^2(\mathbf{T}) \otimes \mathcal{H}$, and let p_n denote the projection onto the subspace of $L^2(\mathbf{T})$ spanned by e^{int} . We can then write

$$R_0(z) = (K_0 - z)^{-1} = \sum_{m \in \mathbf{Z}} {}^{\oplus} p_m \otimes r_0(z - m).$$

Inserting the expansion for $r_0(z)$ we get an expansion

$$R_0(z+n) = R_0^+(n) + \sqrt{z}D_1(n) + \cdots + z^{k/2}D_k(n) + \widetilde{R}_{0k}(n,z),$$

where the coefficients can be found explicitly in terms of the g_j 's introduced above.

The next step is the study of $1 + R_0(z)V$. Invertibility of the boundary values of $1 + R_0(\lambda + i0)V$ in $B(\mathcal{K}^s_{\delta}, \mathcal{K}^s_{-\delta})$ for $\delta > 1/2$, and $s \geq 0$ an integer, is first studied. The relation to eigenvalues and threshold resonances is also established. Based on the asymptotic expansion of $R_0(z)$ one obtains an asymptotic expansion of $(1 + R_0(z)V)^{-1}$, which then together with the second resolvent equation $R(z) = (1 + R_0(z)V)^{-1}R_0(z)$ yields asymptotic expansions for R(z). We use the technique developed by Murata [5] to obtain these results. One can also use the techniques developed in [4].

The main results can be stated as follows. Here E_n denotes multiplication by e^{int} .

Theorem 2.1. Let V satisfy the Assumption 1.1 for $\beta > \beta_k \equiv \max\{2k + 1, 4\}$, $k \in \mathbb{N}$. Let $\delta = \beta/2$ and $\varepsilon_0 = \min\{1, \frac{\beta - \beta_k}{2}\}$.

(1) Suppose that there are no integer eigenvalues or resonances. Then, as a $B(\mathcal{K}^s_{\delta}, \mathcal{K}^s_{-\delta})$ -valued function of $z \in \overline{\mathbb{C}^+}$, s = 0, 1, for any $0 < \varepsilon < \varepsilon_0$, we have

$$R(z+n) = F_0(n) + \sqrt{z}F_1(n) + zF_2(n) + \cdots + z^{k/2}F_k(n) + \mathcal{O}(z^{(k+\epsilon)/2})$$

in a neighborhood of z = 0.

(i) $F_j(n) = E_n F_j(0) E_n^*$ for all $n \in \mathbb{Z}$ and j = 0, 1, ...

(ii) If j is odd, $F_j(0)$ are operators of finite rank and may be written as a finite sum $\sum a_{j\nu} \otimes b_{j\nu}$, where $a_{j\nu}, b_{j\nu} \in \mathcal{K}^1_{-\delta}$.

(iii) The first few terms are given as

$$F_0(n) = G^+(n)R_0^+(n)(=R^+(n)),$$

$$F_1(n) = G^+(n)D_1(n)G^-(n)^*,$$

$$F_2(n) = G^+(n) [D_2(n) - D_1(n)VG^+(n)D_1(n)] G^-(n)^*,$$

where $G^{\pm}(n) = (1 + R_0^{\pm}(n)V)^{-1}$, and where $D_j(n)$ are the operators defined in result on the free resolvent.

(2) Suppose that we have either integer eigenvalues, threshold resonances, or both. Then, as a $B(\mathcal{K}^s_{\delta}, \mathcal{K}^s_{-\delta})$ -valued function of $z \in \overline{\mathbb{C}^+}$, s = 0, 1,

$$R(z+n) = -\frac{1}{z}F_{-2}(n) + \frac{1}{\sqrt{z}}F_{-1}(n) + F_0(n) + \cdots$$
$$\cdots + z^{(k-2)/2}F_{k-2}(n) + \mathcal{O}(z^{(k-2+\epsilon)/2})$$

in a neighborhood of z = 0. Here

(i) $F_j(n) = E_n F_j(0) E_n^*$ for $n \in \mathbb{Z}$ and $j = -2, -1, \ldots$

(ii) $F_j(n)$ is of finite rank, when j is odd, and may be written as a finite sum $\sum a_{j\nu} \otimes b_{j\nu}$, where $a_{j\nu}, b_{j\nu} \in \mathcal{K}^1_{-\delta}$.

(iii) $F_{-2}(n) = E_K(\{n\}).$

(iv) $F_{-1}(n) = E_K(\{n\})VD_3(n)VE_K(\{n\}) - 4\pi i \bar{Q}_n$, where $\bar{Q}_n = \langle \cdot, \psi^{(n)} \rangle \psi^{(n)}$, and $\psi^{(n)}$ is a suitably normalized n-resonant function.

