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Chaotic Sequences of I.I.D. Binary Random 
Variables with Their Applications to 

Communications 

Tohru KOHDA 

Department of  Computer Science and Communication Engineering, 
Kyushu University 

6-1 0- 1 Hakoxaki, Higashi-ku, Fukuoka 81 2-81, Japan 

Abstract: The Bernoulli shift is a fundamental theoretic model of a sequence 
of independent and identically distributed(i.i.d.) binary random variables in 
probability theory, ergodic theory, information theory, and so on. We give a 
simple sufficient condition for a class of ergodic maps with some symmetric 
properties to produce a chaotic sequence of i.i.d. binary random variables. 
This condition is expressed in terms of binary function, which is a generalized 
version of the Rademacher function for the dyadic map. Applications of such 
a sequene to communications are also discussed briefly 

1 Introduction 

Binary sequences[l] play an important role in modern digital communication systems, 
such as spread spectrum (SS) communications or cryptosystems. Although such a bi- 
nary sequence can be generated in various ways, linear feedback shift register (LFSR) 
sequences are employed in nearly all the methods [2]-[6]. It is, however, notewor- 
thy that a sequence of independent and identically distributed (i.i.d.) binary random 
variables is a typical theoretic model of pseudorandom number generators with good 
properties[7]-[9]. 

As is well known in the fields of probability theory and ergodic theory, Rademacher 
functions for the Bernoulli map (or the dyadic map) can produce sequences of i.i.d. 
random variables However, if we calculate such dynamics with the help of a computer 
with its necessarily limited accuracy, the period of the sequences generated from such 
piecewise linear maps is very short. On the other hand, it is also well known that 
the performance of digital communication systems depends primarily on the statistical 
properties of binary sequences. Neverthless, in most of various applications of chaos to 
communications, a number of investigators have proposed techniques to use a chaotic 
real-valued trajectory itself rather than its binary version, that is, analogue techniques. 
Such a situation motivated us to define [lo] several types of binary sequence based 
on a chaotic real-valued orbit generated by ergodic maps such as logistic [ll] and the 
Chebyshev maps [12]. Furthermore, using the Perron-Frobenius operator of some er- 
godic maps, we have given a simple sufficient condition for a class of binary functions 
to produce a sequence of i.i.d. binary random variables.[l3],[14] 

In this paper, we shortly review several types of method for generating chaotic 
sequences of i.i.d. binary random variables. Furthermore, we briefly discuss applications 
of such chaotic sequences to spread spectrum communications and cryptosystems. 



2 Chaotic Binary Sequences 

Perhaps the simplest mathematical objects that can display chaotic behavior are a class 
of onedimensional maps [15] 

wn+~ = ~ ( w n )  (1) 

where wn = rn(wo) E I, n = 0,1,2, . . . and r (.) : I + I is a nonlinear map, where 
I = [d, el denotes an interval. It is known that the ensembleaverage defined by 

is useful in evaluating statistics of {F(T~(W))},",~ under the assumption that r(w) is 
mixing on I with respect to an absolutely continuous invariant (or briefly ACI) measure, 
denoted by f * (w) dw . 

Let G(w) and H(w) be any two L1 functions of bounded variation. Consider two 
sequences {G(T~(W))}:=~ and {H(T~(W))},",~. The 2nd-order crosscorrelation function 
between the two sequences from a seed w = wo is defined by 

where l = 0,1,2,. . .. The crosscovariance function is also defined as 

Note that when G = H,  these denote the autecorrelation function and auto-covariance 
function, respectively. 

If the interval I is given by I = [d,e], then the P-F operator P, of the map r is 
defined by [15] 

This operator is very useful in evaluating the correlation functions because it has the 
following important property: 

Using this property, we get 

The above cross-correlation function (p(')(l; G, H)) is of major importance to the 
investigation of statistical properties of sequences {G(~"(W))},",~ and { H ( T ~ ( W ) ) } ~ = ~ .  

For several maps, such as the tent map, the logistic map, and the Chebyshev maps 
whose invariant density functions are known, the autecorrelation functions of real- 
valued sequences were already evaluated [16], [17]. 

In our previous study, we proposed three simple methods to obtain binary sequences 
from chaotic real-valued sequences { T ~ ( W ) } ~ = ~  with an ergodic map r( .)  as follows [lo]. 



