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Doubly nonlinear evolution equation
and its applications

Goro Akagi (ARA IE)
and

Mitsuharu Otani (K& Y6%&)

Department of Applied Physics, School of Science and Engineering,
Waseda University,
4-1, Okubo 3-chome, Shinjuku-ku, Tokyo, 169-8555, Japan

1 Introduction

Let V and H be a real reflexive Banach space and a real Hilbert space respectively, and
let V* and H* be dual spaces of V and H respectively. Moreover let H be identified

with its dual space H* and suppose that
(1) VCH=H"CcV*

with densely defined continuous natural injections.
This paper is concerned with doubly nonlinear evolution equations such as

(D) L) + 0y p(u(®) 5 7)) in V", (t) € Br(uld),

where ¢, 9 : V — (—00, +00| are proper lower semi-continuous convex (p-l.s.c. for short)
functions and their subdifferentials 0y, Oy 1 are defined as follows:

DEFINITION 1.1 Let X be a linear topological space and let ¢ € ®(X) := {¢ : X —
(=00, 400]; ¢ is p-l.s.c.}. Then the effective domain D(¢p) and the subdifferential Ox¢ of
¢ are given by
D(¢) = {ue€ X;¢(u) < +oo},
Oxp(u) = {£€X"(v) - o(u) 2 (§,v—u),Yve D(¢)},

where (-,-) denotes a duality pairing between X and X*.
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In particular, for every ¢ € ®(H), its subdifferential dy¢ is given as follows

8H¢(u) = {£ € H; ¢(U) - ¢(U) 2 (§1U— 'U,)H,V'U € D(¢)}7

where (-,-)g denotes an inner product in H.

In the next section, we prove the existence of a strong solution to Cauchy problem
for (DE) without supposing that 81 is Lipschitz continuous.

Moreover as an application of (DE) to PDEs, we introduce the following doubly
nonlinear parabolic equation (DP).

(DP) g—tlu|m_2u—Apu=f in Qx(0,T), u=0 ondQx(0,T),

where A, is the so-called p-Laplacian defined by Ayu = V - (|Vu|P~2Vu), and Q denotes
a bounded domain in R" with smooth boundary 8. We then discuss the existence of a
weak solution to the initial-boundary value problem for (DP), and its periodic problem
as well.

2 Abstract Evolution Equation

Let us consider the following Cauchy problem (CP) for (DE).

%(t) Lot =ft) mV*, 0<t<T,
(CP) 1 v(®) € vu(u(®)), g(t) € Brep(u(t)),
v (O) = 1g.

Sufficient conditions for the existence of strong solutions to (CP) were studied by
Kenmochi [13] and Kenmochi-Pawlow [14] in the Hilbert space framework (i.e., the case
where V = H). However since they assume that g is Lipschitz continuous in H in [13]
and [14], their results can not be directly applied to (DP); so we make an attempt to

construct a strong solution of (CP) without any Lipschitz continuity of Gy 1.
We first give a definition of strong solutions for (CP) as follows.

DEFINITION 2.1 A pair of functions (u,v) : [0,T) — V x V* is said to be a strong
solution of (CP) on [0, T} if the following (i)-(iv) hold true.

(i) v is a V*-valued absolutely continuous function on [0, T).
(ii) wu(t) € D(Byy) N D(Byy) for a.e. t € (0,T).
(iii) There exists g(t) € Ay p(u(t)) such that

(2) %(t) +9(t) = £(t), v(t) € Ov(u(t)) in V*, for a.e. t € (0,T).
(iv) v(t) — vg strongly in V* ast — +0.

The following result is concerned with the existence of strong solutions for (CP).
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THEOREM 2.2 Suppose that (A1)-(A4) are all satisfied.

(A1) There ezist numbers Cy,Cy such that |ul}, < Cip(u) + Cy for all u € D(yp).
(A2) There ezists a non-decreasing function l : R — [0, +00) such that

€+ < Up(u)) for all [u,€] € Dyep.
(A3) There eists ¥ € ®(H) such that (u) = 1(u) for all w € V, and
o(hau) < o(u) for all u € D(p) and A > 0, where Jy := (I + Aog¥)~".
(A4) For anyr > 0, the set {v € R(Bvv);¢¥*(v) + |v|g < r} is precompact in V*,
where ¥*(u) := ilég{(u, w) — Y(w)}.

Then for any f € W™ (0, T; V*) N L2(0, T; H) and vo € (8u¥)°(D(p) N D(8u4)), (CP)
has at least one strong solution (u,v) satisfying:

u € L*®(0,T;V), u(t) € D(Oy) for ae te (0,T),
v € Cp([0,T); H) NWH(0, T; V*), v(t) € Ouv(u(t)) for a.e. t € (0,T),
the function t — ¢*(v(t)) € WH(0,T), g€ L*(0,T;V*),

where g(t) denotes the sections of 8y p(u(t)) in (2). Moreover Cy([0,T); H) denotes the
set of all weakly continuous functions from [0,T) into H.

