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RESUMEN

El separador espiral es un dispositivo de concentración 
por gravedad. Fue inventado por Humphreys in 1941.Ha 
sido diseñado y desarrollado en base a la experiencia y 
a la gran variedad de prototipos y modificaciones. El ob-
jetivo principal del presente estudio es la simulación del 
flujo de partículas de concentraciones de sólidos más rea-
les (15% de sólidos en peso) en un separador espiral. El 
estudio se ha basado en el método Eulerian y el modelo 
de turbulencia RNG K-
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SUMMARY

Spiral separator is a gravity concentration device. It was invented by Humphreys in 1941.It is 
firstly designed and developed based on experience and through many testing of prototypes 
and modifications. The main objective of the present study is simulation of the particulate-

. Los resultados se centran en las 
características del flujo de partículas como la velocidad y 
la distribución y concentración de partículas en la curva-
tura espiral. Los resultados pronosticados se comparan 
con los valores experimentales en el caso de una espiral 
de carbón tipo LD9. Las comparaciones entre los datos 
numéricos y los medidos coinciden bastante.
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SUMMARY

Spiral separator is a gravity concentration device. It was 
invented by Humphreys in 1941.It is firstly designed and 
developed based on experience and through many testing 
of prototypes and modifications. The main objective of the 
present study is simulation of the particulate-flow of more 
realistic solids concentration (15% solids by weight) in spi-
ral separator. The study is based on Eulerian approach and 
RNG K-
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SUMMARY

Spiral separator is a gravity concentration device. It was invented by Humphreys in 1941.It is 
firstly designed and developed based on experience and through many testing of prototypes 
and modifications. The main objective of the present study is simulation of the particulate-

 turbulence modeling. The results focus on par-
ticulate-flow characteristics such as velocity, and distribu-

tion and concentration of particulates on the spiral trough. 
The predicted results are compared with the experimental 
in case LD9 coal spiral. Comparisons between numerical 
and measured data show good agreement.

Key words: Spiral separator, particulate-flow, numerical 
simulation, turbulence modeling, gravity separation, CFD.

RESUM

Un separador d’espiral és un dispositiu de concentració 
per gravetat. Va ser inventat per Humphreys en 1941. Va 
ser dissenyat i desenvolupat en primer lloc sobre la base 
de l’experiència i a través de moltes proves de prototips 
i modificacions. L’objectiu principal d’aquest estudi és la 
simulació del fluix de partícules de concentració de sòlids 
més real (15% de sòlids en pes) en un separador d’es-
piral. L’estudi es basa en el mètode Eulerian i el model 
de turbulència RNG K-
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. Els resultats corresponen a les 
característiques del fluix de partícules, com la velocitat i 
la distribució i concentració de partícules al canal espiral. 
Els resultats predits es comparen amb els valors experi-
mentals en el cas d’un espiral de carbó LD9. Les compa-
racions entre les dades numèriques i les mesurades coin-
cideixen bastant.

Paraules clau: Separador d’espiral, fluix de partícules, 
simulació numèrica, model de turbulència, separació per 
gravetat, CFD
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INTRODUCTION

A spiral concentrator consists of an open trough that 
twists downward helically around a central axis. Majority 
of current designs of spirals have 5 to 7 turns. It is basi-
cally a helical sluice, as shown in Fig. (1) Spiral separator is 
firstly designed and developed based on experience and 
through many testing of prototypes and modifications. Be-
cause of the simplicity of operation and low cost, spirals 
have been widely used in the mineral industry to separate 
high-density particles from low-density ones. Develop-
ment of any spiral design remains largely a process of trial 
and error. To reduce development time and costs, many 
experimental models of the spiral were made. Traditionally 
a spiral separator has been used effectively in the coal and 
beach sand industries. Currently, it is successfully used to 
beneficiate a number of ores such as chromite, rutile, gold 
ore, iron ore, mainly due to its operational simplicity and 
cost effectiveness. Recently, there has been an acceler-
ated growth in the use of spirals for iron ore beneficiation. 
The demand for higher efficiency of separation is compro-
mised by a higher capacity in the size range of 3 mm to 
45 μm. For iron ore beneficiation, this size range is con-
sidered coarse to be treated by floatation and it is consid-
ered fine for other conventional gravity separators like jig 
which performs better for feed materials above 2 mm size. 
Despite all its advantages, there has been an increased 
demand to design spirals to accommodate feed materials 
that vary oversize as well as grade. So, the challenge has 
been to design the correct profile of the spiral. Since its 
inception, a lot of work has been done to understand and 
improve the performance of spirals (Mishra and Tripathy, 
2010; Holland-Batt,1995; Machunter et al., 2003; Gulsoy 
and Kademli,2006; Jancar et al. 1995), However, to pre-
dict the performance of a spiral for any given application, 
and more importantly, to design spirals for a particular ore 
type to obtain a desired grade, a lot of experiments must 
be done. These are quite cumbersome and costly. Hence, 
there are many options in the simulation of the separation 
process in spiral separators. 

