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Regular surfaces with genus two fibrations after Horikawa

— Obstructed surfaces with ample canonical bundle —

RERFERERREFHAR 58 —F (Kazuhiro Konno)

Department of Mathematics, Graduate School of Science, Osaka University

0 Introduction

The purpose of the present note is to show that some surfaces of general type with a genus two
fibration are obstructed, that is, the Kuranishi space of deformations is singular. More precisely, it
has two irreducible components meeting normally one of which parametrizes surfaces with genus
two fibrations while the other does not. Surfaces with such a property already appeared in his
famous series of papers “Small ¢?” by Horikawa and, indeed one of the highlights was to see that
they form a bridge connecting realms of surfaces with weak canonical map and those with birational
canonical map, that is, the other component corresponds to canonical surfaces (see [1], [3] and [4]).
The calculations presented here are only a mimic of his, [1] among others, done as an exercise when
I learned Horikawa’s works at the begining of my research on surfaces of general type. This explains
a reason why it has not been submitted to a journal for a long time, though I already completed
around 1989. As time goes by, I become to think that it may have a certain meaning to gather my
sporadicting notes and put them in the preprint format.

1 want to emphasize here again the importance of the still misterious line K 2 = 4p,—12 appearing
in Miles Reid’s Quadric Hull Conjecture [6] to which I refereed several times in my papers, because
our obstructed surfaces live in the region bounded from below by Reid’s line and the “unknown”

component of the Kuranishi space seems a new world of canonical surfaces.

Main Theorem. Let S be a minimal regular surface of general type whose numerical characters
satisfy K% < min{dp, + 10,5p, + 2} and Kg is ample. Assume that S has a genus two fibration
with generic branch locus and that the canonical ilnage of S is a cone over a rational curve. Let
p: ¥ — M be the Kuranishi family of deformations of S. Then

(1) M = M; U M,, where the M;’s are complex manifolds with dimM; = 1lpy + 6 — 2K§,
dim My = 10pg + 10 — QKg.

(2) N = M; N M, is a complex manifold of dimension 10pgy + 9 — 2K§.

(3) For t € My, Sy has a geuus two fibration. For t € M\ N, S; does not have a genus two
fibration.
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I do not know who live in M, \ N. Please let me know if you get acquainted with them !

1 Assumptions and the fundamental calculations

We refer the readers to [2] and [7] for the general theory of surfaces with a genus two fibration.
In [2], singular fibres are classified into six types (0), (I) through (V).

Let S be a minimal regular surface of general type over C with a genus two fibration f:8—>PL
Let g : § = W := P(f.wg/p) be the relative canonical map which is a dominant rational map
of degree two. The target surface W is isomorphic to the Hirzebruch surface ¥, for some n. We
denote by Ag and ' a minimal section and a fibre on ¥, respectively. Let B denote the branch
locus of g. We begin with the following lemma in which Reid’s line appears naturally.

Lemma 1.1. Let § be a minimal regular surface of general type with a genus two fibration.
Assume that p; > 4 and that the canonical image of S is a cone over a rational curve. Then
n = pg — 2. Furthermore, either K% > 4p,(S) — 12 or (pg, K2) = (5,6), (5.7), (6,8).

Proof. See §1 of [3]. It follows from [2] that

K§ = (2pg ~4) = Y _(2k — D{v(Te) + v(I1L)} + 3 2k{v(ILy) + v(IVi)} + v(V)
k k
where v(A4) stands for the number of singular fibres of type A. Put B ~ 6Ag + 2(m+d+2)T on
3>n- Then there is a divisor ¢ such that

pg(S) = h'(Z,, [Ag 4 (m — deg O)T1),  ¢(S) = &' (3n,[Ag + (m — deg o)T)).

The condition that the canonical image is a cone is equivalent to m — deg ¢ = n. Hence py =n + 2.
If we put
r=2degc— (K& —2py +4) = > {v(li) + v(I1I)} + v(V),
k
then B contains exactly r fibres I'y,...,T,. Let By = B—T"; —--- =TI, be the horizontal part. Then
we have AgBy, = —6n+2(m+n+2)—r = K§—4fpg+12. Assume that K% < 4py,—12. Then AgB, < 0
and it follows that Ay is a component of By,. We set C = By, — Ay. Since By, has no multiple
component, we must have 0 < AyC = Kg - 3py + 10. Furthermore, since Ay is a component
of By, we have v(I1ly) = v(IVy) = 0 and AgC > 3, (4k — 2)uv(ly) + 3, dkv(I1;) + 3v(V) =
2K2 —4dpy + 8 + v(V) > 2K?% — 4p, + 8. It follows that K% < p, + 2. Since we have Nocther’s
inequality, K3 > 2p, — 4, we get (pg, K2) = (5,6), (5,7), (6,8). O

Throughout the paper, we assume that the following two conditions are satisfied:

(A1) Any fibre of f do not contain (—2)-curves, that is, the relative canonical bundle K g/pi 18
ample.



(A2) The canonical map of S is a rational map of degree two onto its image which is a cone over
a rational normal curve. In particular, p,(S) > 4.

It follows from (A1) that any singular fibres of f are of type (0) or (I1). We have n = py(S) -2
by (A2). Write K% = 2p, — 4 + r with a non-negative integer . Then B is linearly equivalent
to 6Ag + (4n + 4 + 2r)I on ¥,. We can find r distinct fibres T';,...,I'» of ¥, such that they
are contained in B and, on each T';, there exist two triple points p:’, p; of By=B-3T;. We
denote by q : W — %, the blowing up with center {p}7_; and put EEf = ¢ '(pF¥). Then the
proper transform By of By, is linearly equivalent to ¢*(6Ag¢ + (4n + 4 + r)[') — 3E on W, where
E=Y.Ef+E). Let I'; be the proper transform of I';, and put B = Bh—i-z::l [;. By (A1), Bis
non-singular. We denote by §: 5 — W the finite double covering with branch locus B constructed
in a natural way in the total space of the bundle [¢*(3A¢ + (2n + 2 + r)I') — 2E]. Since L is a
part of the branch locus, we can write g*f,; = 2E;. Then the E;’s are (—1)-curves. We remark that
the canonical bundle of S is given by [h*(A¢ + nl) + 23, Ej], where h = gog: S — W. If we
blow down all such (—1)-curves E;, then we obtain the original S by the uniqueness of the minimal
model. We denote the blow down map by 7 : § = §. We put D = 1, (h*T) and G = 7. (h*Ay).
Then the canonical bundle of S is given by Kg = [G + nD). Needless to say D stands for a fibre of
f: 8 — P'. We remark that |Kg| has exactly r base points ¢; = 7(E;) all of which are on G. Note
that S has a canonical involution which induces the hyperelliptic involution on a general fibre. The
Zg-action has {ey,...,e,} as the set of isolated fixed points, and the quotient space W' = S/zZ,
can be obtained from W by contracting all the (-2) curves [i,1<i<r.

5
g

S W 2. w

lf>(t/

P! <—W"

Before going further, we give a few comments on the branch locus. Let C be a subdivisor of
Bh € |6A¢ + (4n + 4 4+ 7r)I'| consisting of horizontal components. We denote by C the proper
transform of C by ¢ : W — W. Put C' ~ alg + bl and let m; denote the multiplicity of C at p;".
Then a — m; is the multiplicity of C at p,. We can assume that 0 < m; < a —m; < 3. We put
rj =r;j(C) = card{ijm; = j, 1 <i <r} for 0 < j < [a/2]. We have

r
C ~q"(ado+b0) =Y (MEf + (¢ — mi)E;).

=1

Since By, is non-singular, we have C (Bh - C‘) = 0, that is,

(n+4)a+ (2b —na)(3 —a) + Xr:{(a —m;)? + m?} = 2ar.

1=1
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When @ =1, we have m; = 0 and r = 3n+ 4 4+ 4(b— n). Hence K2 = 5p, — 6 + 4(b — n). It follows
that K2 > 5py — 6 if C # Aq. If C = Ag, we have n+r = 4, that is, (n,7) = (4,0), (3,1), (2,2). In
all such cases, Ag is a (—4)-curve which gives us a (—2)-curve on S and, hence, K is not ample.
When a = 2, we get r1 = 2n+4+ (b—2n), ro+71 = r. It follows that K2 = 4p, — 4+ (b~ 2n) + r¢.
When a = 3, we get 3p, + 6 + 4rg = r and K% = 5pg + 2 + 4ry.

Therefore, when K é < 5py+2, there are no subdivisor with a = 3 in Bj, and we have the following
types of branch loci.

(B1) By is irreducible
(B2) By, consists of two irreducible components Cy and Cy with C;T" = 25 (j = 1,2), K2 > 4p, — 4.

(B3) By, consists of three medumblo components C1, Co and C3 with C;I' = 2 (j = 1,2,3),
KS > 4p,.

