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Bell’s results on, and representations of
finitely connected planar domains

谷口雅彦 (Masahiko Taniguchi)

京都大学大学院理学研究科
Department of Mathematics, Kyoto University,

1 Ahlfors maps and Bergman kernels
Let $D$ be a domain in C. Consider the subspace $A^{2}(D)$ of the Hilbert

space $L^{2}(D)$ (of all square integrable functions on $D$ with respect to the
Lebesque meaure on C) consisting of all elements in $L^{2}(D)$ holomorphic
on $D$ . Then there is the natural projection

$P:L^{2}(D)arrow A^{2}(D)$ ,

which is called the Bergman projection. The coresponding kernel $K(z, w)$

is called the Bergman kernel.
When $D$ is the unit disc,

$K$ ( $z$ , $w)= \frac{1}{\pi(1-z\overline{w})^{2}}$ .

Hence the Bergman kernel function $K(z, w)$ associated to a simply con-
nected domain $D$ can be written by using the Riemann map $f_{a}$ (z) (de-
termined uniquely by the conditions $fa(d)=0$ and $f_{a}’(a)>0)$ and its
derivative:

$K$ ( $z$ , $w)= \frac{f_{a}’(z)f_{a}’(w)}{\pi(1-f_{a}(z)\overline{f_{a}(w)})^{2}}$

Let $D$ be a non-degenerate multiply connected planar domain with
smooth boundary. Fix a point $a$ in $D$ , and let $f_{a}$ be the Ahlfors map
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associated with the pair $(D, a)$ . Among all holomorphic functions $h$ which
map $D$ into the unit disc and satisfy $h$ {$a)=0,$ the Ahlfors map $f_{a}$ is the
unique function which maximizes $\mathrm{h}\mathrm{f}(\mathrm{a})$ under the condition $h’(a)>0.$
Such proper holomorphic maps can recover the Bergman projections and
kernels in general.

Theorem 1 Let $f$ : $D_{1}arrow D_{2}$ be a proper holomorphic map $b$ etween
planar (proper) domains. Let $P_{j}$ be the Bergman projection for $D_{j}$ . Then

$P_{1}(f’(\phi \mathrm{o}f))=f’((P_{2}\phi)\mathrm{o}f)$

for all $0\in L^{2}(D_{2})$ .for all $\phi$ $\in L^{2}(D_{2})$ .

But the translation formula for the Bergman kernels is not so simple
in general. For instance, it is hard to write down the following formula
explicitly.

Proposition 2 Let $f$ : $D_{1}arrow D_{2}$ be a proper holomorphic map be tween
planar (proper) domains. Then the Bergman kernels $K_{j}$ (z, $w$ ) associated
to $D_{j}$ transform according to

$m$

$f’(z)K_{2}(f(z), /0)$ $=$ $\mathrm{p}$ $K_{1}(z, F_{k}(w))\overline{F_{k}’(w)}$

$k=1$

for $z\in D_{1}$ and $w$ $\in D_{2}-V$ where the multiplicity of the map $f$ is $m$ and
the functions $F_{k}$ , $k$ $=1$ , ( $\mathrm{f}$ .

’ $m$, denote the local inverses to $f$ and $V$ is
the set of critical values.

for $z$ $\in D_{1}$ and $w$ $\in D_{2}-V$ where the muftiplicity of the map $f$ is $m$ and
the functiom $F_{k}$ , $k$ $=1_{\}(\mathrm{r}$ . , $m$, denote the local inverses to $f$ and $V$ is
the set of critical values.

S. Bell obtained several kinds of simpler representations of Bergman
kernel functions.

Theorem 3 ([1]) For a non-degenarate multiply connected planar dO-
main $D$ , we can find two points $a$ , $b$ in $D$ such that

$K(z, w)=f_{a}’(z)f_{b}’\{w$ )R$(z, w)$

with a rational combination $R(z, w)$ of $f_{a}$ and $I_{b}$ .with a rational combination $R(z, w)$ of $f_{a}$ and $I_{b}$ .
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Here we say that a function $R$ (z, $w$ ) is a rational combination of $f_{a}$ and
$f_{b}$ if it is a rational function of

$\mathrm{A}$ $(z)$ , 7 $b(z)$ , $\mathrm{A}(w)$ , $f_{b}(w)$ .

Such representation as above has the following variant.

Theorem 4 ([5]) For a non-degenarate multiply connected planar dO-
main $D$ , we can find two points $a$ , $b$ in $D$ such that

$K$ ( $z$ , $w)= \frac{f_{a}’(z)\overline{f_{a}’(w)}}{(1-f_{a}(z)\overline{f_{a}\{w)})^{2}}(\sum_{-i,k}H_{j}(z)\overline{K_{k}(w)})$

where $f_{a}$ , $f_{b}$ are the Ahlfors functions, $H$ and $K$ are rational functions of
them, and the sum is a finite sum.