Fig. (1) A Humphreys spiral.

Mathematical models are therefore of great value for de-
termining how such flows are influenced by fluid proper-
ties and geometrical parameters and, hence, for predict-
ing and improving the performance of these separators 
(Stokes et al.,2004; Ferziger and Peric, 1999; Loveday 
and Cilliers,1994; Kuang et al, 2014; Radman et al,2014). 
These models started by Burch (1962) when he assumed 
the pulp to be a liquid of uniform viscosity. He also as-
sumed that the secondary flow would not affect the prima-
ry flow. Wang and Andrews (1994) introduced a first step 

in the development of a mechanistic model of the spiral 
operation. The model determines the flow fields for simpli-
fied rectangular spiral sections. Jancar et al (1995) inves-
tigated the fluid flow on LD9 spiral using their developed 
code. All these models were developed with time to be 
more reliable. Mathews et al. (1998a,1998b,1999a,1999b) 
presented CFD modeling of the fluid flow on spiral trough. 
Doheim et al.(2013) suggested CFD model based on Eu-
lerian approach and turbulence model in case of low solid 
concentration from 0.3 to 3% solids by weight. 
The present paper followsthe overall CFD modeling flu-
id-particle flow in gravity concentrators in spiral separa-
tors. The discussions are concentrated on the adoption of 
realistic solid percent in spiral separatorsof multiphase flow 
models as well as model validation against experimental 
data.The present study suggests a particulate-flow com-
putational model based on Eulerian approach. The present 
model is validated using the experimental data of LD9 spiral 
(Holland-Batt and Holtham,1991; Holtham,1997; Holtham, 
1992). The main objective of this study is to obtain a com-
prehensive mathematical model according to Computa-
tional Fluid Dynamics (CFD). The present study will focus 
on the shortcomings of the previous mathematical models 
so as to obtain a more accurate and reliable model.

SPIRAL SEPARATOR DESCRIPTION

Spiral Geometry
The design parameters of the spiral separator can be listed 
as: spiral pitch (u), profile shape, length (L), and inner and 
outer trough radii (ri , ro) that govern the curvature (y) of the 
channel. The parameters are shown in Fig. (2) and defined 
as follows (Doheim et al.,2013):
Pitch: u = 2 π r tan (a)                         (m)
Height loss: h = R r tan (a)                (m)
Mainstream distance: L(r)=R r/cos(a) (m)
Curvature: y=(ri+ro)/2W        (dimensionless) 
Trough width: W=ro–ri            (m)
Spiral height: H=n*u               (m)
Where, R is the angular distance in radians in the main-
stream direction from the spiral inlet (=2 π  , on full turn), 
r is the radial distance from the centerline axis, a is the 
descent angle, H is the spiral height and W is the trough 
width. The geometrical parameters for LD9 spiral are stat-
ed in Table 1 (Doheim et al.,2013).