(B4) Bp has Cy ~ Ag+ (n+€)T" as an irreducible component, K:é = bpg+4e—6 (r =3n+4e+4,e =
0,1).

(i) Bp consists of two irreducible components C, Cy with Co ~ 5A¢ + (6n + 3¢ + 8)I.

(ii) By consists of three irreducible components Cy, Cy, C3 with Cy ~ Ag + (n + )T and
C3 ~ 40 + (5n + 2¢ + 8)T.

(B5) By, consists of two irreducible components C; = Ag and Cy ~ 5A0 + (3n + 8)[, n < 4. In
this case, Kg is not ample and (py, K2) = (4,6), (5,7) or (6,8).
We say that the branch locus B is generic if the following conditions are satisfied.
(A3) Ag is not a component of B.
(A4) Every triple point of By, is ordinary.
(A5) B and Ay meet normally. In particular, no singular points of By, are on Ag.

As we have already seen, both (A1) and (A3) are satisfied automatically when Kg is ample. The
following examples show that (A4) and (A5) arc also harmless at least when K2 < 4p,.

Example. Though we already have in literatures a lot of examples of surfaces with a genus
two fibration, we give here ones for the convenience of readers.

(1) We take an irreducible non-singular member C € |2Ag + 2nl'| on ¥, and choose r distinct
fibres I';, 1 < ¢ < r, so that the intersection C NT; consists of two distinct points p;, p; . Let C be
the proper transform of C' by ¢ : W — W. Then

¢ (600 + (4n+ 4+ 7)) - 3F
~ @ (680 + (dn+4—2mT) + 337 T
~ 3C+ (r+4-2n)¢'T
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Note that we have C' N Ay = § and CNTI; =0 for any 7. Hence, if 2n —4 < r < 2n + 2, then
lg*(6A¢ + (4n + 4 + r)T') — 3E| is free from base points and we can take its non-singular member
By,. In this way, we can construct desired surfaces in the range 4p;, — 12 < K 2 < 4p, — 6. Since a
general member of the linear subsystem 3C + [(r + 4 — 2n)¢*I’| meets ¢*A¢ transversally, we can
assume that so does Bp. Furthermore, since the restriction of IBh] to Ei contains special members
of the forms (3 — k)(C N EF) + k(LN Ei) for 0 < k < 3, we see that Bj, can be assumed to meet
each EF at three distinct points.

(2) We assume that r > 2n and write » = 2n + ¢; + ¢ with two non-negative integers cj, co such
that 0 < ¢; < cp. We take irreducible members C; € [2A0 + (r — ¢;)I'| so that C; N C;y consists
of 2r distinct points and therc exist r fibres I'; each of which contains just two points pi*,p; in
Cy N Cy. To see that this is possible, we fix a section A € |Ag + nI'| and let {; € HO([Ao]) and
¢1 € H([Ag+T)) define Ag and A, respectively. Then any element in H%([2A¢+mTI]), m > 2n, can
be written as amcg + am-nCol + tm_2nC?, where the a;’s are homogeneous forms of degree i on P!,
We choose C; whose equation is of the form a,_; Q‘OQ +ar—¢,—2nC 2. Then, if we choose the coefficients
generic, the desired properties are satisfied. Furthermore, we can assume that C1 N Cy N Ag = 0.

Let C; be the proper trausform of C; by ¢. Then CiNCy =0 and

¢ (600 + (4n + 4+ 1)T) = 33 (B + E})
~ 3C1+ (4+ ¢, — 2¢9)¢*T
~ 3Cy+ (4 - 201 + e2)g'T

Hence, if 2c9 < ¢; +4 and 2¢; < ¢y +4, then we can find a non-singular member By. In this way, we
can fill the range 4p, — 8 < K? < 4p,, K? # 4p, — 1. In order to fill the gap and to give examples
of types (B2) and (B3), we put ¢; = 4. Then Cy(g*(4A¢ + (4n + 8)T) — 2E) = 0. We can take a
non-singular member By € |¢*(4A¢ + (4n + 8)T') — 2E|, becausc
g* (4A¢ + (4n + 8)[') — 2E
~ 20
20y +

~

+ (8 = 2¢1)q*T

Then By, = B, +Cy is a non-singular curve, giving us surfaces with _R =4p,—(4-¢1),0<e1 < 4
Note that, when ¢; = 4, By, consists of three members in the pencil spanned by C; and Cs.

Lemma 1.2. Fork € Z,

(k+1)o ifp =0,
h“p(S»{kDJ): (_‘k-1)0+(k"1)0+(k—1_n)0 pr:]-7
(—k+ 1o+ (n—Fk+1) ifp=2

Here (m)g = m if m > 0 and (m)o = 0 if mn < 0.

Proof. We have HP(S,[kD]) ~ HP(S,k[h*T]) ~ HP(W,k[¢*T]) @ H?(W,[k¢*T — B/2]) and
HP (W, k|g*T]) ~ HP(W, [kT]) ~ HY(P', 6(k)). Since kg*T —~ B/2 ~ K3, — ¢* (Ao + (n+ 17— k)T) +
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Lici(Bf + EJ), we have HP(W, [kq'T — B/2)) ~ H*"P(W,[¢"(A¢ + (n — K)T) + X1, Tu))"
duality theorem. It follows from the cohomology long exact sequence for

0= O (¢" Do+ (n = K)T]) = O ([g* (Ao + (n - k) +Zr a@é’

that
H>P(W, [¢* (Ao + (n — +Zr ~ H> P(W,¢*[Ao + (n — k)]

Since the last group is isomorphic to HQ'"p(En, [Ag + (n — k)T)), we get the assertion. [

For a coherent seaf & on S, we sometimes denote by A(.#) the triple (RY(S, F),h' (S, F),h%(S, F)).
Since f*Op: = &g([2D]), we get the following from Lemma 1.2:

Corollary 1.3. h(f*Op) = (3,1,n—1).

Lemma 1.4. h°(G,[G]|¢) =0 and h'(G,[G]|g) = n.

Proof. Tt follows from Lemma 1.2 that h(G) = (1,n — 1,n + 1), since k?(S, [G]) = h2~P(S, (nD])
by the duality theorem. We consider the cohomology long exact sequence for

0— ﬁg - ﬁs([G]) — ﬁg([G]’(;) - 0.
Since S is a regular surface, we have k(6s) = (1,0,n + 2). Hence we get the assertion. [

Lemma 1.5. %G, [D+G]|¢) = 0 and the restriction map H*(S,[D +G]) - HY(G,[D+Gl|g)
is an isomorphism between vector spaces of dimension n — 2.

Proof. We consider the cohomology long exact sequence for
0 = &5((D]) = O5(ID + G)) = O ([D + G)) — 0

From Lemma 1.2, we have h(D) = (2,0,n) and 2(D + G) = (2,n — 2,n), since h?(S,[D + G]) =
R*P(S,[(n —1)D]). O

Lemma 1.6. h%(G,[2D + G]|g) = 1 and h'(G,[2D + Gllg) = (n — 3)y. In particular, the
restriction map H*(S, 2D + G]) — HY(G,[2D + G]|g) is an isomorphism between vector spaces of
dimension (n — 3)o.

Proof. Consider the cohomology long exact sequence for
0 = O5([2D)) = O5([2D + G)) = 6c([2D + G]) - 0.

We have h(2D) = (3,1,n — 1) and h(2D + G) = ((3 = n)o + 3, (n — 3)o,n — 1) by Lemma 1.2
and the duality theorem. The assertion for n < 3 follow. Assume that n > 4. Then (h°(G,[2D +
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Glle), k' (G,[2D+G]¢)) = (0,n—4) or (1,n—3). It suffices to show that H'(S,[2D]) — H'(S, [2D+
G)) is the zero map.

On S, we have 7*(2D + G) = h*(A¢ + 2T) + Y iEi~§gL—->,E; where L = ¢*(A¢ + (r +
2)0) - S (B + E;). From the cohomology long exact sequence for

r
0 = O5(r*[G +2D]) = Og(5*L) > P Or.(~1) = 0,
i=1
we see that HP(S,7*[G + 2D]) — HP(S,§*L) is an isomorphism for any p, which is equivariant
with respect to the action of Gal(S/W) because the E;’s are invariant divisors. We have the eigen
space decomposition

HP(3,"L) ~ HY(W, L) ) HP(W, L - %B)

We have L — (1/2)B ~ Ky + (2-n)g*T. So the duality theorem gives us HP(W,L — (1/2)B)Y ~
H*P(W,(n - 2)[g°T)) ~ H*P(P!, &(n — 2)). It follows that the (—1)-eigen space H'(W,.% —
(1/2)B) vanishes. In sum, we see that HY(S,7*[G + 2D)) is Gal(S/W )-invariant. On the other
hand, H'(S,{27*D)) is clearly anti-invariant. Since H(S, [27*D]) — H'(S,7*[G + 2D)) is an
equivariant homomorphisni, we conclude that it must be the zero map. O

Lemma 1.7. The linear map
H'(S,[G]) = Home(H(S, [(n — 2)D)), H(S,[G + (n — 2)D]))

induced from the multiplication map @s([G]) ® €s([(n —2)D]) — O5([G + (n — 2)D]) is injective.

