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Existence of Global Solutions for the
Shigesada-Kawasaki-Teramoto Model with
Cross-Diffusion

BEREAY - BT¥E (L3 (Yoshio YAMADA)

Department of Mathematics, Waseda University

1 SKT model

This lecture is concerned with the initial boundary value problem for the fol-
lowing parabolic system with strongly coupled nonlinear diffusion

7

w, = dy A[(1 + av + yw)u] + au(l —u — cv)
in ©x (0,00),
v; = dpA[(1 + dv)v] + bu(1l — du — v)
(P) < in Q x (0,00),
Ou v
5;1-——57;—0 on (9Q><(O,oo),.
\ ?.L(-,O) = Uy, U(',U) = Yo, in €,

where Q is a bounded domain in RY (N > 2) with smooth boundary 092, A
is the Laplacian, dy,dy,a,b,c,d,,v are positive constants, § is a nonnegative
constant, {/0n denotes the outward normal derivative on 9Q and ug, vo are given
nonnegative functions. In (P), « is called a cross-diffusion coefficient and «,d are
called self-diffusion coefficients.

The above system was first introduced by Shigesada, Kawasaki and Teramoto
[17] to describe the habitat segregation phenomena between two species which are
competing in the same domain. Their model (SKT model) is described by the
following system of parabolic equations:

{ uy = diA[(1 + p1yv + prav)u] + au(l — v — cv), (1.1)

vy = dyA[(1 4 parwe + pagv)v] + bv(l — du — v),

in full generality with homogeneous Neumann boundary conditions. In (1.1),
u,v denote the population densities of two species, py1, p2o are coefficients of self-
diffusion and pig, p21 are coefficients of cross-diffusion. Since the numerical simula-
tions for (1.1) exhibit interesting pattern formations, the SKT model has attracted
interests of many mathematicians.

IThis is a joint work with Y.S. Choi (University of Connecticut) and R. Lui (Worcester
Polytechnic Institute).



Mathematically, one of the most important problem for (1.1} is to establish the
existence of global solutions. After Kim [8] showed the global existence in the
one dimensional case, (1.1) and related systems have been discussed by a lot of
mathematicians. However, the analysis is very hard because of the nonlinear diffu-
sivity and the global existence for (1.1) is still an open problem for the full system.
In case p1; = po1 = p2e = 0, the global existence result was shown without any
restrictions on space dimensions and initial functions by Pozio-Tesei [15], Yamada
[19] and Redlinger [16]. But their results are not valid for (1.1) because some
restrictions are required for the reaction term; so that the standard reaction term
like Lotka-Volterra type is excluded in their works. On the other hand, we have
to put some restrictions on nonlinear diffusion coefficients in order to study the
Lotka-Volterra reaction-term. In this direction, we refer to Yagi[18] or Ichikawa-
Yamadal[6], where it is assumed that self-diffusion coefficients are dominant over
cross-diffusion coefficients in a sense.

In what follows, we will focus on the global solvability for (P), which is slightly
simpler because the second equation does not contain a cross-diffusion term. In
case N = 2, Yagi [18] proved that (P) has a unique global solution if @ > 0,y > 0
and § = 0. 'This result has been extended by Lou, Ni and Wu |12] to the case
where N - 2, > 0,7 > 0 and § > 0. Our purpose is to establish a sufficient
condition for the existence of global solutions for (P) without any restrictions on
the amplilude of initial dala in the higher dimensional case (N > 3). We will
prove two global existence results: Theorem 1 in case § = 0 and Theorem 2 in
case § > 0 and N < 5. See the work of Choi, Lui and Yamada [3, 4]. Roughly
speaking these theorems assert that (P) admits a unique global classical solution
for any nonnegative smooth initial functions. Here we should say that similar
global existence results are obtained by Le, L. V. Nguyen and T. T. Nguyen [5]
via a different approach.

Finally, we will give some comments on the stationary problem associated with
(P) or (1.1). Consider the following elliptic system:

All+av+yuwul +ou(l —u—cv) =0 in Q,

Al(L+ Bu+ v+ bv(l —du—v) =0  in Q, (1.2)
Ou _ Ov _ 0 n 00
on  On ? .

What we should do is to look for non-constant positive solutions for (1.2). In
case N = 1, Mimura, Nishiura, Tesei and Tsujikawa [14] discussed non-constant
positive solutions by singular perturbation method. See also Kan-on (7], where
the stability of such non-vonstant solutions are studied. As in the non-stationary
problem, the analysis of (1.2) for the higher dimensional case is difficult. To
overcome the difficulty, Lou and Ni [10, 11] have proposed a kind of limiting system
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which can be derived by letting one of cross-diffusion coefficients to infinity. In
this direction, we also refer to a recent work of Lou, Ni and Yotsutani [13], where
the analysis of the limiting system is accomplished in case N = 1.

2 Global Existence Results

We will discuss (P) in the framework of classical solutions. So up and vg are
assumed to satisfy

(A) up > 0,0 >0 and w,vp € C*AQ) with A > 0.

In what follows, we always assume

N>2, a>0 and ~>0.

The first global result is concerned with the case where the diffusion in the
second equation of (P) is linear.