Fig. (2) Schematic drawing of a spiral separator.
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Table (1) The geometrical parameters of LD9 
spiral separator (Doheim et al.,2013

Inner 
Radius
ri(mm)

Outer 
Radius 
ro (mm)

Trough 
Width

W (mm)

Pitch
u (mm)

Curva-
ture

y

Descent 
angle
α( o )

Number 
of Turns

n

70 350 280 273 0.75 7 - 32 6

Mechanism of Particle Separation 
Feed is introduced through the feed box at the top of spi-
ral, which establishes the correct pattern of the flow. The 
feed enters the spiral trough as a homogenous slurry. The 
pulp flows spirally downward, the spiral separates miner-
als in accordance with their specific gravity and particle 
size. Low density and small size particles remain suspend-
ed and travel outwards due to the centrifugal force to ac-
cumulate in the outer trough regions, whilst high density 
and coarse size particles settle in the flow to slide inwards 
toward the central column (Fig. 3).

Fig. (3) Cross section of spiral trough.

GOVERNING EQUATIONS AND NUMERICAL 
DESCRIPTION OF THE MODEL

GOVERNING EQUATIONS 

To model particulate-flow on a spiral separator, two-phase 
flow (water and solid) is considered. The continuity and mo-
mentum equations are used for multiphase (water and solid) 
flow throughout the domain. The flow on a spiral separator 
is considered to be Newtonian and turbulent. Continuity 
and Navier–Stokes equations supplemented by a suitable 
turbulence model are appropriate for modeling the spiral 
separator flow. The following transient equations describe 
the conservation of mass and momentum equations.

Continuity Equation 
The continuity equation for phase q (ether water or partic-
ulate-phase) is
                  𝝏𝝏

𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:
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(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 is veloc-
ity vector of phase , 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 is the material density of phase  
and q is the phase (either water or solid).

Momentum Equations
The momentum equations for two phases (“fluid and par-
ticulate” or “water and solids”) represent a multi-fluid gran-
ular model to describe the flow behavior of a fluid-solid 
mixture. The solid-phase stresses are derived by making 

an analogy of the random particle motions arising from 
particle-particle collisions. The momentum conservation 
equations for the fluid (liquid (water, l) ) and  particulate 
(solids, s) are:

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

(2)

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:

∑
=

+++⋅∇+∇−=⋅∇+
∂
∂ N

l
sllliftlllllllllll RFgpvvv

t 1
,)()(


ραταραρα (2)

∑
=

+++⋅∇+∇−∇−=⋅∇+
∂
∂ N

l
lssliftssssssssssss RFgppvvv

t 1
,)()(


ραταραρα (3)

Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

(3)
Where: 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 is the 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 phase stress-strain tensor.

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

         (4)

Where, 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 and 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 are the shear and bulk viscosity of 
phase q, 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

is a lift force, p is the pressure shared 
by all phases, 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

is velocity of phase velocity of phase q 
(liquid or solid-particulate phase), 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.

The simple interaction term is:

6

 is velocity of liquid 
phase, 

𝝏𝝏
𝝏𝝏𝝏𝝏
�𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒� +  𝛁𝛁. �𝜶𝜶𝒒𝒒𝝆𝝆𝒒𝒒𝒗𝒗��⃗ 𝒒𝒒� = 𝟎𝟎 (1)

Where 𝜶𝜶𝒒𝒒 is the volume fraction of phase 𝒒𝒒, 𝒗𝒗��⃗ 𝒒𝒒 is velocity vector of phase 𝒒𝒒, 𝝆𝝆𝒒𝒒 is the 

material density of phase q and q is the phase (either water or solid).

3.1.2. MOMENTUM EQUATIONS

The momentum equations for two phases (“fluid and particulate” or “water and solids”) 

represent a multi-fluid granular model to describe the flow behavior of a fluid-solid mixture. 

The solid-phase stresses are derived by making an analogy of the random particle motions 

arising from particle-particle collisions. The momentum conservation equations for the fluid 

(liquid (water, 𝒍𝒍) ) and  particulate (solids, 𝒔𝒔) are:
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Where: 𝝉𝝉�𝒒𝒒 is the 𝒒𝒒𝝏𝝏𝒕𝒕 phase stress-strain tensor.