Proof. Since the assertion is trivial for n = 2, we assume that n > 3. We shall show that
H'(S,[G +iD]) - Homc¢(H®(S,[D]), H'(S, [G+ (i+1)D])) is injective for any ¢ with 0 < i < n—3.
Since | D] is a base-point-free pencil, it suffices to show that the Koszul map

H°(S,[G + (i + 1)D]) s H*(S,[D))" — HY(S,[G + (i + 2)D]) @ /\H° )Y

is surjective for any 7 with 0 < ¢ < n — 3 (see (5]). This is cquivalent to showing that the
multiplication map H(S,[G + (i + 1)D]) ® S,[D]) = HY(S,[G + (i + 2)D)) is surjective. By
the free-pencil-trick, its kernel is isomorphlc to H 0(S,[G +iD]). We have

2h°(S,[G + (i1 + 1)D])) = 2(i + 2) = (i + 1) + (i + 3) = RY(S, [G + iD)) + K%(S, [G + (i + 2)D])

by Lemma 1.2, which completes the proof. O

2 Deformations of genus two fibrations

We denote by T w the cokernel of the natural map © 5 — h*©y, where ©x denotes the tangent
sheaf of a complex manifold X.
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We first study when H'(S, M /W) vanishes. Recall that we have an exact sequence

and isomorphisms (cf. [1]):

T > N T jw = @ —(1))’

where .4} denotes the normal sheaf of B in W. Hence taking direct images, we have
- 1

Since B is of degree 4 on E*, we have HP(7W/W(—1B)) = 0 for any p, and H‘(7W/W) = 0.

Hence H(S, %/W) vanishes if and only if the coboundary map § : HO(W, 7W/W) — HY(B, #})
is surjective. Apparently, § factors as

HYW, T ) - H(B, T wlp) = H'(B, A3)
where the first map is the restriction and the last map is the coboundary map coming from
0— L/VB — yB/VV — ‘%@’/Wllg’ — 0.

which consists of the following two parts

0—+€B/V —)@ /W—>®9W/W!F—>O

=1

and
0= A, = Tpow = T wls, =0
We have N =~ Opi(-2) and 71“; W Op1, since T; — W is an embedding. It follows that
H‘(ﬁfi/w) =0foranyi, 1<:i<r. )
We assume that any singular point of By, is an ordinary triple point. Then B}, meets E’li normally
at distinct points and ‘73;1 W is an invertible sheaf, because By, — W is a local embedding. For
each i, 1 < i <r, we put By, ﬁE;t = {qﬁ,qi,qﬁ} and T ﬁEi:t = {q;j}

Lemma 2.1. Assume that B satisfies (A3) and (A4). If r < min{2n + 18,3n + 12}, then
H(By, th/W) = 0 and one can assume that the 3r-dimensional subspace

T
@(qu ®C,- ®Cpi) C H (T iyl )
7=1

is in the image of H( T8 w) = Ho(gw/wbh)-
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Proof. Note that the map Ho(yéh/w) ~ HO(QW/W@}L) can be identified with the restriction
map. We consider case by case according to the types (B1) through (B4) of branch loci given in
the previous section. We denote by 7; a divisor on an irreducible component C’j of By,

We consider the case (Bl) that By, is irreducible. Then we have (Br)?=6(2n+8—71), g(By) =
5n + 15 — r. Since deg th/W —2g(Bp) + 2 =12n+ 48 — (10n + 28 — 2r) = 2n + 20 + 27, we have
HY B, ﬂgh/w(—m)) = 0 for any divisor 7y with degn; < 2n+ 19+ 2r. We have 2n+ 194 2r > 3r
when r < 2n + 19.

Assume that B, = Cy + Cy as in (B2). Put C; ~ 2A¢ + (2n + €)I" with a non-negative integer €
and r; = r;(C)). Then r; = 2n+ 4 + €. Since ¢ blows up 27, simple points and ry double points of
C1, we have (C1)? = C2 — 2r) —4rg = 8n + 8 + 6¢ — 4r and g(C1) = pa(C1) —ro =n+ e~ 1 —1p.
We have deg T, y — 29(C1) + 2 = 8n + 8 + 6 — 2r — (2n + 2¢ — 2r9 — 4) = r1 + €. It follows that
H'(Cy, ,7(-,1/W(—m)) = 0 when degn; < r;+e. Similarly, since ¢ blows up Cy ~ 4Ag+(4n+8+rp)T’
at 2r; double points, g triple points and simple points, we have (Cy)? = C3—8r1—10rg = —8e+32—
2rg and g(Cy) = n+13—2¢. We have deg Tey/w —29(Co)+2 = 8n+48 —4e+2rp — (4n+24 — de) =
4n + 24 + 2ry. It follows that we get H(Cy, ,?CYZ/W(—UZ)) = (0 when degno < 4n + 24 + 2ry. We
see (ry +e— 1)+ (dn + 23 + 2rg) = 2n + 18 + 2r is not less than 3 when r < 2n + 18.

Assume that By = C; + Cy + C3 as in (B3). We put C; ~ 2A¢ 4+ (2n + ¢;)T" with non-negative
integers €;, 1 < j < 3. Thene; + €2+ €3 =r—2n+4 and 1 (C;) = 2n+ 4 +¢;. As in the previous
case, we have H'(C}, T jw(=1;)) = 0 when degn; < r1(Cj)+€;—1. Since Z?:l(ﬁ(cj)‘*'fj" 1) =
2n + 17 + 2r, we see that it is not less than 37 when r < 2n + 17.

Assume that By = C, + C, as in (B4), (i). Put C; ~ A, + (n +¢€), where ¢ = 0,1. Then
r = 3n +4e+ 4. We have (C1)? = n+ 2 — 7, g(C1) = 0 and deg T, w = n + 2e. Hence
HY(C), 9@1/‘/‘,(—7;1)) = 0 if degn; < n+ 2+ 1. Since ¢ blows up » double points and r triple
points of Cy, we have (Cy)? = 35n + 30e + 80 — 13r, g(Cy) = 14n + 12¢ + 28 — 47 and deg gég/w —
2g(Co) + 2 = Tn + 6 + 26. It follows that H'(Cs, ﬁéz/w(-ng)) =0 if degna < Tn + 6¢ + 25. Now
(n+ 2+ 1)+ 7n+ 6e + 25 > 3r holds when n < 14 — 4, that is, when r < 2n + 18.

Assume that By = C1 + Cy + C as in (B4), (ii). For j = 1,2, we put C; ~ Ag + (n +¢€)I', where
€ =0,1. Then (C’j)2 =n+2e—r, g( :'J) = 0 and Hl(éj, 27(:,]/W(—77j)) = 0if degn; < n42e+1. Since
g blows up 2(r —n) double points, n triple points and n simple points of C3 ~ 4Ag+(5n+2¢+8)I", we
have (C3)? = 22n+16¢+64—8r, g(Cs) = 8n+6e+21—2r and deg ﬁas/w—2g(é'3)+2 = 6n+4e+24.
It follows that H!(Cj, Ty ywl—n3)) =0 if degns < 6n + 4e+23. Now (n+ 2+ D+ (n+2+1)+
(6n + 4e + 8) > 3r holds when 1 < 13 — 4e, that is, when r < 2n + 17

In any cases, we can put n; = 0 to see Hl(ﬂéh/w) = 0. Furthermore, if » < 2n + 17, then
we can choose the n;’s so that 3,75 = 371 (q7; + g3; + ¢7;) and H'(T, (= 3;75)) = 0 hold.
Hence, we can assume that the 3r-dimensional subspace $7_, ((qu1 D qu @ ng ) is in the image of
H( T, jw)- O

Lemma 2.2. Assume that B satisfies (A3) and (A4). If r < min{2n + 18,3n + 12}, then
Hl(jg/w) = 0.
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Proof. By Lemma 2.1, we have H'( T, w) =0 and get the commutative diagram

HOW, T 1)

0— H%A3) - H° (Tgpw) — HN Ty )wlp) — H (AN5) = 0

where the bottom sequence is exact. Therefore, if HO( 9 wlp) is generated by the images
of HO(L?W/W) and HU(,%;/W), then 4 : HO(,?W/W) — (/VB) is surjective and it follows

In the 8r-dimensional vector space H O(fw /Wl 5), we can assume that the 3r-dimensional sub-
space @i(cﬂ ® (Cq_—1 ® C,+) is in the image of HO(ﬁBh/W) by Lemma 2.1. Similarly, the 2r-

12

dimensional subspaces &;(C, + O C +) and ¢;(C o C.- ) are in the image of &;HY(E}, €(1))
and &;HY(E], 6(1)), respectwelv and the r- dlmenSlona] subspace &;C - is in the image of

In the rest of the section, we assume that H'(.7; /W) = 0 and follow the considerations in [1]. It
follows from the cohomology long exact sequence for

r
00— @@ -—)’/T*@g — @6’[«”(1) -—}0,
i=1

that H*(S,04) ~ H*(S,1*0g) ~ H(S,05) and h'(5,04) = h!(S,0) + 2r. We consider the
cohomology long exact sequence for

0— @5 - 'Oy — ‘?@'/W — 0.