Actually, we can use any proper holomorphic maps.

Theorem 5 ([2]) Let $D$ be a non-degenarate multiply connected planar
domain, and $f$ a proper holomorphic map of $D$ onto the unit disk $U\mathrm{r}$

Then $K$ (z, $w$ ) is an algebraic funct\’ion of

7 (z), $f’\{z)$ , $f(w)$ , $f’(w)$ .

Moreover, we have the following

Theorem 6 ([2]) Let $D$ be a non-degenerate multiply connected planar

domain. The following conditions are equivalent.
(1) The Bergman kernel $K(z, w)$ associated to $D$ is algebraic, $i.e$ . an

algebraic function of $z$ ancl $\overline{w}$ .
(2) The Ahlfors map $f_{a}(z)$ is an algebraic function of $z$ .
(3) There is a proper holomorphic mapping $f$ : $Darrow U$ which is an

algebraic function.
(4) Every proper holomorphic mapping from $D$ onto the unit disc $U$ is

an algebraic function.

Also we have
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Theorem 7 ([4]) Let $D$ be a non-degenerate multiply connected planar
domain. There are two holomorphic functions $F_{1}$ and $F_{2}$ on $D$ such that
the Bergman kernel on $D$ is a rational combination of $F_{1}$ and $F_{2}$ if and
only if there is a proper holomorphic map $f$ of $D$ onto $U$ such that $f$

and $f’$ are algebraically dependent: $i.e$ . there is a polynomial $Q$ such that
$Q(f, f’)=0.$

Then, for every proper holomorphic map $f$ of $D$ to $U$ , $f$ and $f’$ are
algebraically dependent.

Proposition 8 ([4]) Let $D$ be a simply connected planar (proper) dO-
main. The Bergman kernel on $D$ is a rational combination of a function
of a complex variable if and only if the Riemann map $f$ of $D$ and $f’$ are
algebraically dependent.

Finally, we note the following facts.

Proposition 9 ([2]) If $K(z, w)$ is algebraic, and $f$ be a proper holomor-
phic map to U. Then $K(z, w)$ is an algebraic function of $f(z)$ and $\overline{f(w)}$.

Corollary 1 ([2]) Let $D_{1}$ and $D_{2}$ have algebraic Bergman kernels, then
every biholomorphic map of $D_{1}$ onto $D_{2}$ is algebraic.

2 Bell representations
Now the issue is to find a family of canonical domains which admit a

simple proper holomorphic map to $U$ . Bell proposed such a family, and
actually, they are enough.

Theorem 10 ([6]) Every non-degenerate $n$-connected planar domain with
$n>1$ is mapped biholomorphically onto a domain $W_{\mathrm{a},\mathrm{b}}$ defined by

$\mathrm{T}_{\mathrm{a}}$,b $=\{$ $z\in \mathbb{C}$ :
$n-1$

$z$ $+ \sum\frac{a_{k}}{z-b_{k}}$

$k=1$

$<1\}$

with suitable complex vectors a $=$ ( $a_{1},$ $a_{2},$
$\uparrow$ t, $a_{n-1}$ ) and $\mathrm{b}=(b_{1},$ $b_{2}$ , ( $|$ T -, $b_{n-1}$ ).
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The above theorem is considered as a natural generalization of the
classical Riemann mapping theorem for simply connected planar domains.
The function $7_{\mathrm{a},\mathrm{b}}$ defined by

$n-1$

$7_{\mathrm{a},\mathrm{b}}\{z)$ $=Z$ $+ \sum\frac{a_{k}}{z-b_{k}}$

$k=1$

is a proper holomorphic mapping from $W_{\mathrm{a},\mathrm{b}}$ to the unit disc which is
rational. Actually, it is a very classical fact that, for such an $f=f_{\mathrm{a},\mathrm{b}}$ as
above, $f$ and $f’$ are algebraically dependent. Hence the above proposition
implies the following corollary.

Corollary 2 Every non-degenerate $n$ -connected planar domain $D$ with
$n>1$ is biholomorphic to a domain ttyith the algebraic Bergman kernel

Corollary 3 There are two holomorphic functions $F_{1}$ and $F_{2}$ such that
the Bergman kernel on $W_{\mathrm{a},\mathrm{b}}$ is a rational combination of $F_{1}$ and $F_{2}$ .

Definition The locus $\mathrm{B}_{n}$ in $\mathbb{C}^{2n-2}$ consisting of $(\mathrm{a}, \mathrm{b})$ such that the cor-
responding domain $W_{\mathrm{a},\mathrm{b}}$ is a non-degenerate $n$-connected planar domain.

We call this locus $\mathrm{B}_{n}$ the coefficient body for non-degenerate n-connected
canonical domains.

