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Abstract
The aim of our study has been the investigation of random complex systems. For this purpose we are

suggested to return to J. Bernoulli’s idea expressed in his book “Ars Conjectandi”. This idea has been
followed by P. Levy and has been realized by his famous formula called stochastic $c$ infinitesimal equation for
a stochastic process, where the significant role is played by the innovation. We shall therefore start with
an interpretation of the innovation.

We know that the standard type of innovation is given by the time derivative of a L\’evy process, that
is a general white noise, the Levy decomposition of which has been well established A general white noise
consists of idealized elemental random variables.

In order to discuss the analysis of functionals of a general innovation a suitable space of 1 andom variables
should be introduced. Then, we come to the study of white noise functionals, in particular, stochastic
processes and random fields parameterized by a contour or a closed surface A natural generalization of the
stochastic infinitesimal equation will be given. It is a stochastic variational equation, where the innovation
is given by the same idea as in the case of a stochastic process.

Some thought on future directions will be touched upon briefly

Reduction $arrow$ Synthesis – Analysis,

where the causality with respect to the time or space-time variable is always involved.

AMS subject classification :60H40

50. Introduction

\S 0.1. The Leitmotive of ollr approach are as follows.

1) Remind the idea of Bernoulli to discuss stochastic.
The idea appears, either explicitly or implicitly, in the works by P. L\’evy, N. Wiener,

$\mathrm{A}.\mathrm{N}$ . Kolmogorov and others.

2) Linear and nonlinear operations on paths.
Some path-wise analysis for stochastic processes are significant. IVIore generally,

generalized harmonic analysis in the sense of N. Wiener will be useful.
Typical examples are subordination and continuity problems on paths, Some non-

linear predictions require operations on sample functions of a stochastic process, etc.
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3) Introduce a new space of random functions, call it (P), where topologies are either
almost sure convergence or convergence in probability. Often the quasi convergence
is used.

4) Applications in physics.
The $\mathrm{X}$-ray data from the star Cyg Xl is a good object to be investigated in the

theory of stochastic process.

The Feynman path integrals.

Problems of measurement in $\mathrm{Q}\iota \mathrm{l}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{m}$ dynamics.

Molecular biology,
etc.

j0.2. L\’evy’s stochastic infinitesima equation for a stochastic process $X(t)$ is expressed
in the form

$\delta X(t)=\Phi(X(_{\mathrm{e}}\mathrm{s}). \mathrm{t}\mathrm{s}^{1}\leq t, Y(t), t, dt)$,

where $\delta X(f)$ stands for the variation of $X(t)$ for the infinitesimal time interval

$[t, t+dt)$ , the (I) is a sure functional and the $Y(t)$ is the innovation. Intuitively speak-
ing, the innovation is a system such that the $Y(t)$ contains the same information as
that newly gained by the $X(t)$ during the infinitesimal time interval $[t, t+dt)$ . If
slloh an equation is obtained, then the pair $(\Phi, Y(t))$ can completely characterize the
probabilistic structure of the given process $X(t)$ . Npte that, the $Y(t)$ is, sometimes,
taken to be a vector valued generalized stochasic process.

As a generalization of the stochastic infinitesimal equation for $X(t)$ , one can in-
troduce a stochastic variational equation for random field $X(C)$ parameterized by an
ovaloid $C$ :

$bX(C)=\Phi(X(C’), C’<C, Y(s), s\in C, C, \delta C)$ ,

where $C’<C$ means that $C_{J}’$ is in the inside of $C$ . The system $\{Y(s), s\in C\}$ is the
innovation which is understood in the similar sense to the case of $X(t)$ .

The two equations above have only a formal significance, however we can give
rigorous meaning to tbc equations with some additional assumptions and the inter-
prctations to the notations introduced there (see, e.g. [9]).

The results obtained at present are, of course, far from the general theory, however
one is given a guideline of the approach to those random complex evolutional systems
in line with the innovation theory and hence with the white noise theory.



\S 1. Gaussian systems.

Ql.l. First we discuss a Gaussian process $X(t)$ , $t\in T$ . where $T$ is an interval of $R^{1}$ ,
say $[0, \infty)$ . Assume that it is separable and has no remote past. Then, the innovation
can be constructed explicitly in this case. The original idea came from P. Levy (The
third Berkeley Synposium paper; see [13] $)$ . Under the assumption that the process
has unit multiplicity and other mild conditions, a Gaussian process $X(t)$ has the
innovation $\dot{B}(t)$ which is a white noise such that $X(t)$ is expressed as the Wiener
integral of the form

$X(t)= \int_{0}^{\iota}F(t, u)\dot{B}(u)$du, (1)

This is the s0-called canonical representation. It might seem to be $\mathrm{r}\mathrm{a}$ ther $\mathrm{d}(\backslash -$

mentary, however such an easy understanding is, in a sense, not quite correct. The
profound structure sitting behind this formula would lead us to a deep insight that
is applicable to a general class of Gaussian processes and to non Gaussian case, too.