Since the support of T /w 1s (at most) one-dimensional, we have H?%(S, T sw) = 0. Hence assuming
that H'(S, %/W,) =0, we get H2(S,0; g) =~ H?(S,h*Ow) and the exact sequence

0— H(S,h*Ow) — H(S, Tg ) — H'(S,03) — H'(S,h*Ow) — 0
We study HP(S,h*©w) with the cohomology long exact sequence for
0 = h*[2A¢ + nl] = A*Oy — R*[2T] = 0.
As we have already seen in Corollary 1.3, we have A(S,2h*T) = (3,1,n — 1). We have
HP(3,h* (280 + nT')) = HP(W, ¢*[2A + nT]) ) HY (W, ¢* 240 + nT] - %é).

Since HP(W,q*[2A0+nT)) ~ HP(W, [2A, +nI), we get h(W, ¢*[2A0+nl)) = (n+2,n—1,0). We
have g*(2A¢ +nl) = 2B ~ —¢*(Ag+ (n+247)0) +2E. We put L; = —¢*(Ag+ (n+2 +7r))+iE
for i = 0,1,2. Then, since E-iLi = —¢, we have the exact sequence

0— Ly — L %@ +(=1) D Op-(~i)) = 0.

1=1
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It follows that HP(W, L;) ~ H?(W, Lo) = 0 for any p, and we get

| =

HP(W,q*(2A¢ + nl') — =B) = HP(W, L) ~ ®7_,(HP(ES, €0(~2)) @ HP(E;, 6(~2))).

(87

Hence h(W,g*(2A¢ +nl) — %B‘) = (0,2r,0). We have shown that ~(S,¢*(2A¢ +nD)) = (n+2,n —
1+ 2r,0). Since HO(W, Ow) — HO(W, 2T) is surjective, we get (S, ¢*Ow) = (n+5,n+2r,n — 1).

We have h%(S,©¢) = 0 and h?(S,0z) = n— 1. Since it follows from the Riemann-Roch theorem
that we have x(©x) = 2K% ~ 10x(&x) for any compact complex surface X, we get R (S, O3) =

<

7n + 29. We have shown the following:

Lemma 2.3. Assume that h!(S, =7§/W) = 0. Then h9(S, .?g/w) =Tn+ 34 — 2r, FL(S', Og) =
(0,7n+29,n — 1) and h(S,Og) = (0, 7n + 29 — 2r,n — 1).

Lemma 2.4. Assume that h!(S, yé’/w) = 0. Then the natural map FP : HP(S,Og) —
HP(S, f*Opi) Is surjective for p = 1 and it is an isomorphism for p = 2.
Proof. We have the commutative diagram
Hp(g,(“)s) — Hl‘(S" h’k@u/)
i

!
HP(S,7*Og) — HP(S.7*f*Op1)

Note that we have already shown that the composite H' (S, ©5) — H(S, h*Ow) — H'(S,h*[2]) =
HY(S,7* f*®p) is surjective. Hence F! is surjective. Since H?(S,05) ~ H?*(S,7*Og) and
HQ(S’,(—)S) ~ H%(S,h*Ow) ~ H*(S,7*f*Op1), we see that F? is an isomorphism. [J

Then the following hold by the deformation theory of holomorphic maps as in [1].

Lemma 2.5. Assume that B satisfies (A3) and (A4). If r < min{2n + 18,3n + 12}, then there
exists a family py : #; — M of deformations of f : § — P such that the Kodaira-Spencer map
gives an isomorphism onto Ker(F!), where My is a complex manifold of dimension Tn + 28 — 2r.
Furthermore,

(1) Any fibre of py Is a surface with a genus two fibration.

(2) Any family of deformations of S all members of which have a genus two fibration is induced
from pq.

3 A filtration on the tangent space of the Kuranishi space

We assume that (A1) through (A5) are satisfied. In particular, B is generic. We further assume
r < min{2n + 18,3n + 12} so that all the results in the previous section are valid.
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Lemma 3.1. G is an irreducible non-singular curve of genus r — n + 1, G*> = r — 2n and
DG =2.

Proof. We have (h*Ag)? = 2A% = —2n. Hence G? = r — 2n. We have DG = 2 by (h*A¢)(h*T") =
2A0I = 2. By (A3) and (A5), h*Ay is irreducible and non-singular. [

Lemma 3.2. Let .4; denote the normal sheaf of G in S. Then the map (. : H*(S,0g) —
HYG, A%) induced from the composite ©5 — Og|g — A is surjective. Furthermore, Ker((.) is
contained in Ker(F!).

Proof. By Lemma 5.5 of [4], we have Ker((,) C Ker(F!) and
dim Ker({.) < dimKer{H'(®z) = H'(h*Ow)}.

By a direct calculation, we see that the right hand side equals h!'(Og) —n. Then n = h' (G, A¢) >
rank(Cy) = h'(S,0g) — dim Ker((,) > n. Hence (, is surjective. (J

Lemma 3.3. Let s € H'(G,[2G + (n +2)D]|g) be an element vanishing at all the base points
e1,...,er of |Kgl|. If s is the restriction of an element of H(S,[2G + (n + 2)D)), then either s = 0,
orn=2and (s) =2e; + - + 2¢,.

Proof. We have
H(S,[2G + (n+2)D)) ~ H(S,7*[2G + (n + 2)D))

HO(S,h*[28¢ + (n+ 2)I] + §* 30, fz
~ HW,[g"(2A¢ + (n + 2)T) + X1 IV]) & HO(W, [¢* (240 + (n + 2)T) + 327, Ty — $B)

12

Since ¢* (280 + (n+2)I) +3>°7_, T — %B ~ —¢*[Ag+nT]+ E, it follows from the cohomology long
exact sequence for

0= 04 (=¢" Ao+ nl) = O ([—¢" (Ao +nl) + E]) - @(ﬁE?—(—l) ®Op-(-1)) =0

i=1
that HO(W,[g* (240 + (n + 2)I') + 3, [ — 1B]) = 0. It follows that H°(S,[2G + (n + 2)D)) is
the (+1)-eigen space with respect to the action of the hyperelliptic involution. So if s were the
restriction of an element of H%(S,[2G + (n + 2)D]), then it would vanish twice on the base points
¢ : G — Pl On the other hand,

we have G(2G + (n + 2)D) = 2(r — n + 2) < 2r when n > 3. Hence we conclude that s = 0 when
n>3. Ifn=2and s #0, then (s) =2(e; +--- +¢,). O

€1, ser

We let {U;} be a sufficiently fine open covering of S. Let {d;;}, {(;;} and {ki;} be systems of
transition functions of [D], [G] and K, respectively. We may assume that «;; = d7* %Cij holds for
any i,j. Let z = {z;} and y = {y;} be the basis for H°(S,[D]), and ¢; the local equation of G in
Uis Gi = GisGy-
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Let p € H'(S,05) and let {p;;} be the corresponding 1-cocycle with coefficients in ©g. Then
the 1-cocycle {yipij - 2; — Tipi; - yi} is nothing but the representative of the image of p under the
natural homomorphism F'! : H'(S,0g) — H!(S, f*Op). Recall that v;; = —divp;; satisfies

Vij + Vik + Vki = —pjk - 10g Kij
Furthermore, for ¢ = {¢;} € H°(S, Ks), {pij - ¢: — vij#i} is a 1-cocycle with coefficients in &s(K).

We consider two elements {z"(;} and {y*¢;} in H(S, Kg). We have

pij - (20 G) — viz (27 Gi)
= 0zl Gipig 3+ 2 py - G- VTG
= 2} N (nGipij - xi + ipij - G — v TiGi)

and similarly for y*¢;. Hence, if we put X;; = nGpij - 2; + wipij - G — vigziCi and Yij = nCipij - yi +
Yipij -G — Vi ¥ii, then the collections { X;;} and {Y;;} are 1-cocycles with coefficients in Os([G+D])).
We denote by X and Y their cohomology classes, respectively. We have

yiXij — zi¥iy = nGi(yipi; - &0 — Tipij - Ya)-

It follows that (y;X;; — x;Y3;)

¢ =0.

(a) The case n = 2.