Method-1: We define a threshold function Ot(w) as 

0 for w < t 
Ot(w) = 

1 for w 2 t 

and define its complementary function 

- 
Qt(w) = 1 - Ot (w). (10) 

Using these functions, we can obtain a binary sequence {O,(?(W))),",~, which is re- 
ferred to as a chaotic threshold sequence. Here define 

Note that pr(t) is a monotonically decreasing function of t. 

Method-2: We write the value of w (Iwl 5 1) in a binary representation: 

I w I  = O.Al(w)Az(w) A ~ ( w )  . . .  , Ai(w) E (0, 1). (13) 

The i-th bit Ai(w) can be expressed as 

2"l 

= c (-llT-l {e, (w) + e-, cw)). 
T=l 

Thus we can obtain a binary sequence {Ai(wn))r=o which we call a chaotic bit sequence. 
Since @(w) can be regarded as a Boolean function whose variable, seed w, is not binary 
but real-valued, Ai (w) can be rewritten by 

where @ denotes modulo 2 addition. 
W - d  

Method-3: We write the value of - E [O,l] in a binary representation: 
e - d  

W - d  
=O.Bl(w)Bz(w)...Bi(w)--., w ~ [ d , e ] ,  Bi(w)~{O,l} .  

e - d  (16) 

The i-th bit Bi(w) can be expressed as 

We can obtain a binary sequence { B i ( ~ n ( ~ ) ) } ~ = o .  Note that Bi(w) can also be rewritten 
in the form of modulo 2 addition of threshold sequences. If the interval I = [O, 11, then 
Ai(w) = Bi(w). Thus each of {Ai(~n(w))},",o and {Bi(~n(w))),"_o is referred to as a 
chaotic bit sequence. 



Tausworthe [2] and Lewis & Payne [3] gave the methods to obtain a real-valued ran- 
dom variablk represented in a binary expansion by using shift register binary sequences. 
In our methods, on the contrary, we intend to get binary sequences from chaotic real- 
valued trajectories. This implies that our methods are inversions of Tausworthe and 
Lewis & Payne's generators. 

Now we consider a piecewise monotonic map r : [d, e] --+ [d, e] that satisfies the 
following properties: 

(i) There is a partition d = do < dl < . . . < dNT = e of [d, e] such that for each integer 
i = 1,. . . , N, (N, > 2) the restriction of T to the interval [di-l, di), denoted by 
ri (1 5 i 5 N,), is a C2 function; as well as 

(ii) r((di-I,&)) = (d, e), that is, ri is onto; 

(iii) T has a unique ACI measure denoted by f * (w)dw. 

The conditions for T to have a unique ACI measure are discussed in ref. [18]. 
For the above map, we have [15] 

where gi(w) = ril (w) . 
We now consider a class of the above piecewise monotonic maps satisfying 

which is referred to as the equidistributivity property [14]. Note that this class contains 
well known maps, such as the R-adic map, the tent map, the logistic map, and the 
Chebyshev map of degree k, where N, = R, 2,2, k, respectively. Thus we give the 
following interesting lemma [14] which is very useful in evaluating correlation functions 
of chaotic threshold and bit sequences. 
Lemma 1: For the piecewise monotonic maps satisfying eq.(19), we can get 

where s(w) is the signum function defined by 

-1 for w < 0 
s(w) = 

1 f o r w 2 0 .  

Corollary 1: The covariance function between two chaotic threshold sequences {Ot(rn (w))}:=~ 
and {Otl(~n(~))),",o generated by the piecewise monotonic maps satisfying eq.(19) is 
evaluated as 

1 
($"(e; @t, %I)) = -s((re)'(t))($2)(~; @ri(t), Qt')), 

N," 
(22) 



where 

(g2)(o; ot , oil)) = p, (max[t, tl]) - ~ , ( t ) ~ ,  (tt), 
f 1 for e = o 

This corollary makes it easier to calculate the covariance function between bit sf+ 
quences { Ai (7" (w))},",~ (respectively, {Bi (T" (w))),",~) and {Aj (7" (w))),",~ (respec- 
tively, {Bj(rn(w))},",o) as follows. 
Remark 1: For piecewise monotonic maps satisfying the equidistributivity property 
eq. (19), we have 

(p) (e; odi, ot)) = 
P, ( m a  [di , tl ) - pr (di)p, (t) for e = 0 

for t 2 1 

which implies that there are some correlations between {Od, ( r " ( ~ ) ) } r = ~  and {Ot(r"(w))}r=o 
only when l = 0. Of course, if the sequences are completely independent of each other, 
the covariance functions should have zero value for all l. 

