

Bell's results on, and representations of finitely connected planar domains

谷口雅彦 (Masahiko Taniguchi)

京都大学大学院理学研究科 Department of Mathematics, Kyoto University,

1 Ahlfors maps and Bergman kernels

Let D be a domain in C. Consider the subspace $A^{2}(D)$ of the Hilbert space $L^{2}(D)$ (of all square integrable functions on D with respect to the Lebesque meaure on C) consisting of all elements in $L^{2}(D)$ holomorphic on D . Then there is the natural projection

$$
P: L^2(D) \to A^2(D),
$$

which is called the Bergman projection. The coresponding kernel $K(z, w)$ is called the Bergman kernel.

When D is the unit disc,

$$
K(z,w)=\frac{1}{\pi(1-z\overline{w})^2}.
$$

Hence the Bergman kernel function $K(z, w)$ associated to a simply connected domain D can be written by using the Riemann map $f_{a}(z)$ (determined uniquely by the conditions $f_{a}(a)=0$ and $f'_{a}(a)>0$) and its derivative:

$$
K(z,w)=\frac{f_a'(z)\overline{f_a'(w)}}{\pi(1-f_a(z)\overline{f_a(w)})^2}.
$$

Let D be a non-degenerate multiply connected planar domain with smooth boundary. Fix a point a in D , and let f_{a} be the Ahlfors map

associated with the pair (D, a) . Among all holomorphic functions h which map D into the unit disc and satisfy $h(a)=0$, the Ahlfors map f_{a} is the unique function which maximizes $h'(\mathbf{a})$ under the condition $h'(\mathbf{a})>0$. Such proper holomorphic maps can recover the Bergman projections and kernels in general.

Theorem 1 Let $f : D_{1} \rightarrow D_{2}$ be a proper holomorphic map between planar (proper) domains. Let P_{j} be the Bergman projection for D_{j} . Then

$$
P_1(f' \cdot (\phi \circ f)) = f' \cdot ((P_2 \phi) \circ f)
$$

for all $\phi \in L^{2}(D_{2})$.

But the translation formula for the Bergman kernels is not so simple in general. For instance, it is hard to write down the following formula explicitly.

Proposition 2 Let $f : D_{1} \rightarrow D_{2}$ be a proper holomorphic map between planar (proper) domains. Then the Bergman kernels $K_{j}(z, w)$ associated to D_{j} transform according to

$$
f'(z)K_2(f(z),w)=\sum_{k=1}^m K_1(z,F_k(w))\overline{F_k'(w)}
$$

for $z \in D_{1}$ and $w \in D_{2}-V$ where the multiplicity of the map f is m and for $z \in D_{1}$ and $w \in D_{2} - V$ where the multiplicity of the map f is m and the functions F_{k} , $k = 1, \cdots, m$, denote the local inverses to f and V is the set of critical values.

S. Bell obtained several kinds of simpler representations of Bergman kernel functions.

Theorem 3 ([1]) For a non-degenarate multiply connected planar do $main\ D,\ we\ can\ find\ two\ points\ a,b\ in\ D\ such\ that$

$$
K(z,w)=f'_a(z)\overline{f'_b(w)}R(z,w)
$$

with a rational combination $R(z, w)$ of f_{a} and f_{b} .

Here we say that a function $R(z, w)$ is a rational combination of f_{a} and f_{b} if it is a rational function of

$$
f_a(z), f_b(z), \overline{f_a(w)}, \overline{f_b(w)}.
$$

Such representation as above has the following variant.

Theorem 4 $([5])$ For a non-degenarate multiply connected planar do $main\ D,\ we\ can\ find\ two\ points\ a,b\ in\ D\ such\ that$

$$
K(z, w) = \frac{f'_a(z)\overline{f'_a(w)}}{(1 - f_a(z)\overline{f_a(w)})^2} \left(\sum_{j,k} H_j(z)\overline{K_k(w)}\right)
$$

where f_{a}, f_{b} are the Ahlfors functions, H and K are rational functions of them, and the sum is a finite sum.

Actually, we can use any proper holomorphic maps.

Theorem 5 ([2]) Let D be a non-degenarate multiply connected planar domain, and f a proper holomorphic map of D onto the unit disk U . Then $K(z, w)$ is an algebraic function of

$$
f(z),f'(z),\overline{f(w)},\overline{f'(w)}.
$$

Moreover, we have the following

Theorem 6 ([2]) Let D be a non-degenerate multiply connected planar domain. The following conditions are equivalent.