Take a Brownian motion $B(t)$ and a kernel function $G(t, u)$ of Volterra type. Define
a Gaussian process $X(t)$ by

$X(t)=. \int_{0}^{t}G$ (t, $u$ ) $\dot{B}(u)du$ .

Now we assume that $G(t, u)$ is a smooth function on the domain $0\leq u\leq t<\infty$ and
$G$ (t, $t$ ) never vanishes. Then we have

Theorem 1. The variation $\delta X(t)$ of the process $X(t)$ is defined and is given by

$\delta X(t)=G(t, t)\dot{B}(t)dt+dtf_{0}^{t}G_{t}(t, u)\dot{B}(u)$du,

where $G_{t}$ (t, $u$ ) $= \frac{\partial}{\partial t}G$(t, $u$ ). The $\dot{B}(t)$ is the innovation of $X(t)$ if and only if $\mathrm{G}(\mathrm{t},\iota 1)$ is
the canonical kernel.

Proof. The formula for the variation of $X(t)$ is easily obtained. If $G$ is not a canonical
kernel, then the sigma field $\mathrm{B}_{t}(X)$ is strictly smaller than $\mathrm{B}(\dot{B})$ , in particular the $\dot{B}(t)$

is not really a function of $X(s))s\leq t+()$ .

Now follow important notes. By the $\mathrm{s}$ moothncss assumption on the kernel $G$ (t, $u$ )
the integral is defined path-wise, so that the formula on the variational equation for
$X(t)$ give us a white noise equaivalent to $\dot{B}(t)$ (Accardi and Si Si). The equiavalencc
means the same innovation up to sign.

Another note is that if, in particular, $G$ (t, $u$ ) is of the form $f(t).q(\alpha)$ , then $X(t.)$ is
a Markov process and there is always given a canonical representation. Hence $\mathrm{X}(t)$

is the innovation.



Remark. In the variational equation, the two terms in the right hand side are of
different order as dt tend to zero, so that two terms may be discrimiated. But in
reality the problem like that is not so simple and even not our present concern.

As a result of having obtained the innovation, we can define the partial derivative
denoted by $\partial_{t}$ and expressed in the form

$\partial_{t}=\frac{\partial}{\partial B(t)}$ .

It is given by the knowledge of the original process $X(s)$ , $s\leq t.$ Hence the canonical
kernel is obtained by

$F(t, u)=\partial_{u}X(t).$, $u<t.$

Q1.2. Gaussian random fields.

To fix the idea we consider a Gaussian random field $X(C)$ parameterized by a
smooth convex contour in $R^{2}$ that runs through a certain class $\mathrm{C}$ which is topologized
by the usual method using the Euclidean metric. Denote by I(u), $u\in R^{2}$ , a two
dimensional parameter white noise. Let (C) denote the domain enclosed by the
contour $C$ .

Given a Gaussian random field $X(C)$ and assume that it is exressed as a stochastic
integral of the form:

$X(C)= \int_{(C)}F$(C, $u$ ) $W(u)$ du,

where $F$ (C, $u$ ) be a kernel function which is locally square integrable in $u$ . For con-
venience we assume that $F$ (C. $u$ ) is smooth in $(C, u)$ . The integral is a causal repre-
sentation of the $X(C)$ . The canonical property can be defined as a generalization to
a random field as in the case of a Gaussian process.

The stochastic variational equation for this $X(C)$ is of the form

$\delta X(C)=\int_{\mathit{0}},$ $F$ (C. $s$ ) $\delta n(s)W(s)ds+\int_{(}$

c)
$\delta F(C, u)V(u)$ du.

In a similar manner to the case of a process $X(t)$ , but somewhat complicated manner,
we can form the innovation $\{W(s), s\in C,\}.$

Example. A variational equation of Langevin type.

Given a stochastic variational equation

$\delta X(C)=-X(C)\int_{C}k\delta n(s)ds+X_{0}\int_{C}v(s)\partial_{s}^{*}\delta n(s)ds$ , $C\in$ C,

where $\mathrm{C}$ is taken to be a class of concentric circles, $()$ is a given continuous function
and $\partial_{6}^{*}$ is the adjoint operator of the differential operator $\partial_{s}$ .