3 Symmetric Binary Functions 

Now, we introduce here a new binary function. To do this, define a partition d = to < 
tl < . . . < taM = e of [d, e] such that 

and T denotes the set of symmetric thresholds {t,):$. Then we get a binary function 

which is referred to as a binary function with symmetric thresholds (or briefly a sym- 
metric binary function) [14]. 

Next let us restrict our attention to the map satisfying 

which is referred to as a symmetric property of the invariant measure. Note that such 
a class of maps contains well known maps, such as the R-adic map, the tent map, the 
logistic map, and the Chebyshev map. 
Remark 2: For the maps with the symmetric property of the invariant measure eq.(28), 
we get 

1 (cT) = -. 
2 (29) 

Furthermore, we consider a somewhat restricted class of piecewise monotonic maps 
satisfying eq.(19) which also satisfy the symmetric property of the map 



Such a class includes the tent map, the logistic map, and the Chebyshev map of even 
degree k. The fact that T is monotonic and onto gives 

The following lemma [14] plays an important role in estimating the covariance func- 
tions of symmetric binary sequences {CT(~n(w))),",o as shown in Corollary 2. 
Lemma 2: For the piecewise monotonic maps satisfying both eq. (19) and eq. (28), and 
their symmetric binary functions, we can get 

Corollary 2: Consider the piecewise monotonic maps with both eq. (19) and eq.(28). 
Denote two different sets of symmetric thresholds by T = {tT)zzo and TI = {t:)zfi, 
where 

Then we can obtain 

QgT/ - (CT)(CTt) for l = O 
( $  T T ) )  = for er 1 

where 

Remark 3: Assume 

Then we can get 

or 

1 
Q&, = for T # T' (44) 

($')(l; CT, Cp))  = 0 for a11 t 2 0. (45) 



Remark 4: When M = 2i-1 and t, = (e - d)r/2i + d, we have 

CT (w) = Bi (w) . (46) 

This implies that for the piecewise monotonic maps with both eq.(19) and eq.(30), we 
can obtain 

(F(~)  (4 Bi, Bj) ) = { Yij - ( B ) ( B )  for l = 0 
for e 2 1 

where 

Note that we can easily get Qij = a for i # j, that is, ($2)(0; Bi, Bj ) )  = 0, for the 
maps with the uniform invariant density f *(w) = 1. On the other hand, for the maps 
with the nonuniform invariant densities, such as the logistic and the Chebyshev map, 
we can get 

1 
lim Qij = for i # j. 
i-00 

(52) 
or j+w 

.Remark 5: Consider the R-adic map SR(w) defined by 

SR(w)=RW mod 1, R = 2 , 3 , 4 , . . . ,  W E  [O,l]. (53) 

For the R-adic map with even R, 

($2) (e; B ~ ,  Bj))s, = o for all e. (54) 

Note that the symmetric binary function is a generalized version of the Rademacher 
function for the dyadic map [7]-[9]. 

4 m-Distributivity of Chaotic Binary Sequences 

In the previous section, we discussed the second-order correlation functions of chaotic 
binary sequences. Now consider m binary functions Gi(w) (i = 1,2, .  . . , m). For m 
binary events gl,g2, . . . , gm (gi E (0, I), i = 1,2, .  . , m), a joint probability defined by 

Prob(gm, gm-1,. . . , gl) = 
Prob (Gm (w) = gm, Gm- (.re"-I (w)) = gm- . . . , ( ~ ~ m - l + ~ m - 2 + . . . + ~ 1  (w>) = g1),(55) 

l , > o ( l i i ~ m - l )  



must be investigated to test the independency of sequences {Gi(~"(w))},",~ from a 
statistical point of view. To do this, the higher-order (the m-th order) correlation 
function is introduced as follows. 

(p(7n)(~m-~,~m-2,...,~~;Hm,Hm-i,...,Hi)) 

= /; H, (w)  H ~ - ~  (rem-l (w)) H ~ - ~  ( ~ ~ ~ - l +  em-2 (w)) . 