Theorem 2.1. For § = 0, assume that ug,vy satisfy (A). Then (P) admits a
unique solution u,v € C*HMEIN/2() x [0, 00)).

The second result is concerned with the case where the diffusion in the second
equation is nonlinear.

Theorem 2.2. Let § > 0 and N < 5. If ug, vy satisfy (A), then (P) admits a
unique solution u,v € C*MEN/2(() x [0, 00).

Remark. In |5], the same restriction N < 5 is also imposed to derive the global

existence result.

Although complete proofs of these theorems are stated in our work [4] (see also
[3]), we will briefly explain the idea of the essential parts of the proofs.

First of all, we will prepare two local existence results for (P).

Theorem 2.3. [1, 2] If ug,vp € Wz}(ﬂ) with p > N, then (P) admits a unique
solution u,v in C([0,T); W2()) N C((0,T); W2(€2)) N CY((0,T); Lp(R)), where T
is @ mazimal existence time.

Theorem [2] is valid if we work in the framework of LP(f2) spaces. If classical
solutions of (P) are concerned, then we have to use the following result (see [9]):

Theorem 2.4. Assume that ug, v satisfy (A). Then (P) possesses a unique solu-
tion u,v in C*HMEIN/Z(Q x [0,T]) with some T > 0.

By virtue of Theorems 2.3 and 2.4, it is sufficient to show some suitable a priori
estimates of u, v in order to establish the global existence. We will explain how to
derive such a priori estimates in the subsequent sections.
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3 A priori Estimates
We begin with the following lemma.

Lemma 3.1. Let u,v be a solution of (P) in [0,T]. Then
u>0 and m>v>0 in Qr,

where Qr = Q x [0,T] and m = max{1, || vo ||oo}-

Proof. The first equation in (P) is expressed as

s = di(1 + av + 2yuw)Au + 2d; (Vv + yVu) - Vu + {adiAv + a(l —u — cv) }u
' - (3.1)

and the second one is written as
vy = da(1 + 26v)Av + 26d,Vv - Vv + b(1 — du — v)v. (3.2)

Then application of the maximum principle for (3.1) and (3.2) yields the nonneg-
ativity of v and v. Applying the maximum principle to (3.2) again one can also
show the boundedness of v. O

Lemma 3.2. Let u,v be a solution of (P) in [0,T]. Then
sup || u(t) @< Cr and || v ||2(on< Cr
0<t<T

with some Cr > 0.

Proof. Integration of the first equation in (P) with respect to = gives

d 0
— / vdr = dl/ Al(1 4 av + yu)uldz + a./(l —u— cv)u du
dt Jo Q Q

= d1/ —a-[(l + av + yu)uldo + a/(l —u—cv)u de
0 ov

Q
Sa/udw—a/uzda:.
Q Q

Hence Gronwall’s inequality yields

t t
| w(t) ||zt +a/ | w(s) |12Lg ds <|| uo ||z +a/ | w(s) ||z ds <|| wo ||t e,
0 0

We are now ready to prove the following fundamental L? estimates.
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Proposition 3.3. Let u,v be a solution of (P) in [0,T]. If § =0, then
| v ooy < Cr forany g >1

and, if & > 0, then

2(N +1)

| % ||ze(opr) < Cr forany 1<gq< N3

Moreover, || Vu |22 < Cr.

Proposition 3.3 plays a very important role in the proofs of Theorems 2.1 and 2.2.
We will briefly explain the procedure to accomplish the proof in case § = 0. The
proof in case § > 0 can be carried out in a similar manner with some modification.
The complete proofs can be found in [4].

(i) L7 estimates of v; and Aw.
For § =0, (3.2) is written as
vy = dolAv + (1 — du — v). - (33)
Since f := bv(l — du — v) € LY Qr) by Lemma 3.1 and Proposition 3.3, the
maximal regularity result for (3.3) yields L¢(Qr) estimates of v; and Av.

(ii) Holder continuity of v and Vw.

Since the estimates of (i) imply v € W2'(Qr), the embedding theorem ([9])
assures the Holder continuity of v and Vv with respect to (z,t) € Qr.
(i) L* estimate of u.

The idea is to write (3.1) as a linear parabolic equation in the divergence form:

A, du ARy,
U = Z -5-37— (a,-j (.’E,t)%) + Z 55:— (Clri(fl?, t)U) + b(m, t)’ll:, (34)
dig=1 "¢ J =1 ¢
where
Ov ‘
ai; = di(1+ av + 2yu)d;;, a; = dla% and b =a(l —u— cv).

Since u can be regarded as a generalized solution of (3.4), one can apply the
maximum principle in [9, p.181] to get L®(Qr) boundedness of u

(iv) Holder continuity of u.

By (i) and (iii), all a;;,a; and b appearing in (3.4) are bounded functions.
Therefore, using the regularity theory for a weak solution of (3.4) one can derive
the Holder continuity of u with respect (z,t) € Q7.



(v) Hoélder continuity of v, and Awv.
We go back to (3.3), where f = bu(1 — du —v) is Hélder continuous with respect
z,t by (ii) and (iv). Hence the famous Schauder estimate implies the Hélder

continuity of v, and Av for (z,t) € Q7.