Applying the equation the s0-called $\mathrm{S}$ -transform, which is an infinite dimensional
analogue of the Lapalce transform, we can solve the transformed equation by appeal-
ing to the classical theory of functional analysis. Then, applying the inverse transfo rm
$S^{-1}$ , the solution is given:

$X(C)=X_{0}\mathrm{f}_{C)}$ $\exp[-k\rho(C, u)]\partial_{u}^{*}\tau)(u)du$ ,

where $\rho$ is the Euclidean distance.

Now one may ask the integrab lhty condition of a given stochastic variational equa-
tion. This question has been discussed by Si Si [15].

Anther question concerning how to obtain the innovation from a random field may
be discussed by refering to the literature [9].

52. General innovation.

Returning to the innovation $Y(t)$ of a process $X(t)$ one can see that, in favourable
cases, there is an additive process $Z(t)$ such that its derivative $\dot{Z}(t)$ is equal to the
$Y(t)$ , since the collection $\{Y(t)\}$ is an independent system. There is tacitly assumed
that, in the system, there is no random function singular in $t$ .

There is the L\’evy decomposition of an additive process. If $Z(t)$ has stationary
independent increments, then except trivial component the $Z(t)$ involves a compound
Poisson process $X_{1}(t)$ and a Brownian motion $B(t)$ up to constant:

$Z(t)=X_{1}(t)+\sigma B(t)$ .

With this remark in mind we proceed to the Poisson case.

\S 2.1. After Brownian motion comes another kind of elemental additive process which
is to be the Poisson process denoted by $P(t)$ , $t\geq 0.$ Taking its time derivative $\dot{P}(t)$

we have a Poisson white noise. It is a generalized stationary stochastic process with
independent value at every point. For convenience we rnay assume that $t$ runs through
the whole real line. In fact, it is easy to define such a noise. The characteristic
functional of the centered Poisson white noise is of the form

$C_{P}(\xi)=$ $\exp[\int_{-\infty}^{\infty}(e^{i\xi(t)}-1-i\xi(t))dt]$ ,

where $\xi\in E.$

There is the associated measure space $(E^{*}, \mu_{P})$ , and the Hilbert space $L^{2}(E^{*}, \mu_{P})=$

$(L^{2})_{P}$ is defined.

Many results of the analysis on $(L^{2})_{F}$ have been obtained, however most of them
have been studied by analogy with the Gaussian case or its modifications, as far as
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the construction of the space of generalized functionals. Here we only note that the
$(L^{2}’)_{F)}$ admits the direct sum decomposition of the form

$(L^{2})_{F}= \bigoplus_{n}H_{P,n}$ .

The subspace is formed by the Poisson Charlier polynomials.

However, there might occur a misunderstanding regarding the functionals of Pois-
son noise, even in the case of linear functional. The following example would illustrate
this fact (see [8]).

Let a stochastic process $X(t)$ be given by an integral

$\mathrm{X}(\mathrm{t})=\int_{0}^{t}F$ (t, $u$ ) $\dot{P}(u)du$ .

It seems to be simply a linear functional of $P(t)$ , however there are two ways of
understanding the meaning of the integral; one is defined

i) in the Hilbert space by taking $\dot{P}(t)dt$ to be a random measure.
Another way is to define the integral
$\mathrm{i}\mathrm{i})$ for each sample firnction of $P(t)$ (the path-wise integral). $\mathrm{T}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ can be done if

fhe kernel is a smooth function of $u$ over the interval $[0, t]$ .
Assume that $F$ (t, $t$ ) never vanishes and that it is not a canonical kernel, that is, it

is not a kernel function of an invertible integral operator. Then, we can claim that for
the integral in the first sense $X(t)$ has less information compared to $P(t)$ . Because
there is a linear function of $P(s)$ , $s$ $\leq t$ which is orthogonal to $X(s)$ , $s$ $\leq t.$ On the
other hand, if $X(t)$ is defined in the second sense, then we can prove

Proposition. Under the assumptions stated above, if the $X(t)$ above is defined
sample function-wise, we have the following equality for sigma-fields:

$\mathrm{B}_{t}(X)=\mathrm{B}_{t}(P).t\geq 0.$

Proof. By assumption it is eqasy to see that $X(t)$ and $P(t)$ share the jump points,
which means the information is fully transfered from $P(t)$ to $X(t).\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ proves the
equality

The above argument tells ll\llcorner b that we are led to introduce a space (P) of random
variables that come from separable stochastic processes for which existence of variance
is not expected. This sounds to be a vague statement, however we can rigorously
defined by using a Lebesgue space without atoms, and others. There the topology is
defined by either the almost sure convergent or the convergence in probability, and
there is no need to think of mean square topology. On the space (P) filtering and
prediction for strictly stationary process can naturally be discussed. For further idea



we may refer to the literatures [17] and [18], where one can see further profound idea
of N. Wiener.