We assume that n = 2. Then H!(S,[G + D]) = 0. Therefore, there exist 0-cochains {o;}, {5}
satisfying X,;; = d;(jo; — o and Yy = di;(;8; — Gi. Since (y;Xi; — 2:Yij)|e = 0, we see that
{(yia; — z:8:)|c} is a O-cocycle with coefficients in €¢([G + 2D]
class by 7(p) € HY(G, [G + 2D]|¢) = h°(G, Ksq).

). We denote its cohomology

Lemma 3.4. Assume that n = 2 and let s € H°(G, Ks|g) be a section vanishing at all the
base points of |Kg|. Then there is a section § € H°(S, Ks) such that §|g = s.

Proof. We have the exact sequence
0— H°S,Ks - G) - H°(S,Ks) » H(G, Ks|c)

We infer that the restriction map H°(S,Kgs) — H(G, Ks|¢) is of rank one. Recall that Kg =
[G +2D], G? =r — 4 and GD = 2. Hence K| is of degree r which coincides with the number of
base points of |Ks|. Therefore, for a section § of Kg which does not vanish identically on G, §[¢
vanishes exactly on the base points. If s € HY(G, Kg|¢) vanishes on the base points, then it is a
constant multiple of 3| O

Lemma 3.5. Let F': H'(S,0g) — H'(S, f*Op:) and (. : H'(S,05) — H'(G, Ag) be the
natural maps. Let p € H'(S,0g).
(1) FY(p) = 0 if and only if v(p) vanishes at all the base points of |Kg|.

(2) ¢(p) = 0 if and only if v(p) vanishes identically on G.
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Proof. (1) Assume that F!(p) = 0. Then there exists a 0-cochain {a;} such that y;p;; - z; — z;p;5 -
yi = d?jaj — a;. Since Kg = [G + 2D] when n = 2, we have

i — 2if; — 2Gai = kij(yj0 — 285 — 2(5a;)

Hence {yic; — zif; — 2¢ia;} € HY(S, Ks) and we see that v(p) must vanish at Bs|Ks|. Conversely,
assume that y(p) vanishes at Bs|Kg|. It follows from the previous lemma that there exists an
element ¥ € HY(S, Ks) such that #|g = v(p). Putting ¥ = {3}, ¥ = Kij7j, We can write
Yoy — x;3; — ¥ = (ju; with a holomorphic function u; on U;. Hence

2i(yipij - i = 2ipig - yi) = wig(yioy — 250; — %) — (vics — @iy — 1) = Gi(dFu; — w;)
which shows that F!(p) = 0.

(2) If {«(p) = 0, then we can find holomorphic functions v; on U;NG such that (pii-Ci)la = Gjvj—v
on UmUJ NG. On the other hand, we have Lipij- Cile = dijgjaj —a; and YiPij 'CijJG = dijCijﬂj -0
on U;NU;NG. 1t follows that {a;|¢ —zsv;} and {Bi|g —yiv;} represent elements of HY%G,[G+ Dilz)
which is zero by Lemima 1.5. Hence o;|g = z;v; and Bila = yiv; on U;NG. Therefore, v(p) vanishes
identically on G. Conversely, if v(p) vanishes identically on G, then we have yio; = x; 3 on U; NG.
Since z and y have no common zero, v; = a;/x; = §; /y: gives us a holomorphic function on U; N G.
Then (py; - (i)le = (ijv; — v; implying that (. (p) = 0. O

(b) The case n > 3.
We assume that n > 3. We have the Koszul exact sequence

2
0— Os((G)) ® \ H'(S,[D]) — 65([G + D]) ® H%(S,[D]) = 65(G + 2D]) — 0.

By Lemma 1.2 and the duality theorem, we have 2h°(S, [G+ D)) = 4 = h(S, [G +2D]) + h9(S.[G))
since n > 3. It follows that the multiplication map H°(S, [G + D]) © H°(S,[D]) — H(S,[G + 2D))
is surjective. Hence we get the exact sequence

2
0— H'(S,[G)) ® \ H'(S,[D)) —» H'(S,[G + D)) & H’(S,[D]) — H!(S,[G + 2D])

Via the last map, X ® y +Y ® z goes to yX — zV. Recall that we have (yX — z2Y)|g = 0. Since
H(S,]G +2D]) - HY(G, |G + 2D]|¢) is an isomorphism by Lemma 1.6, we see that yX —xY =0
in H'(S,[G + 2D]). Hence the above exact sequence gives us an element Z = Z(p) € H'(S, [G])
such that X = 2Z and Y = yZ. We let {Z;;} be the 1-cocycle with coefficients in €5(]G]) whose
class is Z. Then there exist 0-cochains {a;}, {5;} satisfying

(3.1) Xij = nipij - Ti + Tipij - G — vij@iG = 2255 + dijCijo; — oy

(3.2) Yy = nGipij - Yi + Yipij - G — vijyili = yiZij + dijCii 85 — Bi



78

Then substituting them to y; Xy; — x;Yi;, we get
(3.3) nli(yapij - i — Tipiy - yi) = diGii (Y05 — 2;8;) — (yics — if6;)

By restricting (3.3) to G, we see that the collection {(y;a; — z;5;)|¢} is a 0-cocycle with coefficients
in O ([G + 2D]|¢). We denote its cohomology class by v = v(p). We remark that it depends only
on the cohomology class p of {p;;}.

Lemma 3.6. Assumc that n > 3 and let F' : H}(S,0g) — H!(S, f*©p1) be the natural map.
Then F'(p) = 0 if and only if y(p) = 0.

Proof. Assume that F!(p) = 0. Then there exists a (-cochain {a;} such that y;p;; - z; — 2055 yi =
dfjaj — a;. It follows form (3.3) that

yii — zibi — nGia; = d3;Gi(y 05 — 2;8; — nGjay)

so that {y;a; — 2,6, —n(ia;} € H(S,[G+2D]). Since n > 3, the restriction map H°(S, [G+2D]) —
HY(G,[G + 2D]

Conversely, assume that v(p) = 0. Then we have a collection {a;} such that y;a; — z;8; = (ia;.
It follows from (3.3) that nd;(yipij - Ti — Lipij * yi) = Ci(dfjaj —a;). Hence y;pij - & — Tipij - yi =
dfjaj/n — a;/n implying that Fl(p) = 0. O

) 1is the zero map. Hence v(p) = 0.

We define a map ¢, : H'(S,0g4) = H'(G,[Gllc) by ¢(p) = {(ps - Ci)|c}. By restricting (3.1)
and (3.2) to G, we get the following equalities on G N U; N Uj:

zi(pij - G — Zij)le = digCoy — auy yilpiy - G — Zij)|a = dijCis 85 — Bi-
Hence we have (. (p) = 2Z(p)|¢ and y(.(p) = yZ(p)|¢ in HYG,[G + D]|¢).

Lemma 3.7. Assume that n > 3. Then (,(p) =0 if and only if Z(p) = 0 and v(p) = 0.

Proof. Assume that (,(p) = 0. Since H'(S,[G + D]) = H'(G,[G + D]|g) is an isomorphism, we
see that 2Z = yZ = 0 in HY(S,[G + D]). This implies that Z = 0 in H'(S,[G]) as we saw in the
proof of Lemma 1.7. Since (.(p) = 0, we automatically have F!(p) = 0 and, hence, v(p) = 0 by
the previous lemma.

Conversely. assume that Z(p) = 0 and v(p) = 0. We put Z;; = (;52; — 2. It follows from
Y(p) = 0 that y;a; = z;8; on GNU;. Hence a; = o;/x; = B;/y; is a holomorphic function on GNU;.
Substituting «; = x;a; and 5; = y;a,, we get

zipij - Gila = 24(Ciy (25 + ay) — (zi + @), wipis - Gle = wi(Gii (25 + a5) — (2 + ai)).

Since r and y have no common zeros, we conclude that p;; - (ilo = di;¢ij(a; + 2;) — (2 +a;) on
GNU;NU;. Hence (.(p) = 0.
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We remark that h'(S,[G+ (n—2)D]) = 1. We take a non-zero element ¢ € HY(S,[G+ (n-2)D))
which is represented by a 1-cocycle {£;;}. Since H'(S,[G + (n — 1)D]) = 0, we can write

(3.4) iy = diy Giguy —wi,  yidyy = S v — g
We put 6; = y;u; — z;v;. Then {6;} determines an element § € H°(S, Ks).

Lemma 3.8. §|¢ is not identically zero.

Proof. Assume that we have y;u; = zv; on G NU;. Then w; = u;/a; = v, /yi is a well-defined
holomorphic function on G N U;. By substituting u; = z,w; and v; = Yiwg, we get ;&

G =
Ii(d%_ggjwj - wz—) and yzf,-_jl(; = yi(d%“QQj‘wj — wi) on GNU; N Uj. It follows that fijin =
d?j_?Cijwj — w;, implying that {[¢ = 0 in H'(G, [G + (n — 2)D]|¢).