(1) The Bergman kernel $K(z, w)$ associated to D is algebraic, i.e. an algebraic function of z and \overline{w} .

(2) The Ahlfors map $f_{a}(z)$ is an algebraic function of z .

(3) There is a proper holomorphic mapping $f : D \rightarrow U$ which is an algebraic function.

(4) Every proper holomorphic mapping from D onto the unit disc U is an algebraic function.

Also we have

Theorem 7 ([4]) Let D be a non-degenerate multiply connected planar domain. There are two holomorphic functions F_{1} and F_{2} on D such that the Bergman kernel on D is a rational combination of F_{1} and F_{2} if and only if there is a proper holomorphic map f of D onto U such that f and f' are algebraically dependent: *i.e.* there is a polynomial Q such that $Q(f, f')=0.$

Then, for every proper holomorphic map f of D to $U,$ f and f' are algebraically dependent.

Proposition 8 ([4]) Let D be a simply connected planar (proper) domain. The Bergman kernel on D is a rational combination of a function of a complex variable if and only if the Riemann map f of D and f' are algebraically dependent.

Finally, we note the following facts.

Proposition 9 ([2]) If $K(z, w)$ is algebraic, and f be a proper holomorphic map to U. Then $K(z, w)$ is an algebraic function of $f(z)$ and $f(w)$.

Corollary 1 ([2]) Let D_{1} and D_{2} have algebraic Bergman kernels, then every biholomorphic map of D_{1} onto D_{2} is algebraic.

2 Bell representations

Now the issue is to find a family of canonical domains which admit a simple proper holomorphic map to U . Bell proposed such a family, and actually, they are enough.

Theorem 10 ([6]) Every non-degenerate n -connected planar domain with $n>1$ is mapped biholomorphically onto a domain $W_{\mathrm{a},\mathrm{b}}$ defined by

$$
W_{\mathbf{a},\mathbf{b}} = \left\{ z \in \mathbb{C} : \left| z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k} \right| < 1 \right\}
$$

with suitable complex vectors $\mathbf{a} = (a_{1}, a_{2}, \cdots, a_{n-1})$ and $\mathbf{b} = (b_{1}, b_{2}, \cdots, b_{n-1}).$

The above theorem is considered as a natural generalization of the classical Riemann mapping theorem for simply connected planar domains. The function $f_{\mathrm{a},\mathrm{b}}$ defined by

$$
f_{\mathbf{a},\mathbf{b}}(z)=z+\sum_{k=1}^{n-1}\frac{a_k}{z-b_k}
$$

is a proper holomorphic mapping from $W_{\mathrm{a},\mathrm{b}}$ to the unit disc which is rational. Actually, it is a very classical fact that, for such an $f=f_{\mathrm{\mathbf{a}},\mathrm{\mathbf{b}}}$ as above, f and f' are algebraically dependent. Hence the above proposition implies the following corollary.

Corollary 2 Every non-degenerate n -connected planar domain D with $n>1$ is biholomorphic to a domain with the algebraic Bergman kernel.

Corollary 3 There are two holomorphic functions F_{1} and F_{2} such that the Bergman kernel on $W_{\mathrm{\mathbf{a}},\mathrm{\mathbf{b}}}$ is a rational combination of F_{1} and $F_{2}.$

Definition The locus \mathbf{B}_{n} in \mathbb{C}^{2n-2} consisting of (\mathbf{a}, \mathbf{b}) such that the corresponding domain $W_{\mathrm{a},\mathrm{b}}$ is a non-degenerate *n*-connected planar domain.

We call this locus \mathbf{B}_{n} the *coefficient body* for non-degenerate *n*-connected canonical domains.

It is obvious that B_{n} is contained in the product space

 $(\mathbb{C}^{n})^{n}$ \cong \times $F_{0,n-1}\mathbb{C}$,

which has the same homotopy type as that of

$$
X=(S^1)^{n-1}\times F_{0,n-1}\mathbb{C},
$$

where

$$
F_{0,n-1}\mathbb{C} = \{(z_1, \cdots, z_{n-1} \in \mathbb{C}^{n-1} \mid z_j \neq z_k \text{ if } j \neq k\}
$$

is called a configuration space.