Before describing the proof of Theorem 2.2, we provide a remark on (A3).
REMARK 2.3 Since 9|y = 9, we can derive
(3)  D(@u¥d)NV C D(dyy) and Outp(u) C yp(u) Vu € D(@yy) NV.
Indeed, let [u, f] € Oy be such that u € V. Then we have

Yo~ v = ¥) - P

2 (flv—wg={f,v—u) Ywe D),
which implies u € D(Oy¢) and f € dyy(u).

In the rest of this section, for simplicity, we suppose that

V is separable, 0 € D(y), ¢ > 0and ¢ > 0.

However the above assumptions are not essential and can be easily removed by slight
modifications on the following arguments.
We now proceed to the proof of Theorem 2.2. Here and henceforth, we denote by C
non-negative constants, which do not depend on the elements of the corresponding space
or set.
PROOF OF THEOREM 2.2 Let uy € D(p) N D(8x%) be such that (Oy1h)°(uo) = vo. To
construct a strong solution of (CP), we introduce the following approximate problem:

%(t) + %a”'ﬁ*(“'\(t» +oa(t)=f(t) in H, 0<t<T,

9x(t) € Ompr(ua(?)), ua(0) = uo,

(CP), { A
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where 9, denotes the Moreau-Yosida regularization of ¥ and @g denotes an extension
of p on H given by

. (v) fueV,
(4) pr(v) = {ioo ifueH\V.

We then remark that (Al) ensures that gy € ®(H), D(pn) = D(y), D(Oupn) C
D(8vy) and dxpr(u) C By p(u) for all u € D(Fupn) (see [2] for more details). Moreover
Al + Oy, becomes bi-Lipschitz continuous in H; hence we can assure the existence of a
strong solution uy for (CP) on [0, T] in much the same way as in Kenmochi [13] or [14].

We next establish a priori estimates in the following Lemmas 2.4-2.7. To this end,
we employ fundamental properties of resolvents and Yosida approximations of maximal
monotone operators, which can be found, e.g., in [4], [5] and [7].

LEMMA 2.4 There exists a constant C such that

(5) sup p(ua(t)) < C,
te[0,T)

(6) 5

PROOF OF LEMMA 2.4 Multiplying the first equation in (CP), by du,(t)/dt, we have

t < C.

du >

"+ (Bowin 0. 220) + Souentt)

< (f(t) iy (t))

= %(f(t),uz(t)),, - <%(t),u,\(t)> for a.e. t € (0,T).

du ,\

()

From the monotonicity of 6}11/3)‘, it is easily seen that
(d, - duy,
< (=
0 < (dtaml),\(ux(t)), 7 (t ))
Hence integrating both sides of (7 ) over (0,t), we have
®) == (r) dr + pu(ua(t))

< <PH(uo) + (F(&), ua(®)) g — (£(0), uo)y
- /ot <3—{_(7‘),u;(7’)> dr vtel0,T].

du,\

Moreover by Young’s inequality, we get by (Al)

OO < CUSOF- +1) + son(m(®)
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and

/Ot<%(75,?tA(T)>dT < (/l ('r)

dT + l)
+/0 e(ur(r))dr.

Thus Gronwall’s inequality implies (5). Moreover (6) follows from (5) and (8). g
LEMMA 2.5 There ezists a constant C' such that

9) Sup Prva(ur@)lz < C.

PROOF OF LEMMA 2.5 Multiplying the first equation in (CP), by Buva(ua(t)), we
obtain

(10)  Agda(us(t)) + 5 s IOuda(us (N + (9a(), Drda(an(e)) ,
= (f(t),0u9r(us(2))) o S Oll0rva(ur®t)]s  for e t € (0,T).
From the fact that g)(t) € xwn(u(t)), Theorem 4.4 of [6] and (A3) imply
0 < (g,\(t), aHJ)A(U,\(t)))H

Hence integrating (10) over (0,t), we get

N 1. -
Ax(ua(t)) + §|3H¢A(ux(t))|§1
. 1, - 1T 1t -
< Maluo) + 510mrwoly + 5 [ 1F(D)hdr + 5 [ 10t (ua(r) rdr
for all ¢ € [0, 7). Therefore since
¥a(uo) < ¥(uo) and |8u¥a(uo)la < |volm,
Gronwall’s inequality yields (9). 4
LEMMA 2.6 There exists a constant C such that
(11) sup 9" (Brda(ua(t))) < C,
te[0,7)
(12) sup ¢*(Buha(ua(t))) < C,
te[0,T]

where ¢* denotes the conjugate function of p € ®(H) given by ¥*(u) := supycx{(u, w)g—
P(w)}.
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PROOF OF LEMMA 2.6 Multiplying the first equation in (CP), by u,(t) and noting
that

(%%&A(W(ﬂ%e’)\w(t)) = %~*(6H1ZA(“A(t)));

H
we get by (A1)

Nl >

’(‘?lu)\(tNH 11) Bada(ua(®) + 5 5 dtlaﬂw,\(ux(t)ﬂy 2¢’H(U>«(t))
< p(0) + C’(If(t)]p. +1) forae te(0,T).