It is almost straightforward to come to an introduction of a multi-parameter Pois-
son white noise, denoted by $\{V(u)\}$ , which is a generalization of $\{\dot{P}(t)\}$ .

Theorem 2. Let a random field $X(C)$ parameterized by a contour $C$ be given by a
stochastic integral

$X(C)= \int_{(C)}G(C, u)V(u)$ du,

where the kernel $G$ (C, $u$ ) is continuous in $(C, u)$ . Assume that $G(C, s)$ never vanishes
on $C$ for every $C$ . Then, the $V(u)$ is the innovation.
Proof. The variation $\delta X(C)$ exists and it involves the term

$\int_{C}G(C,s)\delta n(s)V(s)ds$ ,

where $\{\delta n(s)\}$ determines the variation $\delta C$ of $C$ . Here is used the same technique as
in the case of [9], so that the values $V((\mathrm{s}),$ $s$ $\in C,$ are determined by taking various
$\delta C$

’
$\mathrm{s}$ . This shows that the $V(s)$ is obtained by the $X(C)$ according to the infinitesimal

change of $C$ . Hence $V(s)$ is the innovation.

Here is an important remark. In the Poisson case one can see a significant diffcr-
ence on getting the innovation from the case of a representation of a Gaussian process.
However, if one is permitted to use some nonlinear operations acting on sample func-
tions, it is possible to fo rm the innovation from a non-canonical representation of a
Gaussian process ( Si Si [16]), although the proof needs a profound property of a
Brownian motion (see P. L\’evy [11, Chapt. $\mathrm{V}\mathrm{I}]$ ).

\S 2.2. Compound Poisson process.

As soon as we come to a compound Poisson process, which is a more general
innovation, the second order moment may not exist, so that wc have to come to the
space (P). The Levy decon position of an additive process, with which we are 1low

concerned, is expressed in he form

$Z(t)= \int(uP_{du}(t)-\frac{tu}{1+u^{2}}d_{77}(u))+\sigma B(t)$ ,

where $P_{du}(t)$ is a random measure of the set of Poisson processes, and where $d_{71}(u)$ is
the L\’evy measure such that

$\int\frac{u^{2}}{1+u^{2}}dn(u)$ $<\propto$ .
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The decomposition of a Compound Poisson process into the individual elemental

Poisson processes with different jumps can be carried out in the space (P) with the
use of the quasi-convergence (see [11, Chapt.V]) We are now ready to discuss the
analysis acting on sample functions of a compound Poisson process.

A generalization of the Proposition in the last subsection to the case of compound
Poisson white noise is not difficult in a formal way without paying much attention.
However, we wish to pause at this moment to consider carefully about how to find a
jump point of $Z(t)$ with the height $u$ designated in adavance. This question is heavily
depending on the computability or measurement problem. Further questions related
to this problem shall be discussed in the separate paper.

\S 3. Concluding remarks.

A Brownian motion and each component of the compound Poisson process seem
to be elemental. Indeed, this is true in a sense. On the other hand, there is another
aspect. Indeed, we know that the inverse function of the Maximum of a Brownian
motion is a stable process, which is a compound Poisson process ( see. [11, Chapt.
$\mathrm{V}\mathrm{I}])$ . A Poisson process comes from a Browniann motion! Certainly not by the $L^{2}$

method.

Also, ill terms of the probability distribution, it is shown in [2] that some genetal-
ized $(\mathrm{G}\mathrm{a}\iota\iota \mathrm{s}\mathrm{s}\mathrm{i}\mathrm{a}\mathrm{I}\mathrm{l})$ white noise functional has the same distribution as $\mathrm{t}\}_{1}\mathrm{a}\mathrm{t}$ of a Poisson
white noise. There arises a question on how to find concrete operations (variational
calculus may be involved there) acting on the sample functions of $\dot{B}(t)$ ’s to have a
Poisson white noise. We need some more examples to propose a problem $\lceil,0$ give a
good interpretation to such phenomena.

In Section 1.1 , we have noted that non-canonical representation of a Gaussian pr0-
(.ebS rnay give an innovation equivalent to the original white noise. An interpretation
to this fact by using the infinite dimensional rotation group will be reported later.
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