𝝉𝝉�𝒒𝒒 = 𝜶𝜶𝒒𝒒𝝁𝝁𝒒𝒒�𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒 + 𝛁𝛁𝒗𝒗��⃗ 𝒒𝒒𝑻𝑻� + 𝜶𝜶𝒒𝒒 �𝝀𝝀𝒒𝒒 −
𝟐𝟐
𝟑𝟑
𝝁𝝁𝒒𝒒�𝛁𝛁.𝒗𝒗��⃗ 𝒒𝒒𝑰𝑰� (4)

Where, 𝝁𝝁𝒒𝒒 and 𝝀𝝀𝒒𝒒 are the shear and bulk viscosity of phase q, 𝑭𝑭𝑳𝑳𝑳𝑳𝑳𝑳𝝏𝝏 ,𝒒𝒒is a lift force, p is the 

pressure shared by all phases,𝒗𝒗𝒒𝒒 is velocity of phase velocity of phase q (liquid or solid-

particulate phase), 𝒗𝒗𝒍𝒍 is velocity of liquid phase, 𝒗𝒗𝒔𝒔 is velocity of solid phase, and 𝑹𝑹𝒔𝒔𝒍𝒍 or 

𝑹𝑹𝒍𝒍𝒔𝒔is an interaction force between phases. 

Equations (2 & 3) must be closed with appropriate expressions for the inter-phase force 

𝑅𝑅𝑠𝑠𝑠𝑠.This force depends on the friction, pressure, cohesion and other effects, and is subject to 

the conditions that 𝑹𝑹𝒔𝒔𝒍𝒍 = - 𝑹𝑹𝒍𝒍𝒔𝒔 and 𝑹𝑹𝒍𝒍𝒍𝒍 = 𝟎𝟎.
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Where,𝑹𝑹𝒔𝒔𝒔𝒔 is an interaction force between phases, 𝑲𝑲𝒔𝒔𝒔𝒔(=𝑲𝑲𝒔𝒔𝒔𝒔) is the momentum-exchange 

coefficient between fluid [not “or solid”] phase (l) and solid phase (s), and N is the total number of 

phases.

𝑭𝑭𝒔𝒔𝒍𝒍𝒍𝒍𝒍𝒍 =  −𝟎𝟎.𝟓𝟓𝝆𝝆𝒒𝒒𝜶𝜶𝒑𝒑�𝒗𝒗��⃗ 𝒒𝒒 − 𝒗𝒗��⃗ 𝒑𝒑� × (𝛁𝛁 × 𝒗𝒗��⃗ 𝒒𝒒) (6)

3.2. TURBULENCE MODELS

Doheimet al. (2013) deduced that RNG-K-є turbulence model is the most accurate turbulence 

in case of particulate flow of spiral separator modeling. The RNG-K-є turbulence model is 

derived from the instantaneous Navier-Stokes equations. The derivation is based on a 

mathematical technique called "renormalization group" (RNG) method (Yakhot and 

Orszag,1986; Escue and Cui,2010 ). Transport equations for the RNG K-є model have a 

similar form to the standard k-є model.
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The RNG turbulence model is more sensitive to the mean rate of strain because of εR in Eq.8.

Where, Gk is the generation of turbulence kinetic energy due to the mean velocity gradient. 

Gk may be defined as follows:
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Where: terms ( - jiuu ′′ρ ) are known as the Reynolds stresses.

The effective viscosity, μeff, is given by 
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Where: µ is dynamic viscosity (kg/ms).

The main difference between the RNG and standard k-є models lies in the additional term in 

the є equation and is given by
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Where, ,εη kS ∗= and S is the modulus of the mean rate of strain tensor, 0η and β are 
constants equal to 4.38 and 0.012, respectively. The model constants are set as C1є=1.42, 
C2є=1.68, and Cμ= 0.0845.

3.3. COMPUTATIONAL DOMAIN

The computational domain (Fig. 4) is different from that used in low solid percentage

(Doheim et al.,2013) This is because the free-surface profile of current domain was taken 

from experimental investigation (Holtham,1992).The free-surface profile formed the upper 

boundary of the computational domain and thus remained fixed during the coupled water-

particle calculation. The computational domain consists of one complete turn of the LD9

spiral separator. The number of cells are 150 × 40 × 10 in the mainstream, cross-stream and 

depth-wise directions, respectively. The total number of cells is 60000. The computational 

grid is a structured mesh consisting of hexahedral control volumes. Careful consideration was 

paid to minimize the dependence of solution on the mesh by improving the clustering of cells 

near solid walls until results are almost constant. The investigation was carried out using a 

different number of cells, namely: 40000, 50000, 60000, 70000 and 80000. It was found that 

the number of cells in the range of 60000 gives the same results as the higher numbers of cells. 