Hence integrating this over (0,t), we have
A - -
(13) 2ur 0 + 3" @utaua @) + 5 10mrr O + 5 [ entun(r)ar

P.dr+ 1) .

Sl + 9 (@ud () + 5ol + T+ [ 150
We here note that ‘
P*Oada(w)) = (Bnta(uo), Jauo),, — ¥(Juo)
< |vo| mrluol -

Thus we can derive (11) from (13).
Moreover from the definition of ¢*, (11) implies

U @udau®) = sup {(Guir(wa(t)),v) - $(v)}
< sup {(@da(ua(), v} — 9(v)
= P'Orta(ual®)) <C Vte [0, T,

which completes the proof. g

LEMMA 2.7 There extsts a constant C such that

(14) sup |lua(t)ly < C,
t€(0,T]
(15) sup |Lua(t)ly < C,
te[0,T]
(16) < ¢
T|d - 2
(17) | 0% aae) @<

PROOF OF LEMMA 2.7 First (14) follows immediately from (A1) and (5). Moreover
by (A1), (A3) and (5), we can verify (15). Furthermore since gy(t) € dupu(ua(t)) C
Ovp(un(t)), (A2) and (5) imply (16). Finally we can derive (17) from (6), (16) and
(CP)ys-

On account of a priori estimates stated above, we can take a sequence ), such that
A — +0 as n — +o0o and the following lemmas hold true.



LEMMA 2.8 There exists u € L*°(0,T;V) such that

(18) Uy, > U  weakly star in L*(0,T;V),
(19) D, = v weakly star in L¥(0,T;V),
(20) A dux, -0 strongly in L2(0,T; H).

"odt
PROOF OF LEMMA 2.8 By (14) and (15), we can derive (18) and the following
(21) s, = v weakly star in L*(0,T; V)
respectively for some v € L*(0,T; V). Moreover it follows from (9) that

lura(®) = Iatia Ol < AnlOrtha, (ua, ()l < AC — 0
as A\, — 0. Hence by (18) and (21), we have v = u. Finally (6) implies (20). y

LEMMA 2.9 There ezist g € L*(0,T;V*) and v € WH®(0,T;V*) N C,([0,T); H) such
that

(22) D — 9 weakly star in L*=(0,T; V™),
(23) Buthr, (ur, (*)) = v weakly star in L>(0,T; H),
(24) Ot (ur, () » v weakly in WH3(0,T; V*).

Moreover we have
dv -
d—t(t) +g(t) = f(t) mV*, forae te(0,T).

PROOF OF LEMMA 2.9 (9), (16) and (17) imply (22)-(24) immediately. Hence it follows
from (20) that dv/dt = f — g € L>°(0,T;V*). 4

LEMMA 2.10 We have

(25) A, (U, () = v strongly in C([0,T]; V*),
(26) B, (ua, (1)) — v(t) weakly in H for allt € [0,T).

PROOF OF LEMMA 2.10 Since (3) and (15) imply dxwx(ux(t)) C R(Byy) for all
t € [0, T, it follows from (A4), (9) and (12) that

(27 {0 ¥a(ua(t)) }re(o) 18 precompact in V* for each t € [0, 7).
Moreover (17) implies that the function
t > By Px(ua(t)) is equi-continuous in C([0, T); V*) for each A € (0, 1].

Thus Ascoli-Arzela’s lemma yields (25). Moreover (26) follows from (9) and (25). »

123
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LEMMA 2.11 We have

(28) v(t) € B (u(t)) C Byp(u(t)) for ae. te (0,T),
(29) g(t) € Byp(u(t)) for a.e. t e (0,T).

PROOF OF LEMMA 2.11 For simplicity of notation, we drop n. It follows from (19)
and (25) that

T - T
lim / (Oua(ua(t)), ua(t) mdt = / (u(t), u(t)) mdt.

Hence by Lemma 1.2 of [4, Chap.II] and Proposition 1.1 of [12], it follows from (19) and

(23) that u(t) € D(dy) and v(t) € du(u(t)) for a.e. t € (0,T). Moreover by (3) and

the fact that u(t) € D(dg¥) NV for a.e. t € (0,T), we get A (u(t)) C dy(u(t)).
Now integrating (ga(t), ux(t)) over (0,T), we have

[o@.moue = [ (10-3520 - Sonimo)n)

[ (16 - 2% 0,m0)
—* (Bua(ua(T))) + " (Buthr(uo))
2B ar (T + 310 o)

Now it follows from (18) and (20) that

f

du A

(-2 220, m@)d [ (7)) d
X J |

On the other hand, since ¥* € ®(H), (26) yields
liipf §* O ((T))) > §((T)) 2 ¥ (D).
Moreover we see
lim $*(Ona(uo)) = ;{%(%%(w% Jxug)y — lim P(Jauo)

(vo, uo)m — ":B('U'O)
(vo, uo) — ¥(uo) = ¥*(vo).