We shall show that the restriction map H'(S,[G + (n — 2)D]) = H!(G, [G + (n—2)D)|g) is
an isomorphism to see that £ = 0 contradicting to the choice of £&. Note that we have rYG,[G +
(n = 2)D]|g) = k%G, [G + 2D]|¢) = 1 by the duality theorem and Lemma 1.6. We consider the
cohomology long exact sequence for

—e

0= Os([(n —2)D]) = O5([G+ (n—2)D)) - Oc([G + (n — 2)Dl|g) = 0.

Since we have h((n — 2)D) = (n—1,n —3,3) and A(G + (n — 2)D) = (n —1,1,3), we see that
H'(S,[G+ (n—2)D]) » HYG,[G + (n - 2)D]

@) is an isomorphism. [J
Lemma 3.9. Assume that n > 3. If F'(p) # 0 for p € H'(S,0s), then v(p)d|¢ is not the
restriction of an element in H°(S,[2G + (n + 2)D]).

Proof. By the assumption, v(p) # 0 and &g # 0. Furthermore, § vanishes at all the base points
e1,...,er of |[Kg|. By Lemma 3.3, if v(p)d|¢ is the restriction of an element of H®(S, [2G+(n+2)D)),
then it must be zero, a contradiction. O

We put ¢ = 2™ y™( for 0 < m < n and ¢"*' = 4. Then these form a basis for HY(S,K5s).
We have for m with 0 < m < n,

pij - &7 — vigdp

n—1-m, X v—=m, m—1,- W= o . =T, M~

= (n —m)z] Y Gipij -z + maxy Ty Gy v+ Ty pig - Go— vl My
—m n—m—1 . e m, n—m, m—1 e g PO )
= nnmxi y;'m(”CiPij " Tyt Tipig G — szvbzgm) + 5w Y, (ngzﬂw “Yi T Yipi - G — Vig¥G)

= BBl Ty (23 Zij + digGijoy — o) + 2l Ty (v Zy + dygC By — i)

T, o7 n—m Coaem—1,m n—m--1,m M. =M, m~1g —  n—-m m—1,
=z Y iy + R (K] Yia — yitoa) + Rrigey My By — 2l Ty B

where we understand that, in the last expression, the second (resp. third) term is zero when m = n
(resp. m = 0). Hence

R

_ N—T, m 7. . (n—m _ n—-m—1m m . n—m, m—1 ‘n-m n—-m—1_m, . m ,.n—m, m—1,.
= oY 2 + Ry (R yitoy + Rl Ty T By) — (B yitai + Tl Ty B)
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Since Z = Z(p) € H'Y(S,[G]), we have z"2"%ykz ¢ H'(S,[G + (n — 2)D)) for any k € Z,
0 < k <n — 2. Hence there is a 0-cohain {wgk) } satisfying

1?4 —k ZU = Ak ng d;;*%ing’“) —wz(k)

By Lemma 1.7, we see that (40 ... A(™=2) ¢ C"~! s not zero provided that Z is not zero.

Lemma 3.10. For 1 < k& < n — 2, the collection {A(’“)ui — AG=1y, 4 xiwfk) - yiwiﬁk*l)}
determines an element in H%(S,[G + (n — 1)D]). In particular, it vanishes identically on G.

Proof. We have z'™ - ykZ,; = 2" “2kyk (2 = 2l 2~k “l)yi Yy;Z;). Since z;&ij = z-j_lgjuj—
u; and ;&5 = ij vaj v, it follows that

d%‘lﬁij(A(k)uj + wj'w](»k)) — (AW, + mi'u;z(k)) =di; LQJ( U' + 1 y]w(k 1)) (A®= Dy, + yiw (k 1))

which shows the first assertion. Since H%(S, [G + (n — 1)D]) is spanned by z* 1"™y™(, 0 < m <
n — 1, any element vanishes identically on G. 0J

Note that z7 ™y Z;; can be expressed in four forms in general:

Kij Alm) 5, juj + 1:2 §m)) _ (A(m)ziui + a:;gwl(m))

(Al
K (4(’” Ul/ wy + Ty w(m 13) (4(7"'_1)2/#11‘+5E-y-w(m—l))
(3.5) oYz =Y ( 7T ili + Ty,
‘ (
(

i Kij (AU l)ijuj_*_l]ij(m l)) (A m—l)l"vb—%xzyl (m_l))

(m— 2)) (m~ 2))

rij (AT Dyg0; + yw; (A= yi0; + P,

but Lemma 3.10 shows the differences are not essential.

4 Kuranishi space.

Let p : .¥ - M be the Kuranishi family of deformations of S = p~1(0), 0 € M. Then M is
an analytic subset of a small open disc D around the origin of C#, where u = u(S) = h'(S,05).
We take a Hermitian metric on S, and let ¥ and G denote respectively the adjoint operator and
Green’s operator, with respect to this metric, on the space of (0, ¢)-forms with coefficients in Og.
We define the Poisson bracket [-, -] of two (0, 1)-forms ¢ and 9 by the formula

P AN
o = « _r 1,
[, ] 02/3 (so AN TIN5 ) 57

if
3} 0
= @ ; —-— /'(1____
- Z 1 52—&’ w - Z ¥ 0z¢
are local expessions of ¢ and v». With the notation, there exists a (0, 1)-form () with coefficients
in ©g which depends holomorphically on ¢t € D and satisfies

£(0) =0, (1) = 39GLA(0), 28] = 1(1)
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where 1 (t) denotes the linear term of ¢(t). Let H denote the projection onto the space of harmonic
forms. Then M is defined by the equation

H[p(t), (t)] = 0.

We let ¢1(t) = D, pata. We may assume that {p)} forms a basis of the space of harmonic (0, 1)-
forms. -We denote the cohomology class in H'(S,0g) of py by the same symbol. Note that we
have

Hlp(t), o(t)] = Y Hlor, poltats;  mod (+*)
Ao

We have the following lemma as in [1], Lemma 30.
Lemma 4.1. If py,p, € Ker(F!), then H[py, ps] = 0.

(a) The case n = 2.
We can choose a basis {p1, pe, ..., pa3—2,} satisfying

F'p1) #0, F'(p2) =0, Culp2) #0, Gu(ppa) =0 (A > 3)

By Lemma 4.1, we have
4327

Hlo(t), ()] = Y axtits + O(t°)

A=l

We can show the following as in [1], Lemma 31.
Lemma 4.2. IfH[p),p,] = 0, then v(p))v(ps) is the restriction of an element of H°(S,2K3s).
Therefore, we have only to show the following to see that as # 0.

Lemma 4.3. ~(p1)v(p2) is not the restriction of an element of H(S,2Ky).

Proof. Assume the contrary. It follows from Lemma 3.3 that ~y(p;)v(p2) is either zero or its
divisor is of the form 2(e; + --- + e,). Both cases are inadequate. U]

Theorem 4.4. Assume thatn = 2, and let p: .¥ — M be the Kuranishi family of deformations
of S. Then

(1) M = M, U My, where the M;’s are complex manifolds of dimension 42 — 2r.

(2) N = My N M, is a complex manifold of dimension 41 — 2r.

(3) For t € My, Sy = p~(t) has a genus two fibration. Fort € M, \ N, S; does not have a genus
two fibration.

Proof. Let p1 : 1 — Mj be the family of surfaces with genus two fibrations obtained before.
By the completeness of the Kuranishi family, we have a holomorphic map s : M; — M such that
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1 is induced from .#. We can assume that the tangent map ds : TyM; — Ty M is a bijection
onto the linear subspace spanned by 0/0ta,...,8/8t43-9,. Hence M, can be identified with the
submanifold defined by r(t) := ¢, — ¥(t2,- -+, taz—2,) = 0, (09/8%))|t=0 = 0 for A > 2. Now, since
we have H[p(t), p(t)] = 0 on M), we can write H[p(t), p(¢)] = g(¢)r(t). In view of the expansion
of H{p(t), ¢(t)], we see that ¢(t) is of the form

43-2r

g(t) = Y axta+O(t?), ax#0.

A=1

Therefore, My = {t € M : ¢(t) = 0} is a submanifold of M. O]

(b) The case n > 3.
We take a basis {py} of H!(S,0g) satisfying

Fp) #0, Fl(po) = - =F'(on) =0, G(pa) =0 (VA > n)

and {C.(p1),Cu(p2)s ..., Culpn)} forms a basis for HY(G, Ag). If we put Zy = Z{py), then we can
assume that Z; = 0 and {Z», ..., Z,} forms a basis for H!(S,[G]). We put

n—2— k n—2 )
Ly Z/\lj = A fz/ dis CU“’/\; Wy
Since {py;, - q)f - z/,\,'jqﬁf} gives us a cohomology class in H(S, Kg) = 0, we can write
k I k
Pxij - PP — Vaij®i = KigTaj — Ty
We put

k
oF = ¢f +> ity
X

Then we have

(OF)2 — @f 10l = (9)? - AT+ T kel - it - ol e

1

+(257 /\zt)\ — (A Tt T )

'The proof of the following lemma will be given in Appendix.