The least y+ from the wall for the first node was about 4.
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Fig. (4) Computational domain of LD9 spi-
ral at 6 m3/hr flow rate and 15 % solids

in feed with reduced cells for clarity.

BOUNDARY CONDITIONS 

 Four boundaries are surrounding the suggested domain, 
namely: inlet plane, outlet plane, solid walls. At the inlet 
boundary of the spiral, velocity components and volume 
fractions of solids are specified to give the desired flow 
rates of slurry. At the exit of the domain (outlet plane), 
velocity gradients are set to zero. At the trough bottom, 
no-slip conditions are suggested for water only. At the 
top surface of the computational domain, fixed surface is 
used. The wall-roughness constant is set to 0.5. The wa-
ter phase on spiral separator is assumed to have constant 
physical properties. Thus, the assumed properties are 

ρwater = 1000 kg/m3, μwater = 0.0009 kg/m s. Table (2) shows 
the details of densities (  and sizes () of used particles.

Table 2: The properties of used particles

Particle type Density (ρp )
(kg/m3)

Diameter (Dp ) 
(Micrometer)

Glass beads 2440 75 530 -

Quartz 2650 75 530 1400

Coal 1450 75 530 -

NUMERICAL TREATMENT

The model of particulate-flow uses a time-dependent for-
mulation. The numerical solution is based on finite volume 
method. The equations were discretized using the Quad-
ratic Upwind Interpolation (QUICK) scheme. The equations 
were solved with the unsteady solver with a time step of 
0.001 sec. Residuals of all variables were restricted to 1×10-
5. A validated commercial code (Fluent 6.3.26 User’s Guide, 
2006) was used to solve the above equations of the model.

RESULTS AND DISCUSSIONS

In the present work, the numerical predictions of particu-
late-flow in LD9 spiral separator at flow rate of 6 m3/hr are 
compared with the experimental results (Holland-Battand 
Holtham,1991; Holtham,1997; Holtham, 1992). The availa-
ble experimental data to validate the numerical results are 
given in a certain part (stream) on the spiral trough. The 
number of streams on spiral trough are eight streams. It 
means that the spiral trough is divided into eight streams 
by putting seven splitters as shown in Figure (5). The mod-
el is investigated at realistic solid percentage (15%) using 
RNG k-ε model (most accurate turbulence model, (Doheim 
et al.,2013). The particulate-flow parameters are shown in 
the following sections. The used particles in this case are 
shown in Table (3). 

Table 3: The used particles in the case of 15 % solids.

Particles Type Density (ρ) Size  (µm) Mix ratio

Coal 1450 75 2

Coal 1450 530 2

Quartz 2650 75 1

Quartz 2650 530 1

Fig.(5) Eight sampling streams employed on the spirals.

Particle concentrations
Figure (6) shows the predicted and experimental (Hol-
land-Batt and Holtham, 1991;Holtham,1992) values of 
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particle concentrations by volume in each stream. There is 
a good agreement between the predicted and the experi-
mental values as shown in Figure. 
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Fig. (6) Predicted and experimental (Holland-Batt and 
Holtham, 1991; Holtham,1992) values of particle concen-

trations by volume in each stream, 15% solids in feed.

PULP VELOCITY

The predicted mean-stream pulp velocity for 15% solids is 
shown in Fig. (7).The mean-stream pulp velocity increases 
smoothly in the outward-direction away from the center-
line of the spiral trough. The predicted pulp-velocity con-
tours are shown in Fig.(8).

Fig.(7) The predicted values of mean-stream pulp velocity, at 15 % solids.

Fig.(8) The predicted pulp-velocity contours (m/s), at 15 % solids. 

Fig. (9) The predicted values of stream flow-rate, at 15 % solids.
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Fig.(7) The predicted values of mean-
stream pulp velocity, at 15 % solids.
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Fig.(8) The predicted pulp-velocity con-
tours (m/s), at 15 % solids.