Therefore combining these inequalities, we have

“‘i‘f},‘P/OT(gA(t),uA(t)>dt < /OT (£, u(t)) dt — ¥* (v(T)) + ¥*(v0)
= [ (10~ Goue)a- [ wo.u

Consequently by (18) and (22), we can deduce that g(t) € dvp(u(t)) for a.e. t € (0,T).
. .
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Finally we claim that v(+0) = vy in V*. Indeed, we get by (17) and (25),

V#

lo(t) — voly- = Jim 0¥, (42, (£)) — Ona, (uo)

' 1/p
dr ti/p
An—0 v+

< lim ( /0 t }%&ﬂﬁ,\n(wn (1))

< U

which implies v(t) — v strongly in V* as t — +0. Hence (u,v) becomes a strong
solution of (CP) on [0, T], which completes the proof. g
In order to discuss the smoothing effect of (CP), we establish the following theorem.

THEOREM 2.12 Suppose that (A1), (A3) and the following (A2)" and (A4)' are all sat-
isfied.

(A2)" There exists a constant Cs such that |E[} . < Cs{p(u) + 1} for all [u,£] € Sy .
(A4)' For anyr >0, the set {v € R(Byv);¥*(v) < 1} is precompact in V*.

Then for all f € L¥ (0,T;V*), if vo € V* satisfies the following:

(30) {%Ma@wwwnM@w;

von — Ug Strongly in V*,  ¢*(ven) — ¥*(vo) as n — +oo,
then (CP) has a strong solution (u,v) on [0,T] such that

w e LP(0,T;V), ve W' (0,T;V*),
the function t — ¢*(u(t)) € WY (0,T), g€ LP(0,T;V*),

where g(t) denotes a section of By (u(t)) in (2).
REMARK 2.13 It is obvious that (A2)" and (A4)’ imply (A2) and (A4) respectively.
PROOF OF THEOREM 2.12 Let (f,) be a sequence in C([0,T}; H) such that f, — f
strongly in L”(0,T; V*) as n — +00, and consider

“dt

Un(t) € Ov(un(t)), gn(t) € Fyp(un(t)), va(0) = von.

Then the existence of a strong solution (un,v,) of (CP),, on [0, T} is assured by Theorem
2.2. Hence multiplying the first equation in (CP), by u,(t), just as in the proof of
Lemma 2.6, we have

(cP), { den )+ gn(t) = fut) W V*, 0<t< T,

(31) %¢*(vn(t))+—;-go(un(t)) < 9(0) + C(lfa®)F- +1) for ae. te (0,T).

Thus we can derive the following estimates.
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LEMMA 2.14 There ezists a constant C such that

(32) Sup, Y () < C,
T
(33) /0 o(ua(t))dt < C.

Moreover by (A1) and (A2)’, we have
LEMMA 2.15 There exists a constant C such that
T
(34 | e < c,
T
(35) | loadt < c.

Consequently by (CP),,, we have

LEMMA 2.16 There ezists a constant C such that

(36) I

From a priori estimates described above, just as in the proof of Lemmas 2.8-2.10, we
can take a subsequence (n) of (n) and derive the following convergences.

/
dv, , [

0l

at < C.

LEMMA 2.17 There ezist u € LP(0,T;V), v € W'Y¥(0,T;V*) and g € LF(0,T;V*)
such that

(37) Un, — U weakly in LP(0,T;V),
(38) Up, — V weakly in W' (0,T;V*),
(39) gn, — 9 weakly in L7 (0,T; V*).

Hence we find that dv/dt+ g = f in L? (0,T;V*). Moreover by (A4)', it follows from
(32) and (36) that

(40) vn, — v strongly in C([0,T); V*).

Therefore we also have v(t) € dy¢(u(t)) for a.e. ¢t € (0,T).
In the rest of this proof, to simplify the notations, we drop k. Now multiplying g,(t)
by un(t) and integrating this over (0,T), we get

T T
(41) ] /(; <gn(t)» un(t))dt = /(; (fn(t); un(t))dt - '/J*(Un(T)) + "/)*(Uo,n)'
Now from the fact that ¢* € ®(V*), (40) yields

limnf ¢ (un(T)) 2 ¥(0(T)).
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Hence since 9*(vg,n) — ¥*(vo), we get by (37),
timsup [ (on(t),ua®)) < [ FO,ult))dt — 9 (D)) + 4 ()
[ (- o) a
0 e’ )

Thus Lemma 1.3 of [4, Chap.Il] and Proposition 1.1 of [12] yield that g(t) € dvp(u(t))
for a.e. t € (0,T). In much the same way as in the proof of Theorem 2.2, we can also
verify that v(+0) = vg in V*, which completes the proof. j

3 Initial-Boundary Value Problem for (DP)

To exemplify the applicability of the preceding abstract theory to PDEs, let us introduce
the initial-boundary value problem (IBVP) for the doubly nonlinear parabolic equation
(DP).