Lemma 4.5. Fix a pair of indices p,v such that H|p,,p,] = 0. Then, for 0 < m < n, the
following congruence holds modulo (t3):
(@7_71)2 _ (I)m—l‘bm—}-l
1 13 1
= (m‘j)z[(@;_n)z _ q);n—légnﬁ—l} + 2¢:nrzl ‘ ¢;n-]l-\;7;+1 ¢m+1]_—-n]z 1
= 2adorg - (@) = @RI — 20y5((@74)? — @ @ ey

Iff‘?j‘ denotes the coefficient oft,t, in [T}, then {P '} forms a 1-cocycle with coefficients in Os(K).

Lemma 4.6. Let p € Span(py, -+, py) be a non-zero element. Then Hp1,p] # 0.
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Proof. Without loosing generality, we can assume that p = py. Then we have T lmmym=lz, £
in HY(S,[G + (n — 2)D)) for some integer m with 1 < m < n — 1, that is, 4 71 £ 0. We fix such
m.

By using the first, second and fourth expressions in (3.5), respectively, we can write

mn-—1 . -m.2x 4 m 273 1,2/~ 3
Ty = Axwpug + ERaR Gy + Do Bxi + 77 (@x — B
T = Axyiug L2yl + mil?zyﬁA:

m+1 __ 2~ 2
Y = A\yivi + —n yioni + 3 yz /3 At T ;Z% (a)\t Bri)s

where we put A, = A(m_]) and

-1 2—m 1 s (tn—1) . 2
Gy = w)\ ) +xy” y:” axis, B = Wy + -En mqu Bxi-

We have mod (#?),

(@2 — Pt ett = LTy IG Y (RuayeTy -JZTZH] %QT;'Z s
= 7" ] m=le 3oy ANyt — 2y TPty
= ‘Tzn " ] m ICl Z,\ Az\izyz(yzuz “‘L1'Uz)t)\
=z "y 41 2y Axditx

@70 35\ Axta

1

We next consider its second order terms. Since 7" = (z:/y:)77 + (1/n)2?(@tp; — By) and 70071 =

(ys/2) (T — Axdi) — (1/n)y2(dp — J,\,L-), we get for two indices yu, v

m_m _ ~m—1_m+1 _m-1_m+1
QTW' Tui T,ui vi Tyi )

= A 5 (Tm + _L(auz Bm)) + Auéz(T;’ﬁ + I_lnw'(&m - /‘/}uvi)) + 2%{%‘1(6/” - .‘ém)(dui - [;)UL)

which is the coefficient of t,,t, in ()2 — & 71®7 L. On the other hand, by Lemma 4.5, we have
the following congruence modulo (#3):
(a7)? - @7 tap!
(3.6) = (ki) *[(®])? — P e + 29T — o TR g
— 2adowi; - [ ‘Dm — oy lept) 21%3[(@2”)2 - O Iy
We have
pij - [(277)? = 71O ] = 2y [(OF)? — @@} ]
Pxij - (D770: 32, Aota) — 20xi5(0770; 3, Asto)
>, A ta L'pxu' BT = Uai BT i + B paiy - Oi — Uy 9T40:)
= Y Ayt, mjfr)g W) + gbm(n'urf\‘;l )
= YA, t,,( S (057 + P TTY) — (87 + o))
Therefore, comparing the coefﬁment of t,t, in both sides of (3.6), we get
Audi(T]} + B (@, - Bw‘)) + A 5'(7"@ + (G — Bm)) w y (am - Bm)( - Bui)

= (A 5 ( i+ “L‘L(aw BIJJ)) + A d; ( P+ J_'L( 5;1.1)) + "‘LYL(OluJ - ﬂuj)(&l/j - Buj))
+2¢,1Ln _¢m IFTI1+1 ¢71+1I1

AN( 1_7(6, ¢m n-H) ( + ¢m n+1)) - Aa(f{,fj((s + ¢§n IZL;-I) (5 Tm + ¢7n n—H))



84

where f‘fj denotes the coefficient of £,1, in ny-. It follows that

X 7L 2 - 7m+1 m—1 __ +2 -2 }
21'i?/iCiF¢j - 1'2'41.Fij — Y Czrj = d?] Cijej — €

where
€ = A[L(*le1<l n+l - £s“‘“(?/i()«’/ui - 'L'zﬂuz)) ( zy1Cz n+1 - "l(yzap,z -rz/gm))
an ln me l"/:n l(yiauz - Iiﬁui)(yiaw - -Tzﬁm)

Now, we think 4 = 1 and v = 2. Then A, = 0 and v(p,) = 0, that is, we can write g — Zifyi =
Ciwyi- Then

& ) 2
€ = ( LULCl n+1 Z(yz-am —l‘i,dm)) — nQ‘T‘:l m-1, m lglwm(yzam Izﬁm)

If H{p,, p,] = 0, then {FZI} forms a 1-cocycle with coefficients in €s(Kg) and hence cohomologous
to zero. By restricting to G, we get

L9 1 . 1
0=d} 2@%(“;‘4V61’7j(/)u)|(;) = (=~ Avdilpu)le).

Since A4, # 0 by assumption, this implies that v(p,)d|¢ can be obtained by restricting an element
of H°(S,[2G + (n + 2)D]) to G, which is impossible by Lemima 3.9. Hence Hp,, p,] # 0. O
Recall that we have h?(S,0g) = n — 1. We have

Tn+29-2r

Hip(t),p(t)] = > Hip,pltits + O().
A=1

Since 7y, := H[p1, pa); 2 < A < n, are linearly independent by Lemma 4.5, we can assume that they
form a basis for H%(S,0g). We write

Tn+29-2r
Z Hip(t), o()am,  Hip(t), o =t > anta+ O,

u=1

with ayy = 1 and ay, = 0 when g # X for 2 < A, < n.

Theorem 4.7. Let M be the Kuranishi space of deformations of S. Then

(1) M = M, UM, where the M;’s are complex manifolds with dim M; = 7n+ 28 —2r, dim My =
6n + 30 — 2r.

(2) N = M) N My is a complex manifold of dimension 6n + 29 — 2r.

(3) For t € My, S; has a genus two fibration. Fort € My \ N, S; does not have a genus two
fibration.

Proof. Let p, : .#1 — M, be the family of surfaces with genus two fibrations obtained before.
By the completeness of the Kuranishi family, we have a holomorphic map s : My — M such that
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S is induced from . We can assume that the tangent map ds : ToM; — ToM is a bijection
onto the linear subspace spanned by 0/9dts, . ..,0/0t7n+29—2,. Hence M7 can be identified with the
submanifold of M defined by r(t) := t; — ¥(ta, -, trne9—2r) = 0, (0Y/0t))|t=0 = 0 for A > 2.
Now, since we have H[p(t), o(t)] = 0 on M;, we can write H[p(t), o(t)] = qa(t)r(t) for 2 < A < n.
In view of the expansion of H[p(t), p(t)], we see that ¢(t) is of the form

p(t) =ta+ Y araty+ O(£).
BFEX

Therefore, My = {t € M : go(t) = --- = ¢gn(t) = 0} is a submanifold of M. O

Now, Main Theorem in Introduction is nothing but the restatement of Theorems 4.4 and 4.7.

5 Appendix.

We show Lemma 4.5. We fix a couple of indices (u,r) such that H{p,,p,] = 0. Let z, = (2},27) be
a svstem of coordinates on each U;. Then there is a holomorphic function bf;(z;), (@ = 1,2) such that
=b3(2;) on U NU;. Put

.0
Prij = Z PXij D2
(o4 ¢

Then we can find holomorphic vector fields

Pij = Z sz 52

on U; NU; such that, if we set
o5 = ¢i5(25,t) = b5 (25) + Zp,\”m + Pistuty
A

and
then the coefficient of ¢,t, in &, vanishes. Put

A¢5;
Ui;(z;,t) = det (6 o (pi5(25, 1), )>

Then

U = Kij — Zl@ijv,\ijt,\ mod (t?)
)

Assume that ¢ € H°(S, K) is represented by {¢:}, ¢;: = k;;¢;. Then there exists a cochain {7x;} such that
Prij - @i — Vxij®i = KijTaj — Tai- We put

(2, t) = diz) + ZTAitA
A
and & = ®;(ipi;, ). Since i(1ij) = di(bij + 2oy Prsita + Pijtuts), we get [di(wij)lo = dilbij) = ¢4,

0¢: 095 o
[bi(pij)h = Bf?‘ (9t,\J = E Oatipiijir = E Pxij - Pt
« 4 A

t=0
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of, D%l
Ea-a 8t 0t, :Othtﬂ