To clearify the topological structure of the coefficent body, it is more convenient to use the following modified representation space. is called a *configuration space*.

To clearify the topological structure of the coefficent body, it is

convenient to use the following modified representation space.
 Definition We set
 $\mathbf{B}_{\mathbf{r}}^{*} = \{(a_{1}, \dots, a_{n-1$

Definition We set

$$
\mathbf{B}_n^* = \{ (a_1, \cdots, a_{n-1}, \mathbf{b}) \in (\mathbb{C})^{2n-2} \mid (a_1^2, \cdots, a_{n-1}^2, \mathbf{b}) \in \mathbf{B}_n \},
$$

and call it the $modified$ $coefficient$ $body$.

Theorem 11 B_{n}^{*} is a circular domain, and has the same homotopy type as that of the product space X .

Corollary 4 The homotopy type of $\mathrm{\mathbf{B}}_{n}$ is the same as that of X.

Remark The fundamental group of $F_{0,n-1}\mathbb{C}$ is called the *pure braid* group, and its structure is well-known.

Problem

- 1. Determine the Ahlfors locus of B_{n} which consists of all (a, b) such that $f_{\mathrm{\mathbf{a}},\mathrm{\mathbf{b}}}$ gives an Ahlfors map (, or more precisely, $e^{i\theta}f_{\mathrm{\mathbf{a}},\mathrm{\mathbf{b}}}$ with a suitable $\theta \in \mathbb{R}$ is an Ahlfors map).
- 2. Fix a point (\mathbf{a}, \mathbf{b}) in \mathbf{B}_{n} , and let $W=W_{\mathbf{a},\mathbf{b}}$ be the corresponding nconenncted canonical domain. Determine the leaf $E(W)$ of \mathbf{B}_{n} for W , consisting of all points which correspond to n -connected canonical domains biholomorphically equivalent to W .
- 3. Determine the *collision locus C* of \mathbf{B}_{n} which consists of all (\mathbf{a}, \mathbf{b}) such that the correcponding map $f_{\mathrm{\mathbf{a}},\mathrm{\mathbf{b}}}$ has a pair of critical points (counted with multiplicities) whose image is the same. (Note that $\mathrm{B}_{n}-C$ with multiplicities) whose image is the same. (Note that $B_n - C$ is a finite-sheeted holomorphic smooth cover of the intersection of $\mathrm{F}_{0,2n-2}\mathbb{C} \ \mathrm{and} \ \mathrm{the} \ \mathrm{unit} \ \mathrm{polydisc.})$

Example 1

$$
\mathbf{B}_{2}^{*} = \{ (a,b) \in \mathbb{C}^{2} : a \neq 0, |b + 2a| < 1, |b - 2a| < 1 \},\
$$

which is biholomorphic to the polydisc deleted the diagonal.

Next, the set

$$
\left\{ (a,b) \in \mathbf{B}_2^* : \left| \frac{4a^2}{1 - (b + 2a)(b - 2a)} \right| = \frac{4r}{4 + r^2} \right\}
$$

corresponds to a leaf of B_{2} for every given $r>2$, and the collision locus of $\mathrm{\mathbf{B}}_{2}$ is empty.

参考文献

- [1] S. Bell, Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. d'Analyse Math., 78 (1999), 329-344.
- [2] S. Bell, Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J., 98 (1999), 187-207.
- [3] S. Bell, ^A Riemann surface attached to domains in the plane and complexity in potential theory, Houston J. Math., 26, (2000), 277- 297. [3] S. Bell, A Riemann surface attached to domains in the plane and

complexity in potential theory, Houston J. Math., 26, (2000), 277–

297.

[4] S. Bell, *Complexity in Complex analysis*, Adv. Math., 172 (2002),
- 15-52.
- [5] S. Bell, Möbius transformations, the Caratheodory metric, and the objects of complex analysis and potensial theory in maltiply connected domains, preprint.
- $[6]$ M. Jeong and M. Taniguchi, *Bell representation of finitely connected* planar domains, Proc. AMS., 131 (2003), 2325-2328.
- [7] M. Jeong and M. Taniguchi, Algebraic kernel functions and represen- $\it{tation of planar\ domains}, \ J.$ Korea Math. Soc., 40 (2003), 447–460.
- [8] M. Jeong and M. Taniguchi, in preparation.