%Iul’"‘zu(m,t) — Az, t) = f(z,f)  (5,8) €Qx (0,T),
(IBVP){ w(z,t) =0 (z,t) € 80 x (0,T),

[ul™%u(z, 0) = vo(x) T €Q,

where 2 denotes a bounded domain in R with smooth boundary Q.
In this section, we provide a couple of results on the existence of weak solutions to
(IBVP). Before them, we give a definition of weak solutions as follows.

DEFINITION 3.1 A pair of functions (u,v) : 2% (0,T) — R? is said to be a weak solution
of (IBVP) on [0,T) if the following (i)-(iv) are all satisfied.
(i)  The function t — v(-,t) is WP (Q)-valued absolutely continuous on [0, T).
i) u(-,t) € WoP(Q) N L™(Q) and v(-,t) = |u|™ 2u(-,t) for a.e. t € (0,T).
(iii) The following identity holds true:

<@(-,t>,¢> ”mﬁ/ IV 2Vu(z, ) - Vo(a)dz = (£(- 1), Bwarcay

for a.e. t € (0,T) and all € WpP(Q).
(iv) (-, t) — vy strongly in W19 (Q) as t — +0.

The existence of weak solutions for (IBVP) was already studied by several authors.
Raviart [17] proved the existence under some restriction on m by semi-descritization
method. We can also find some results only for 1-dimensional case in [16], where Faedo-
Galerkin’s method is employed. Moreover Tsutsumi [20] and Ishige [11] employed the
theory of quasi-linear parabolic equations developed in [15] to construct a weak solution
of (IBVP) for the case where f = 0.

In the rest of this paper, we put

H=L*Q), V=W;?Q)
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with the norms | - |v = |V + |1s(q) and | - |g = | - |12(q) respectively. Then (1) holds true
under the assumption that p > 2N/(N + 2). Moreover define

) { % [lu@Imds ituwevnLn@),
+00 ifue VL™,

1
— = P
wplu) : p/s;|Vu($)| der YueV.

Then it is easily seen that ¥, ¢, € ®(V) and 8y p,(u) coincides with —Ayu with homo-
geneous Dirichlet boundary condition ulsg = 0 in the sense of distribution. Now just as
in (4), we define an extension ¥, of ¥, on H as follows.

c o Ymlw) ifueV,
Un(u) = {+oo ifue H\V.

Then we can verify that Ym € ®(H) and Y|y = ¥, (see [2]); and it is well known that
Outhm(u) coincides with |u|™2u in H for every m € (1,+00) (see e.g. {7]). On the other
hand, for the case where m < p*, V is continuously embedded in L™(f); hence v, is
Fréchet differentiable in V and its Fréchet derivative 8y, (u) coincides with |u|™ 2u in
L™ () for every u € D(Oytm) = V. Therefore we observe that every strong solution
(u,v) of the following (CP)®™ becomes a weak solution of (IBVP) if v(t) € ud(u(t))
for a.e. t € (0,T) or m < p*.

%‘t-’(t) +ot)=f@t) mV*, 0<t<T,
(CPY™™ Y w(t) = Bvibm(u(t), 9(t) = Byepp(u(t),
'1)(0) = 1g.
Now employing Theorem 2.2, we can derive the following theorem.

THEOREM 3.2 Suppose that p € [2N/(N +2),+0o0) and

{ (1,400) if p>2N/(N +2),

S

(1)p*) if p:2N/(N+2))

where p* denotes the so-called Sobolev’s critical exponent.

Then for any f € WY (0,T; W—1#(Q)) N L?(0, T; L*(RY)) and vy € L*(Q) with ug :=

[vo|™ 2wy € WoP(Q) N LA™=1)(Q), (IBVP) has at least one weak solution (u,v) on [0, T
satisfying:

u€ L®(0, T; W™ (2)) N C([0, T]; L™(Q)),

v € Cy([0, T); LA(R)) N C([0, T}; L™ (2)) N Wh(0, T; W17 (Q)),
the function t — |v(-,t) Z'v:"(n) € W0, T), Ayu(-,-) € L®(0,T; W=7 (Q)).



PROOF OF THEOREM 3.2 For the case where 2N/(N + 2) < p, H is compactly em-
bedded in V*, which implies (A4) immediately. For the case where m < p*, L™ (Q) is
compactly embedded in V*; hence observing

vt (0) = mi /Q (@)™ ds Yo € R(Bytm) C L™ (),

we deduce that (A4) holds true.
From the definition of ¢y, it is obvious that (A1) is satisfied. Moreover we have
Ovesw),v) = [ [Vu@) V() - Vo(a)de
< Julfly Vu,veV,

which implies (A2)".
Moreover (A3) is derived from the following lemma, whose proof can be found in [7]
or [3]. '

LEMMA 3.3 Let j € ®(R) and define v : H — (—00,+00] as follows:

) — { [iw@)dz  ifue H and j(u()) € L(S),

+00 otherwise.

