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Abstract 
Molecular dynamics (MD) and Monte-Carlo (MC) simulations of low-energy (<500eV) 
Ar ion irradiation on Si substrates were performed in order to investigate the mixing and 
sputtering effects. Both MD and MC simulation show similar results in sputtering yield, 
depth profile of projectile and mixing of substrate. For these incident energies, the depth 
of the mixed region is determined by the implant range of incident ions. For example, 
when the incident energy is 500eV, the Ar ions reach a depth of 40Å so that the Si atoms 
that reside shallower than 40Å are fully mixed at an ion dose of about 5.0×1016atoms/cm2. 
The resolution of secondary ion mass spectrometry (SIMS) was also studied. It was found 
that the resolution of SIMS depends on the depth of mixing, which depends in turn on the 
implant range of the probe ions. This is because the mixing of substrate atoms occurs 
more frequently than sputtering, so that the information about the depth profile in the 
mixing region is disturbed. 
PACS=79.20.Rf, 71.15Pd 
Keywords =Molecular dynamics simulation, Monte-Carlo simulation, SIMS resolution, 
ion mixing, sputtering 
 
Introduction 
Secondary ion mass spectrometry (SIMS) is a useful technique to measure the depth 
profile of components in target materials [1]. Improving the resolution of SIMS analysis 
is required more and more recently because of the rapidly shrinking design rules in LSI 
fabrication. It is considered that the resolution of SIMS depends on the incident energy. In 
the collisional process of the probe atom, the incident atom induces a large number of 
collisions, so that the original distribution of substrate atoms is disturbed. With increasing 
incident energy, the disturbance of the original coordinates in the target becomes more 
frequent, and this causes a decrease in SIMS resolution. To perform high-resolution 
SIMS, it is necessary to use low-energy probe ions. However, as the incident energy 
decreases, it becomes difficult to obtain a sputtering yield which is sufficiently high for 
measurements. Therefore, the proper energy of the probe atom should be selected 
according to the required resolution. In this paper, the collisional processes of Ar atoms 
onto Si(001) substrate are simulated with both molecular dynamics (MD) and 
Monte-Carlo (MC) methods. The sputtering yield and the disturbance of delta-doped 
layer are compared. From these results, the dependence of SIMS resolution on the 
incident energy of probe ions will be discussed. 
 
Simulation details 

In order to examine the mixing effects by ion beam irradiation, both molecular 
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dynamics (MD) and Monte-Carlo (MC) simulations of Ar ions impacting on Si substrates 
were performed. For MD simulation, the Stillinger-Weber model potential [2] was 
applied to the interaction between Si atoms and the Ziegler-Biersak-Littmark (ZBL) 
model potential [3] was applied to Si and Ar atoms. The ZBL model was also used in the 
TRIM calculation. The cut-off radius of Si-Ar interaction was set to 3.1Å, which 
corresponds to the mean bond length of Ar-Ar (in f.c.c. structure) and Si-Si (in diamond). 
A Si(001) substrate, which consists of 2048 Si atoms and has the dimensions of 
20Å×20Å×90Å, was prepared as the target material. In the simulation, 500 Ar atoms 
were radiated on the substrate sequentially every 770fs with the impact point selected 
randomly on each impact. After irradiation with 500 Ar atoms, the corresponding dose of 
Ar ions was calculated to be 1.25×1016atoms/cm2. The substrate temperature was kept at 
300°C by applying the Langevin dynamics method to the half bottom part of the 
substrate. 

The MC simulations were also performed using the TRIM Dynamics (T-DYN) 
code [4, 5], which is based on TC (TRIM-CASCADE) [6] and was improved to be able to 
follow all recoil atoms, primary knock-on atoms and secondary knock-on atoms in the 
same way as it would follow the incident ions. The target substrate has an area of 1×105Å2 
and a depth of 250Å. The parameters describing substrate property are set to: Eb (binding 
energy) = 2eV, Esb (surface binding energy) = 3eV and Ed (displacement energy) = 3eV. 

In both cases of MD and T-DYN simulation, Ar ions were radiated at normal 
incidence to the surface with energies of 100, 200 and 500eV. Si marker layers with 
thickness 2.5Å, which corresponds to two mono-layers of Si(001), were positioned at 
depths of 0Å, 10Å, 20Å and 40Å. The evolution of the mean depth and the deviation of 
each marker layer were examined in order to discuss the mixing effect by ion irradiation. 
The sputtered depth and the number of sputtered marker atoms provide the SIMS profile. 
From these SIMS profiles, the energy dependence of the SIMS resolution could be 
discussed. 
 
Results and discussion 

Fig. 1 shows the energy dependence of the sputtering yield of Ar ions to Si(001) 
substrate calculated by both MD and T-DYN. For incident energies below 1keV, the 
sputtering yield rapidly decreases as the incident energy decreases. Fig. 2 shows the 
distribution of incident Ar ions by MD (Fig. 2a) and T-DYN (Fig. 2b). The mean implant 
depth and the deviation in each simulation are given in parentheses in the legends of Figs. 
2a and 2b. From Fig. 1 and Fig. 2, both T-DYN and MD show similar sputtering yields 
and implant profiles in the incident energy range of 100eV to 500eV. These results 
indicate that the substrate property parameters for T-DYN are confirmed for these low 
energy ion impacts. 