It is obvious that $\mathrm{B}_{n}$ is contained in the product space

$(\mathbb{C}^{*})^{n-1}\mathrm{x}F_{0,n-1}\mathbb{C}$ ,

which has the same homotopy type as that of

$X=(S^{1})^{n-1}\mathrm{x}$ $F_{0,n-1}\mathbb{C}$ ,

where

$F_{0,n-1}\mathbb{C}=$ { $(z_{1},1\cdot l|$ , $z_{n-1}\in \mathbb{C}^{n-1}|z_{j}\overline{\tau}^{-Z}k\angle$ if $j\overline{7}\leq k$ }

is called a configuration space.

To clearify the topological structure of the coefficent body, it is more
convenient to use the following modified representation space.

Definition We set

$\mathrm{B}_{\mathrm{n}}^{*}=\{(a_{1},1\Gamma =, a_{n-1}, \mathrm{b})\in\{\mathbb{C})^{2n-2}|(a_{1}^{2}, \cdot\circ \mathrm{Q} , a.\mathit{2}_{-1}, \mathrm{b})\in \mathrm{B}_{n}\}$,

and call it the modified coefficient body.

which has the same homotopy type as that of

$X=(S^{1})^{n-1}\mathrm{X}$ $F_{0,n-1}\mathbb{C}$ ,

where

$F_{0,n-1}\mathbb{C}=\{(z_{1},1\cdot$ $||$ , $z_{n-1}\in \mathbb{C}^{n-1}|Z_{j}\overline{7}^{-}\angle z_{k}$ if $j\overline{7}\leq k\}$

iS called a configuration space.

To clearify the topological struCture of the coefficent body, it iS more
convenient to use the following modified representation space.

Definition We set

$\mathrm{B}_{\mathrm{n}}^{*}=\{(a_{1},1\Gamma$ $=$ , $a_{n-1}$ , b) $\in\{\mathbb{C})^{2n-2}|(a_{1}^{2}$ , $\cdot\circ \mathrm{D}$ , $a_{n-1}^{2}.’ \mathrm{b})\in \mathrm{B}_{n}\}$ ,

and call it the modified coefficient body.
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Theorem 11 $\mathrm{B}_{n}^{*}$ is a circular domain, and has the same homotopy type
as that of the product space $X\iota$

Corollary 4 The homotopy type of $\mathrm{B}_{n}$ is the same as that of $X_{\llcorner}$

Remark The fundamental group of $F_{0,n-1}\mathbb{C}$ is called the pure braid
group, and its structure is well-known.

Problem

1. Determine the Ahlfors locus of $\mathrm{B}_{n}$ which consists of all $(\mathrm{a}, \mathrm{b})$ such
that $f_{\mathrm{a},\mathrm{b}}$ gives an Ahlfors map (, or more precisely, $e^{i\theta}f_{\mathrm{a},\mathrm{b}}$ with a
suitable $0\in$ il is an Ahlfors map).

2. Fix a point $(\mathrm{a}, \mathrm{b})$ in $\mathrm{B}_{n}$ , and let $W=W_{\mathrm{a},\mathrm{b}}$ be the corresponding n-
conenncted canonical domain. Determine the leaf $E(W)$ of $\mathrm{B}_{n}$ for $W$ ,
consisting of all points which correspond to $n$-connected canonical
domains biholomorphically equivalent to $W$ .

3. Determine the collision locus $C$ of $\mathrm{B}_{n}$ which consists of all $(\mathrm{a}, \mathrm{b})$ such
that the correcponding map $f_{\mathrm{a},\mathrm{b}}$ has a pair of critical points (counted
with multiplicities) whose image is the same. (Note that $\mathrm{B}_{n}-C$

is a finite-sheeted holomorphic smooth cover of the intersection of
$\mathrm{F}\mathrm{Q}_{2n-2},\mathbb{C}$ and the unit polydisc.)

3. Determine the collision locus $C$ of $\mathrm{B}_{n}$ which consists of all ( $\mathrm{a}$ , b) such

that the correcponding map $\Upsilon \mathrm{a},\mathrm{b}$ has apair of critical points (counted

with multiplicities) whose image iS the same. (Note that $\mathrm{B}_{n}-C$

is afinite-sheeted holomorphic smooth cover of the intersection of
$F_{0,2n-2}$C and the unit polydisc.)

Example 1

$\mathrm{B}_{2}^{*}=$ {{ $a$ , $b)\in \mathbb{C}^{2}$ : a 40, $|b+2a|<1$ , $|b-2a|<1$ } $,$

which is biholomorphic to the polydisc deleted the diagonal
Next, the set

$\{(a_{)}b)$ $\in \mathrm{B}_{2}^{*}$ : $\frac{4a^{2}}{1-\overline{(b+2a)}(b-2a)}$ $= \frac{4r}{4+r^{2}}$ }
corresponds to a leaf of $\mathrm{B}_{2}$ for every given $r>2_{f}$ and the collision locus

of $\mathrm{B}_{2}$ is empty.
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