Then ¢ € ®(H) and

f€onup(u) if and only if f(z) € Orj(u(z)) for a.e. z € Q.
Moreover the following inequality holds true.

wp(hau) < @p(u) Yu€eV, YA >0,

where J,, denotes the resolvent of Oy.

Therefore by Theorem 2.2, we conclude that (CP)”™ admits at least one strong solution
on [0, T] 1

Moreover as for the case where vy € L™ (), Theorem 2.12 implies the following
result, where we can also observe the smoothing effect of (IBVP).

THEOREM 3.4 Suppose that p € [2N/(N + 2),+00) and m € (1,p*). Then for all
f e L?(0,T; W19 (Q)) and vo € L™ (Q), there ezists at least one weak solution (u,v)
of (IBVP) on [0,T] satisfying:

u € LP(0, T; Wy P(Q)) N C([0, T); L™()),

v € C([0,T}; L™ (Q)) n WY (0, T; W-1#(Q)),
the function t — |v(-,t)|Z‘,',,,(m e wWii(o,T),
Apu(-,-) € LF (0, T; W12 (Q)).

(42)
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PROOF OF THEOREM 2.12 Let v, € L™ (Q) and put ug := |vo|™ %ve. Then since
up € L™(2), we can take a sequence (ug,) in C§°(§2) such that ug, — u strongly in
L™(Q) as n — +oo. Moreover put v, = |ton|™ 2ugn € Co(§2). Then vy, — v strongly
in L™ (). The rest of proof can be derived as in the proof of Theorem 3.2. y

In general, it is difficult to derive the uniqueness of weak solutions for (IBVP) with a
non-smooth initial data, e.g., vp € L™ (Q). Now let S, be the set of all strong solutions
for (CP)™™ on [0,7] with an initial data vy and a forcing term f; we are then going to
construct a class of unique solutions to (CP)”™ as a subclass of S .

For the case where f € X := WY (0,T;V*) N L?(0,T;H), vop € D := {v €
H; |v|™~%v € V N LX™-D(Q)}, define

Stoe = {(u, V) € Ss.; there exists a sequence (u,) such that
uy is a strong solution of (CP), on [0, T'] with uo, ¢ and ¥ replaced
by |vo|™ ~2vq, ¢p and ¥y, respectively, uy — u weakly star in
L®(0,T; V) and 8t A(ux(-)) — v strongly in C([0, T); V")};

for the case where f € L¥ (0,T;V*) and vy € L™ (Q), define

Sty = {(u, V) € Sf.; there exist {f,} C X and {von} C D such that f, — f
strongly in L¥ (0, T; V*) and vo, — vp strongly in L™ (). Moreover
there exists (un,vn) € S}, ,,, such that u, — u weakly in L7 (0,T;V)

and v, — v strongly in C([0,T; V*)}.
Then we have

THEOREM 3.5 Suppose that 2N/(N +2) < p and m < p*. Then for all
feL?0,T;W-¥(Q)), it follows that

[0t (8) - v*(t)

V(ul,v') € 8t 1, V(U2 07) € 3, V5,05 € L™(Q).

1_ 2
) < 'vo - v“lz,l(n) vt € [0, T,

Hence S}, has a unigque element for every f € L7 (0, T; W~ (Q)) and vo € L™ (Q).

PROOF OF THEOREM 3.5 We first suppose that f € X and v € D (i = 1,2). Now
let uf := |[v§|™ 20} € VN LA™D(Q) and let (vf,v%) € 81% for each i = 1,2. Then there

exists a strong solution u} of the following (CP)} on [0, T):

)‘%(t) + giamﬁmv\(“ix(t)) +g\t)=f inH, 0<t<T,

B@) =0 n(uy(t), u3(0) = u,

where ¢, g denotes an extension of ¢, on H given as in (4), such that

(CP); {

Uy — U weakly star in L*(0,T;V),
Bufmau()) v strongly in C((0, T]; V™).



For simplicity of notation, we write ¢ and ¢ simply for ¢, and ¥y, respectively in the
rest of this proof.
Now let 7, € C*(R) N WH(R) be such that

1 if 52—1-,

n

M(s) = 0 if =0,
-1 if ss—l
n

and
0 (s)<2n, —-1<n(s)<1 VseR.
Then we can easily verify that for any measurable function u,
M (u(-)) = n(u(-)) strongly in L%(Q), 1<g< +oo,

where 7(-) is given by

1 if >0,

n(s) = 40 if s=0,
-1 if s<0O.