The evolution of the Si marker layer was investigated using the MD and MC 
methods. Fig. 3 shows snapshots of mixing by Ar ion with 500eV calculated by MD 
simulation. The atoms in the marker layer at 0Å, 20Å and 40Å are indicated as large 
circles and other substrate Si atoms are represented by small dots. On the other hand, the 
results by T-DYN calculations at 500eV Ar ion irradiation with an atomic dose of 
1.0×1015atoms/cm2 (Fig. 4a) and 1.0×1016atoms/cm2 (Fig. 4b) are shown in Fig. 4. It is 
shown in both MD and T-DYN calculation that, as the ion dose increases, the surface 
marker at 0Å expands to a deeper region in the substrate, whereas the layer at 20Å 
expands isotropically, and the deeper layer at 40Å moves towards the surface to a 
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shallower region. At ion doses above 1.0×1016atoms/cm2, these three makers show a 
similar profile in shape and the distribution of marker atoms is close to that of incident Ar 
atoms shown in Fig. 2. 

Fig. 5 shows the dose dependence of the mean depth of each marker layer 
calculated by both MD and MC. The thick lines indicate the results by T-DYN 
calculation and symbols and error-bars are those obtained by MD calculation. The upper 
figures show the results with the dose ranging from 0 to 1.4×1016atoms/cm2, and the 
lower ones show doses ranging to 1.0×1017atoms/cm2. The transition of the surface level 
is calculated from the sputtering yield and is shown as thin lines. Both MD and T-DYN 
results show similar profiles for all marker layers. In the case of the irradiation with 100 
and 200eV, the marker layer at 40Å does not extend, which is different from the case of 
500eV. As the ion irradiation proceeds, the mean depth of each marker layer converges to 
the mean implant depth of the incident Ar atoms. Fig. 2 and 5 indicates close correlations 
between the implant depth and the mixing region. In the case of 200eV Ar ion irradiation, 
for example, the marker at 40Å moves rapidly towards the surface when the atomic dose 
is above 3.0×1016atoms/cm2. This is because, as the sputtering proceeds, the depth of the 
marker at 40Å becomes more and more shallow. The sputtered depth at 
3.0×1016atoms/cm2 is calculated to be 8.2Å, and thus the thickness of the mixing region 
could be estimated to be about 30Å (≈40Å-8.2Å). This thickness corresponds to the 
implant range of Ar ions with 200eV, which in turn is calculated to be 28.1Å by the 
formula (15.5Å (mean depth) + 2×6.3Å (the deviation)). These results suggest that, with 
these low-energy ion implantations, the mixing of the implant region occurs faster than 
surface sputtering. 

From the sputtering yield and the number of sputtered marker atoms, T-DYN 
simulations provide the SIMS response functions for the delta-doped maker layer. Fig. 6 
shows the SIMS response functions by Ar ions accelerated with 100, 200 and 500eV. In 
all figures the dashed and dotted lines indicate the responses from the markers at 20Å and 
40Å, respectively. The solid-thick line is the sum of the two response lines in each figure, 
and is expected to represent a SIMS profile in real experiments. In any case, the signal 
from the marker at 20Å is detected at a lower dose than that expected from the sputtering 
yield, because of mixing of the surface region. In the case of 500eV, the signal from 40Å 
is also detected at the sputter depth of 3Å. This result means that both marker layers are 
mixed fully, as shown in Figs. 3, 4 and 5. As the incidence energy decreases, the 
penetration depth and the thickness of the mixed region are reduced. In the cases of 100 
and 200eV of incident energy, the total signal shows two peaks, which can be divided into 
2 different signals. Comparing the profiles at these incident energies, the signal from 20Å 
starts to increase at the sputtered depth of 0Å in both cases, whereas the signal from 40Å 
is detected at 14Å for 100eV and at 8Å for 200eV. This result indicates that the thickness 
of the mixing layer is 26Å for 100eV and 32Å for 200eV, which agrees with the results 
shown in Fig. 5. It is assumed that the resolution of SIMS measurement equals the 
thickness of mixing depth and also the implant range of probe ions. 
 
Conclusions 
The evolutions of marker layers in a Si substrate by sequential Ar ion radiations were 
investigated using the MD and MC methods. Both types of simulation show results 
consistent with each other in regard with sputtering yield, implant profile and mixing 
phenomena. At an incident energy of 500eV, the surface region shallower than 40Å is 
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mixed, so that the marker layer at 20Å extends itself isotropically, whereas the marker at 
40Å goes up to a shallower region. The SIMS resolution depends on the depth of the 
mixed region and therefore depends on the incident energy of probe ion. From the 
T-DYN calculation, it was found that the energy of 200eV, at which the Ar probe ion 
gives about 30Å of implant and mixing range, is the highest energy to resolve the marker 
separated with 20Å by SIMS analysis. As the incident energy decreases, the implant and 
mixing ranges are reduced, and the resolution is expected to improve further. 
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Fig. 1: Incident energy dependence of Si sputtering yield calculated by MD and T-DYN. 
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Fig. 2: Depth profile of implanted Ar ions calculated by MD (upper, a) and T-DYN 

(lower, b) 
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Fig. 3: Snapshots of the mixing of Si substrate by Ar irradiation with 500eV/atom, 
calculated by MD. Large circles represent the marker Si atoms, which are initially 
positioned at 0Å, 20Å and 40Å 
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Fig. 4: Distribution of marker atoms calculated by T-DYN. The incident energy is 500eV 
and the atomic dose is (a) 1.0×1015/cm2 and (b) 1.0×1016/cm2. 
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Fig. 5: Ion dose dependence of the mean depth of marker atoms with sequential Ar 
impacts with (a) 100eV, (b) 200eV and (c) 500eV. Lines and symbols represent the 
results by T-DYN and MD, respectively. The dose dependence of the sputtered depth is 
shown with thin line. 
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Fig. 6: SIMS response profile of two marker layers calculated by T-DYN. The incident 
energy is (a) 100eV, (b) 200eV and (c) 500eV. 
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