. . . H~ (Tem-l+!m-z+...+el (w)) f * (w)dw for all integers li 2 0, (56) 

where each of Hi(w) denotes an L1 real-valued function (i = 1,2, .  . . ,m).  It is, in 
general, difficult to evaluate such higher-order correlation functions explicitly. However, 
it is simplified if the following condition is satisfied. 

Now define a class of piecewise monotonic maps for which there is a nontrivial 
real-valued function H(w) satisfying 

which is a general version of eq. (32). 
Theorem 2: For any real-valued functions Hn(w) (n = 2,3,. . . , m) satisfying eq.(57), 
and f o r & >  1 ( n =  1 , 2 , . . . , r n - l ) ,  

Note that, in the above theorem, Hl(w) need not satisfy eq. (57). 
Next, let cm = UoUl . . - Urn-1 be an arbitrary string of m binary digits where Un E 

{0,1) (0 5 n 5 rn - 1). Then there are 2" possible strings. Let d ~ )  = zlr)u?) . . . uLY1 
be the r-th string with binary elements u r )  E {O,l). Furthermore, for any L1 binary 
function G(w), introduce a binary random variable 

where c (w)  = 1 - G(w) and a:) = 1 - ug). Then the probability of the event il;) in 
an infinite binary sequence {G(-rn(w))),",, is given by 

= ( p ~ m ~ ( l , l ~ ~ ~ ~ ~ l ~ ~ ~ ( ~ ~ d ~ ~ ) ~ ~ ~ ( ~ l ~ ~ ~ ) , ~ ~ ~ ~ ~ ~ - ~ ( ~ ~ d ~ ~ ) ) ) . ( 6 ~ )  - 
m-l 

We can give the following corollary [14]. 
Corollary 3: For any binary function B(w) satisfying eq.(57), we can easily get 

~rob(z$A); B) = (B)'(l - (a))"-", 

where s is the number of 1 in {u$))~g~. 

The above corollary implies that {B(?(w))),"=, is a sequence of i.i.d. binary random 
variables in the sense that it can realize a Bernoulli sequence with probability (B). Note 
that we can get a fair Bernoulli sequence when (B) = i, that is, an m-distributed binary 
random sequence. 



5 Applications to  Communications 

Spread spectrum techniques are due primarily to properties of spreading sequences 
(or pseudonoise (PN) sequences) [4]. Various classes of PN sequences have been pro- 
posed most of which are generated by LFSR sequences such as the families of the Gold 
sequences and of the Kasami sequences with low even-correlation values [4],[5]. Let 
us consider information data with different significant bits to be transmitted, such as 
(color) image data. In such a situation, we can assign spreading sequences of longer 
period to more significant bits than to less ones in order to reduce the error prob 
abilities of significant bits by using spreading sequences of variableperiod [I 91, [20]. 
Such a system becomes asynchronous. Since in asynchronous direct-sequence spread- 
spectrum multiple access (DSISSMA), the bit error probabilities depend primarliy on 
both even and odd correlation values of spreading sequences causing multipleaccess 
interference(MAI), we propose to use a spreading sequence of i.i.d. binary random 
variables whose statistical properties, such as distributions of correlation values, can be 
evaluated theoretically. 

On the other hand, stream ciphers provide probably the most important method 
of modern encipherment[6]. The central problem in stream cipher cryptography is 
the difficulty of efficiently generating unpredictable running-key sequences of binary 
signals from a short and random key. Although such an unpredictable sequence can 
be generated in various ways, LFSR sequences are employed in nea.rly all methods 
regardless of their possible cryptographic weaknesses. Since a chaotic sequence of i.i.d. 
binary random variables has several cryptographic characteristics, we can implement a 
stream cipher system using such a chaotic running-key sequence of i.i.d. binary random 
variables [21], [22]. 

6 Concluding Remarks 

We have given simple methods to generate a sequence of i.i.d. binary random variables 
by means of modulo 2 addition of threshold sequences. We have also given a sufficient 
condition for a binary function to produce a sequence of i.i.d. binary random variables. 
Such a binary function is a generalized version of the Rademacher function for the 
dyadic map [7]-[9]. Furthermore, applications of such a sequence to communications 
are also briefly given. 
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