Now we see
0 < (gi(t) — (), Mm(ui(-,2) — w3(- 1))
Hence multiplying (CP); — (CP)3 by n,(ul(-,t) — u3(-,t)) and letting n — +oo, we find
2 [ (e 0) ~ (e, Dldo

+ (5 {0 (4(0) — 23D} m(ud1) — 3 t)))H <o,

where we note that 7(s) € dg|s| for all s € R. Moreover we observe that
n(uh(z,1) —ud(z,1)) = n(a@i)(z) - A@E®)()
= 7 (0xhr(©i(1)(2) — duhr (B () (=) -
Then it follows that
A2l ~ ROl
+50nTA (A (9) — a1
Therefore integrating this over (0, t), we get
A (6) — Bl + |0adaA(0) — Srda(d @) 1 g
< Mo~ wl) +[Orva(ud) — Ona(wd)| o, VEE0.T]

LY(Q) <0.

Lo
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Just as in the proof of Theorem 2.2, letting A — +0, we can also derive the following
fori=1,2:

Muj(t) -0 strongly in V for all ¢t € [0, T,
Aua(ui(t)) — v'(t)  weakly in H for all ¢ € [0, 7],
Aua(up) — vi  strongly in H.

Hence v! and v? satisfy
o' () — v2(2)

As for the case where f € L¥(0,T;V*) and v € L™ (Q), let (v,v) € S}.v:;. for
i =1,2. Then there exist f, € X and v}, € D such that

vt € [0,T).

< b -3

L) |L‘(ﬂ)

fa— f  strongly in L¥ (0, T;V*),
vh, —vh  strongly in L™ (Q);

moreover there exists (uj,v;) € S; ¢ such that

i
v”o,n

ul —»u'  weakly in LP(0,T;V),
v - v strongly in C([0,T}; V*).

Hence (u}, v}) is a strong solution of the following (CP): on [0,T] for i = 1,2.

‘ %’%(t) +gi(t) = fut) mV*, 0<t<T,
(CPn | v4(t) = vw(ua(t)), galt) = Bro(un(t)),
v4(0) = 5 -
Moreover according to the last case, v} and v2 satisfy
(43) [oh® 2O gy S [0 =Wl VEE DT
Now as in the proof of Lemma 2.14, we get

sup Iv:n(t)'Lm’(n) < C, i=1,2,
t€(0,7]

which implies
(44) vi(t) » vi(t)  weaklyin I™(Q) Vte[0,T]), i=1,2.
Therefore combining (43) and (44), we conclude that

"ul(t) - vz(t)ILl(n) < ‘vé - vglmm) vt € [0,T). s




4 Periodic Problem for (DP)

We next proceed to discuss the following periodic problem (PP) for the doubly nonlinear
parabolic equation (DP):

2 ™ ula, )~ Agu(a,t) = @) (m1) €Qx (0,T),
(PP) 4 u(z,t) =0 (z,t) € 6Q x (0,T),

|u|™2u(z,0) = |u|™ 2u(z, T) z €

As mentioned in the last section, several studies on the existence of solutions for (IBVP)
are already done; however as for the periodic problem (PP), any studies have not ap-
peared yet.

For the case where m = 2, one can construct a periodic solution by finding a fixed
point of the Poincaré map Ps : ug + u(T) for the corresponding initial-boundary value
problem: u; — Agu = f, ulaq =0, u(0) = up. Actually if ug is a fixed point of Py, then
it follows that u(0) = ue = u(T'), which implies 4 becomes a periodic solution. To this
end, we observe that the Poincaré map P; is non-expansive in L?(Q2); hence since L*()
is uniformly convex, Browder-Petryshyn’s fixed point lemma ensures the existence of a
unique fixed point of Py (see [2] and [9]).

Moreover for the case where p = 2, the Poincare map Py corresponding to (IBVP)
with p = 2 is non-expansive in H~1(Q); hence we can also find a periodic solution in
much the same way as in the case where m = 2.

However for the case where m # 2 and p # 2, it becomes more difficult to verify that
the Poincaré map Py : v — v(T') = |u|™ 2u(T) is non-expansive in some Hilbert space.
Moreover for non-smooth initial data, e.g., vo € L™ (), it is difficult even to construct
a unique weak solution for (IBVP).

In the last section, we have already constructed a class of unique weak solutions for
(IBVP). So we define

Py : vo — v(T),

where v denotes a second component of a unique element of S}, . Then P; maps from
L™ (Q) into itself, moreover it follows that

"vaé - va;;’\ < lv& -3 Vog,vi € L™ (Q).

D) o)

However since L(2) is no longer uniformly convex, Browder-Petryshyn’s fixed point
lemma does not work well in our case. To avoid this difficulty, we find a sequence (vo,5)
of quasi-fixed points of P; and construct a periodic solution as a limit of the solutions
(¢n,vp) for (IBVP) with the initial data vg .

THEOREM 4.1 Suppose that p € [2N/(N + 2),4+o0) and m € (1,p*). Then for all
f € L®(0,T; W= (Q)), (PP) has at least one weak solution (u,v) on [0,T) satisfying
(42).
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PROOF OF THEOREM 4.1 In order to find quasi-fixed points of the Poincaré map P,
we employ the following lemma.