(vi) Holder continuity of u, and Au.
By (3.1), u satisfies

up = di(1 + av + 2yw)Au + 2d, V(av + yu) - Vu + b*u,

where b* = dyjaAv + (1 — u — cv). Since all the coeflicients are Holder continuous
for (z,t) € Qr, the Holder continuity of u, and Au comes from the Schauder

estimate.

4 Proof of Proposition 3.3

We will give the proof of Proposition 3.3 in case 6 = 0. For the proof in case
8 > 0, see [4].
We first multiply the first equation in (P) by u9~:

1d [
— /uq dr = / ’U.q_l’ll.t dx
q dt Jao Q

= d1/ w1+ av + 2yu) V] dz + dy« / wI IV [uV] dz
Q u Q
+a/ v (l—u—cv)dz
Q
=—(¢—1)d; /(1 + o + 2yu)u?%|Vul?de — (¢ — l)dla/ w'Vu - Vo dz
Q Q

+(1./ vl —u—cv) dz
Q

=: —(q— 1)di 1 + (g — 1)dyaly + als.

Since u and v are positive, it is easy to see

_ 8y 2
I, >2 /uq UWul? dz = —/ V (ulat /) |* dg,

I g./uq(l —u) dz < |Q],
Q

where || denotes the volume of 2. We also note

ql; = — / V(u?) - Vv dz = /qu'u dz.
0 Q
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Therefore, one can deduce the following inequality after integration with respect
to t:

| w(t) %y +co || V(uaHD/2) ]IiZ(Qt)SH up ||1q +C1+ Cy /Q wIAv drdt  (4.1)
T

with some positive constants cg, Cq, C2. By Holder’s inequality

| g wAv dzdt] <[ w [[Ter gyl AV llzev1(q) -
T
The maximal regularity for (3.3) implie.s

lve flzeri@ry + || AV lzari@ry < M (H v llwz,, + [ v(1 = du—1) HL9+1(QT))
< Cs (14 || u flzenom)

with some positive numbers M and C3. Here we have used (A) and Lemma 3.1.
Hence it follows from these inequalities that

|| wd dadt] < G (1 1w 15 g ) - (4.2)
The substitution of (4.2) into (4.1) leads to
sup () 5 + | VDD g€ G (14 1w lihgn) (49

We introduce w = u@+1)/2; then (4.3) leads to got
2q/(q+1 f
Br = swp | w(t) S + 1V lans G (14 1w lhagn) . 440)
Recall that Lemma 3.2 implies u € L?(Q71); so

| w ||L4/<q+1)(QT)S Cs.

Let ¢* be any number greater than 2. Then we see from Hoélder’s inequality

2 2(1-2 2(1-2
| w o<l w 1o | @ Besan< CE w55 0y (45)
where
Ao (L) (i1
2 ¢ 4 )
Here we also use Gagliardo-Nireberg’s inequality; for any ¢* € [qi—ql, 2

Il flzee < Cr (I Vo 321l w giasn + fw llze) (4.6)
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where

11 11
b= qAJr -/ \xt+t5)
29 g N 2q

Setting w == w(t) in (4.6) and integrating it with respect to t one can prove

T
* * *(1-6
| w 1% 00y < Ca (/0 | Vu(t) 122 - [ w(t) 1552, dt+1) (4.7)

with some Cg > 0. So it follows from (4.7) that

T
* »(1—0 *g .
10 e gy G (sup 10 15522 [ 10w 157 at+1). (08)

Choose ¢* such that ¢*6 = 2; ¢* = 2 + 4¢/{(¢ + 1) N}. Recalling the definition of
Er we get '

| w 55 gy < Co ( BN +1). (4.9)

Then it follow from (4.4), (4.5) and (4.9) that
Er < Cy(l + Ef) (4.10)

with
21— N)(N +2)

= < 1.
2 Ng*

Thus (4.10) implies
29/(q+1) < ET <C

L24/{g+1) —

sup || w(t)

0<t<T

with some C > 0; so that

sup || u(t) [[ze= sup | w(?t) ||2or@< C
0<t<T 0<t<T

and the proof is complete.

5 Open Problems

We will give some open problems for SKT model.

1. In Theorem 2.2, we have imposed the restriction on the space dimension. It
still remains an open problem to establish the existence of global solutions of (P)
incase d > 0and N > 6.

2. In the proofs of Theorems 2.1 and 2.2, the positivity of self-diffusion coeflicients -
is crucial. Especially, our proof of Proposition 3.3 depend on the positivity of .
It will be interesting if we can prove the global existence result in case v = 0.
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3. Theorems 2.1 and 2.2 give us no information on the uniform boudedeness of
solutions u,v as t — oo. In order to study the asymptotic behavior of u,v as
t — 0o, we have to establish the uniform boundedness of global solutions.

4. The most difficult problem is to show the existence of global solutions for the
following full SK'T model:

w = diA[(1 + ov + yu)u] + au(l —u — cv)
vy = dp Al(1 + Pu + dv)v] + bu(1 — du — v).
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