STREAM FLOW- RATE

The predicted values of stream flow-rate are shown in 
Fig. (9). It is clear from the figure that the stream flow-rate 
values depend on the cross-sectional area and the mean 
pulp-velocity of each stream.  

Fig.(7) The predicted values of mean-stream pulp velocity, at 15 % solids.

Fig.(8) The predicted pulp-velocity contours (m/s), at 15 % solids. 

Fig. (9) The predicted values of stream flow-rate, at 15 % solids.
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Fig. (9) The predicted values of stream 
flow-rate, at 15 % solids.

STABILITY OF SOLID DISTRIBUTIONS 

Solid distributions stability means the distributions at the 
steady-state condition or the final distributions at the end 
of the spiral trough. It is very important to investigate and 
predict the number of turns that is required for the sta-
bility of solid distributions. The number of enough spiral 
turns fulfills when the solid distributions become constant 
and do not change with increasing the number of turns. 
The constant solid distribution fulfills when agreement 
between predicted values of any spiral turn and stability 
distribution of spiral outlet is satisfied. In this study, the 
stability distribution is taken as the solid distribution at the 
end of the sixth turn of the spiral separator. This is because 
LD9 spiral separator has only six turns. 
The stability of solid distribution is predicted using two 
cases of solid percent, namely: 0.3% and 15%at flow rate 
of 6 m3/hr. For the above purpose, solid distributions on 
the spiral trough were chosen at the outlet of each spiral 
turn. The solid distributions of cases 0.3% and 15% solids 
are shown in Figs. (10) and (11), respectively.

Fig. (10) Change of the solid distributions with the number of turns
at 0.3% solids and 6 m3/hr flow rate.
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Fig. (10) Change of the solid distribu-
tions with the number of turns

at 0.3% solids and 6 m3/hr flow rate.
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Fig. (11) Change of the solid distribu-
tions with the number of turns 

at 15% solids and 6 m3/hr flow rate.

Figures (10) and (11) show the solid distributions as a 
volume fraction. After the first spiral turn, the solid distri-
butions are greater than the final distribution in the outer 
region of the spiral trough, while, it is lower in the inner 
region. It means that the particulate-flow moves toward 
the outer part of trough at the end of the first turn. After the 
second spiral turn, the deviation between solid distribution 
and final (stability) distribution decreases comparing to the 
first turn. After the third spiral turn, the agreement between 
water depth and stability depth is about 95% in case of 
0.3% and less than 95% in case of 15% solids. After the 
fourth turn, a complete agreement between the solid dis-
tributions and stability distributions is achieved in case of 
0.3% solids while the complete agreement in case of 15 % 
solids is satisfied after the fifth turn. This means that four 
turns of LD9 spiral separator are enough for the stability of 
the solid distributions in case of 0.3 % solids and five turns 
is required for stability in case of 15% solids. This point 
guides the designers to the suitable number of turns that is 
enough for the stability of solid distributions. This concept 
is very important for designers and operators.

CONCLUSIONS

From this study, the following conclusions can be stated:
1. The suggested numerical model can be applied for 

any spiral separator after modifying the domain ge-
ometry to the required separator.

2. To improve the agreement between the predicted and 
the experimental results, the experimental free-sur-
face profile was used to complete the computational 

domain. This achieved a good agreement between 
the model predictions and the experimental results. 
Thus, validation of the particulate-flow model is sat-
isfied.

3. The number of turns required to reach the steady-
state of particle size distribution increases with in-
creasing the solid content of the feed pulp. 
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Fig. (11) Change of the solid distributions with the number of turns 
at 15% solids and 6 m3/hr flow rate.

Tables:

Table (1) The geometrical parameters of LD9 spiral separator (Doheim et al.,2013)

Inner 
Radius
ri(mm)

Outer 
Radius
ro (mm)

Trough 
Width

W (mm)

Pitch
u

(mm)

Curvature
ψ

Descent 
angle
α( o )

Number 
of Turns

n

70 350 280 273 0.75 7 - 32 6

Table 2: The properties of used particles
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