Now we use the relation

$$e^{-i\sigma K}u=\lim_{\varepsilon\downarrow 0}\lim_{N\to\infty}rac{1}{2\pi i}\int_{-N}^{N}e^{-i\sigma\lambda}R(\lambda+i\varepsilon)u\,d\lambda,$$

where the right hand side should be understood as a weak integral. It is combined with the asymptotic expansion results, to obtain the following result.

Let $J: \mathcal{H} \to \mathcal{K}$ be given by (Ju)(t,x) = u(x). We then have the following asymptotic expansion for $e^{-i\sigma K}Ju_0$, $u_0 \in \mathcal{H}_{\delta}$ (δ sufficiently large).

$$e^{-i\sigma K}Ju_0 = \sum_{j=1}^k \sigma^{-(j+2)/2} \left(\sum_{n \in \mathbb{Z}} e^{-i\sigma n} \varepsilon_j F_j(n) Ju_0 \right) + O(\sigma^{-\frac{k+2+\varepsilon}{2}})$$

Here $\varepsilon_j = 0$ for j even, and $\varepsilon_j = 1$ for j odd. The expansion coefficients satisfy $F_j(n) = E_n F_j(0) E_n^*$, and

$$F_j(0) = \sum_{\substack{\nu \ \text{finite}}} f_{j\nu} \otimes g_{j\nu}.$$

By the Sobolev embedding theorem $\mathcal{K}^1_{-\delta}$ is continuously embedded in $\mathcal{H}_{-\delta}$ such that

$$\sup_{t\in\mathbf{T}}\|u(t)\|_{\mathcal{H}_{-\delta}}\leq C\|u\|_{\mathcal{K}_{-\delta}^1}.$$

Using the expansion for $e^{-i\sigma K}$ we get

$$\sup_{t\in\mathbf{T}}\|U(t,t-\sigma)u_0-\sum_{j=1}^k\varepsilon_j\sigma^{-(j+2)/2}Z_j(\sigma)Ju_0(t)\|_{\mathcal{H}_{-\delta}}\leq C\sigma^{-\frac{k+2+\epsilon}{2}}\|u_0\|_{\mathcal{H}_{\delta}}.$$

Now let $t = \sigma$, and then replace σ by t to get

$$||U(t,0)u_0 - \sum_{j=1}^k \varepsilon_j t^{-(j+2)/2} B_j(t) u_0||_{\mathcal{H}_{-\delta}} \le C t^{-\frac{k+2+\varepsilon}{2}} ||u_0||_{\mathcal{H}_{\delta}}.$$

These computations are for the Part (1) of Theorem 1.3. For Part (2) a somewhat more involved argument is needed.

To get the properties of the coefficients stated above we use the following Lemma.

Lemma 2.2. Let $B = f \otimes g$, $f, g \in \mathcal{K}^1_{-\delta}$. Let $u_0 \in \mathcal{H}_{\delta}$, and let

$$Z(\sigma)u_0 = \sum_{n=-\infty}^{\infty} e^{-in\sigma} E_n B E_n^* J u_0.$$

Then $Z(\sigma) \in B(\mathcal{H}_{\delta}, \mathcal{K}^{1}_{-\delta})$ has the integral kernel

$$2\pi f(t,x)g(t-\sigma,y).$$

Let us briefly outline the proof. We compute as follows, where we use the Fourier inversion theorem in the last step.

$$\begin{split} Z(\sigma)u_0 &= \sum_{n=-\infty}^{\infty} e^{-in\sigma} e^{int} f(t,x) \int_{\mathbf{T}} \int_{\mathbf{R}^3} g(s,y) e^{-ins} u_0(y) dy \, ds \\ &= f(t,x) \sum_{n=-\infty}^{\infty} e^{in(t-\sigma)} \int_{\mathbf{T}} e^{-ins} \Big(\int_{\mathbf{R}^3} g(s,y) u_0(y) dy \Big) ds \\ &= 2\pi f(t,x) \int_{\mathbf{R}^3} g(t-\sigma,y) u_0(y) dy. \end{split}$$

References

[1] A. Galtbayar, A. Jensen, and K. Yajima, Local time-decay of solutions to Schrödinger equations with time-periodic potentials, J. Statist. Phys., to appear.

- [2] J. Howland, Stationary theory for time dependent Hamiltonians, Math. Ann. 207 (1974), 315-335.
- [3] J. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J. 28 (1979), 471-494.
- [4] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13 (2001), 717-754.
- [5] M. Murata, Asymptotic expansions in time for solutions of Schrödingertype equations, J. Funct. Anal. 49 (1982), 10-56.
- [6] K. Yajima, Scattering theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Japan 29 (1977), 729-743.
- [7] K. Yokoyama, Mourre theory for time-periodic systems, Nagoya Math. J. 149 (1998), 193-210.