LEMMA 4.2 Let X be a Banach space and let B be a closed convex subset of X. Let
T : B — B be a non-expansive mapping in X, i.e., T(B) C B and [Tu — Tv|x <
|lu —v|x for all u,v € X. If T(B) is bounded in X, then there exists u, € B such that
|Tup — unlx < 1/n for eachn € N. -

PROOF OF LEMMA 4.2 Let M := sup,ep|T(u)|x < +oo. For each n € N, take
Ta € (0,1) such that

l=-ry )M < 1/n.
Then we see
IraT(u) ~raT(v)|x < ralu—v|x Vu,v € B.

Hence since r,T : B — B becomes a strictly contractive mapping in X, there exists a
fixed point u, € B of r,T, i.e., 7T (tn) = uy,. Therefore it follows that

[T(un) —unlx = [T(un) — T (un)|x
(L = ra)|T(un)|x
< (1-r)M<1/n.y

In Theorem 3.5, we have already seen that P; is non-expansive in L!(2); hence we
next show that P; maps from a bounded closed convex set into itself.

LEMMA 4.3 Let f € L™(0,T;V*) and let vy € L™ (). Then there exists a constant R =
R(T,p,m, N, |, || fl|lL=(,r;v+)) independent of |vo|ym (q) such that any strong solution
(u,v) of (CP)P™ on [0,T] satisfies the following estimate:

(D) gy = (D) [Ty < R

PROOF OF LEMMA 4.3 Multiplying the first equation of (CP)™™ by u(t), just as in
(31), we find '

1d 1 '
— MO + 5@ < CIFOI. for ae t € (0,T).

Hence since m < p*, Sobolev’s inequality implies
d
(45) 21Ty +C [u)im@y < Co forae te(0,T),
where Cy := m/C||f "2’°°(0,T;V‘)' Then by improving the Ghidaglia-type differential in-

equality (see e.g. [19], [20]), we obtain the desired result. y
Now set

Br = {ve L™ () lolpmg < B}.
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Then Bp, is bounded, closed and convex in L*(§2). Moreover by Theorem 3.5 and Lemma
4.3, P; maps from Bp into Br. Therefore by Lemma 4.2, we can take a sequence (v, )
in L™ (Q) such that

1
(46) |Pruon — Vom|Li(a) < - Vn € N.

Hence to complete the proof, it suffices to show that v, converges to some element vy,
which becomes a fixed point of Py, i.e., Psuy = vp. To this end, we remark that L™ (Q)
is compactly embedded in V*; then since v};m and v, (T) := Sjvo,n belong to Br, we can
take a subsequence, which is denoted by the same letter n, and functions vy, w € L™ (Q)
such that

Von — Vg strongly in V* and weakly in L™ (),
(T) - w  strongly in V* and weakly in L™ (Q).

Now let (up,v,) € S}’vo,n. Then repeating the same procedure as in the proof of Theorem
2.12, we can obtain the following convergences:

(47) u, —»u  weakly in LP(0,T; V),

(48) v, — v  weakly in W' (0, T; V*),

(49) v, v strongly in C([0,T];V*),

(50) vn(t) = v(t)  weakly in L™ (Q) for all ¢ € [0, 7],
(51) gn—g  weakly in LF(0,T;V*),

where g, := f —dv,/dt. Hence we have w = v(T) and v(t) € dy¢(u(t)) fora.et € (0,T).
Moreover it follows from (47) and (49) that

/oT ./n [un(z,t) — u(z, t)|™dzdt

T
< C /0 (Wa(t) — v(t), un(t) — u(t)) dt — 0  as 1 — +o0,

which implies
(52) ' un — u  strongly in L™(0, T; L™(2)).

Now set I := {t € [0,T]; un(t) — u(t) strongly in L™(2)} and let § € I be fixed. We
then find

T
lim sup / (gn(t), un(t))dt
n—+oo Jé

n—+o00 n—+o00

< [T, 00t~ T By + 5 (8) e

-/ ! < £(t) - %(t), u(t)> d,

. T ‘ . . 1 m s 1 m
—  lim /5 (F(2), un(t))dt — Hminf = Jun(T)[Pncay + i —lun(®)[Emcey
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which yields g(t) = f(t) — dv(t)/dt = Ovpp(u(t)) for ae. t € (6,T). Hence since
{[0,7] \ I| = 0, the arbitrariness of ¢ implies g(t) = dvp,(u(t)) for a.e. t € (0,T).
Moreover just as in the proof of Theorem 2.2, we can also derive that v(+0) = vg in V*
from (48) and (49).

Therefore (u,v) becomes a strong solution of (CP)»™ with an initial data vp. Fur-
thermore since v, (T') — w = v(T) weakly in L™ (), we get by (46),

. 1
o) = by < Tminf ()~ toaliv < Jim =0,

which implies v(T) = vo. Hence (u,v) is a weak solution of (PP) on {0,T7. y
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