>
Z(a aﬂ¢ )pAz]pa'L]tAt +Z aa¢1ng(t t +t ? )
5 2 (0a 8;?¢1)PA13001JtAt +2(pij - pa)tuts

Similarly, we have [}, 7ai(¢:;)ta]i = 3., Tastx and

01y 093
[;T,\i(Wij)t)\]z = 82,);"‘ Bt:

[#i(945)]2

[N T o ST T

toty = E&;Tm‘ﬂ?ijta iy = me’j “Taitats

t=0
It follows that [ ]() = ¢, [ ]1 = ZA Prig “ita + Z/\ Tty and
(@], = (0a030:)P5:;05:tats + Prij * Toitato + 2(Pij - di)tut,
J J

a.3,\0 Ao

Therefore,
3, = &, me bty — [@;]; mod (¢%)

On the other hand, we have ®; = ¥;;®; mod (t?). Put I';; = [€;]5 — [¥;;®,];. Then we get &; = ¥,;&; +T;
mod (£3). It follows that

©;=;®, — Y paij- dita + Dy — [8]:  mod (£°)
A

We have the following congrucnce modulo (¢2):

(‘I’f")z _ q);n—lq)erl
U)‘ { (I)m (I)m 1@m+l} +\I/ 2(I)ml-\m q)m 1Fm~r1 ¢;L+lr$—l)
”(Q‘I’m[@m}) _ q)m l[q,m+1] Qm‘H[@"‘ 1} ) 1

‘I’,LJ Z/\ 2(1) p/\lj (bm q)m . ¢m+1 (I)m+] lj ) m—r )tA

7

Z,\ Pxij - @ ") = (X Pz\u' zn B OV VI
{((I)m (I)m 1@m+1} +,£ 2¢,nl—\m . m lrm+1 qb;n—lrg—l)
I‘sz(qum{q)m] (bm l[q)m—y—]] __(b;n-&—l[q)m 1}2)
_2 ZA Prij * (15" t,\)n”(qﬁ'” + wa ZA V/\Ut/\ + Z)‘ T)'\,; .
HEor v 07 R (7 67T Y, et + 5, ot
Z)\ Prij - ff) + t)\)"‘z](ﬁbm ! + ¢m ! Z)\ V/\Ut)\ + Z/\ TA] lt)‘
Z,\ Prij - ¢ t)\ Z,\ Prij * z t)\ (Z)\ Pxij - d) +1t}\)
_,)2 {(q);n) q)m 1(1,m+]} +2¢m1‘\ (bm lrwm+~1 ¢77+1F$‘1
__(‘2¢m[(i,m] ﬁ¢m l[(bm—H} ¢m+l[¢,m 1]2)
2(2,\ Pxrij - ¢m?‘)(¢)m +1¢m Z,\ l{)\z]tk + Z,\ )‘:fz]T)‘JtA) "
Z/\ Pxij ;n 12 )( Tt + ¢m+ Z,\ V/\‘b]t/\ + Z,\ KzJT,{,]L tA)
+(Z,\ Pxij d’:nﬂtz\)((ﬁm D DNV D I "JtJT,\J_ltk)
Z,\ Prij Qb t/\ Z)\ Prij - d)n lt)\ ZA Pxij * ¢ +1t )
— (‘IJ'LJ { q,m) q,'m ]q)m—f—l} +2¢mrm ¢zm 111:1]:.1—1 qb:"HI';’;"l
( ¢7n[ Pm ] _¢m L[q)m+l]2 _¢m+l[q>m 1]2)
=203 pxij * ¢ ?\)( i +1Z)\ T+ pz\lu <o )t) »
H(apris 07 ) (@7 + X, (7 e 2 1)IfA)
+(2n ris - ¢mﬂt/\ (¢m L+ Z,\ T,\l +P>\i]‘ 97 )t’\l)
+(ZA Prij - 0" 't2)? ZA Prij * 9 ltk)(z,\ Pxij '¢Zn+ ta)

I

1"

i
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— (\I’z])‘ {(q)m)z (I)m lq)m+1} +2¢mrm ___¢m lrm+1 _ ¢;n+1rg~l
(2¢m[@m]) _¢m l[qyn—r—l] (bm—o—l{@m 1} )
"2 ZAPMJ ¢ t>\ ‘i’m (Z,\ P/\m' i 1t>\ (I’"H_l zlk Pxij - Znﬂtk)q’;ﬂ_l
+(Z>\ Prij - ¢1 tx)? (ZA Prij - i t/\ (ZA PArij - ¢ s )
— (‘I’U {((I)m (I)m—-lq)m+1} + 2¢mF ¢m ll-\m-rl ¢1n+11-\:?—1
@127, — o B, - o8 )
= 2oaPrij  [(®] ) S 24 e N
+ 300 (200 prij TS — A7 o - Tﬂ“ = &7 i T )t
+ E/\ prij - A7 = (305 oxij - 67 M) (X pai - 97 E)
2 1 gm+1 1 -1 +1 1
m ™m— m+ mm m— m—+ ) m—
= (¥;)? {(‘I’ ) - @11 ~®j+1 }"'2% lrij _1‘151' N i b
_(2¢m [(I)m] _ @;” [q)‘l(n ]2 _ ‘Z)?H- [q)m— ]
=225 paa - OO + (s paig - T )T 4 (5 i 7T )T
+(Z‘>\ Phrij '4% ta)? = (5 pais - O A (s paij - 97T M)
— (lIJ’i])z {(@;I’L (pm lq)m-ﬁ—l} (ﬁm,rw ] _(b;n—lrgb—f—l _ ¢IrL+1F$_]
_ZAp/\U R { ) q)m 1(I)m+1} t}\
SO 0.0507 05508 — (07 1/2>Za BsdT " PPy — (@7 /2)Y_8aBsdT " pRisPh: ) tate
Ao o83 o,
(S 070" = (S 006 Ty 6010
—20207piy - 7 — &7 iy - 7T = O g - 9Tty
In the last expression, we do not need the last term, because we have
p

~ ~1= 1 mal s me—l - my2 _ me—1 et
207 B - O — O i 7T — 6 By 07 = iy - {91 — 9P T

Furthermore, a calculation shows that the fourth and fifth terms are canceled out. To see this,
we formally put z = y;/x;. Then we have cf);””l = ¢I"/z and ¢;’“’1 = z¢™. Noting that doz =
(2:0ayi — YiOai)/T?, We get

|

1, , ; 1, , . )
07 0a05(29]") = —( 7)200s2 + 9" (0020501 + 0520a9]") + ¢ a5 d}"

o

m i 1 m\29 1 1. 1 : 1‘* (1T m : m
267" 9a03(~) = 2(07") 2005 - + 207 (9a 0507 + Os~0a0T') + 6] 0aDsd

Since %Baz + z@a% = do1 = 0, we have

¢

1. L. 11, o 1, 2.,
;daagz T+ Zdadg-; = -Z'daagz - Zda(;dﬁz) = ZQ-C)QZ()GZ.

1

Therefore,
‘ . .8 T p 3 , M —
O 8a0s7 03051 — (81 1/2)S 0u8500 0500, — (67 12)Y 00507 500
o, a,f 8

m o 2
= (5;%‘) (Ziprij « Yi — Yibxij - Ti)(TiPoij - Yi — YiPoij * Ti)
To rewrite the fifth term, we note that

1, 1 1 1 1
prij - (SO7) = 0" i - S+ Spxig - O = = @0 P 2 S 9T

prij - (267) = 67 prij - 2 + 2pxij - B7"-



Then

(aprig - 07 (5 oaig - 97 )
= (=(&"/2%) Xy pxij - 2ta + (1/2) oy i » S0 ) (07 305 pxig » 28x + 2 205 paig - 95*1)
(s prij - oMta)? — (@)2(2,\ Prij - 2tx)*
(3 \ oxij - OMEN)? — (%)2(2,\(%0)@ CYi = YiPaij c Ti)ta)?

f

It

Hence the fourth and fifth terms are canceled. Now, we continue to calculate the congruence
modulo (%)

(@) — @ 1o
(T;)? {(@T)z _ (I);_nq@;_nﬂ} + 26T — qr);rz“ll-vir;@-i—l _ ¢;n+1P;?-1

= s pxij (@) — e e oy

h_;gj {(@;’L)Q _ q);?v—lq);nﬂ} +26PTT — ¢;n—1pgp+1 _ ¢;n+11—w;?—1

263 3 g { ()2 = @17 Ly = 50, s (017 - @7 B0
()2 {(@']m)Q _ (I);n—lq);n+1} + 26T ¢;nvlrlnjl+l — gt

= Xapxig - {0 — P IeTH

Kl (@)% = @T T 4 267 Iy — o T — g

=2 {ong - (@) = @ TR — 2wy ((@1)? ~ @O iy

1l

i

il

Hl

which is what we want. For the rest, see [1]. O
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