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Abstract: 

 

Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific 
cysteine residues on light harvesting proteins present in cyanobacteria and red algae.  The lyases 
responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been 
fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the 
biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies 
show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is 
needed in order to correctly and efficiently attach PEB to the b-subunit of PE.  MS analyses of 
the recombinant b-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at 
Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples 
from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and 
more phycocyanin than WT cells grown under green light, conditions which should maximize 
the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon 
mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant 
strain when compared with WT, suggesting that CpeT may also play a direct or indirect 
regulatory role in transcription of these operons or their mRNA stability, in addition to its role as 
a PEB lyase for Cys-165 on b-PE. 

 

Keywords: bilin lyase, chaperone, cyanobacteria, phycoerythrobilin, phycobilisome, post-
translational modification  

1 Introduction 
 
 Cyanobacteria are known for their characteristic colors due to their production of 
different pigments such as chlorophyll, carotenoids and phycobiliproteins (PBP). They maximize 



light harvesting for photosynthesis using megadalton protein complexes known as 
phycobilisomes (PBS). PBS are composed of PBP, which are heterodimeric protomers (αβ) that 
assemble into trimers and hexamers with the help of linker proteins [1]. The freshwater 
cyanobacterium Fremyella diplosiphon UTEX 481 (Tolypothrix sp. PCC 7601) used in this study 
has a PBS that is composed of rods containing phycocyanin [PC, absorbance maximum (λmax) 
~620 nm] and phycoerythrin (PE, λmax ~560 nm) which protrude from a core consisting of rods 
that contain allophycocyanin (λmax ~650 nm)[2, 3].  Each of these PBP is composed of a and b 
subunits which contain at least one covalently ligated linear tetrapyrrole or bilin.  In F. 
diplosiphon, PC and AP contain exclusively phycocyanobilin (PCB) while PE contains only 
phycoerythrobilin (PEB) [2, 3].  The structure of the PBS from the red alga Grifithsia pacifica 
was solved and shows the complex nature of the interactions between different proteins as well 
as the complex arrangement of bilins, which play a major role in the photosynthetic function of 
the PBS [4].   

Some cyanobacteria can change their pigmentation to adapt to different light conditions 
using a process called chromatic acclimation [3]. F. diplosiphon undergoes Type-III chromatic 
acclimation (CA3), during which the PBP content of the PBS is changed under different light 
conditions. In F. diplosiphon, the distal rods of the PBS are composed of mostly PE under green 
light (GL) conditions while under red light (RL) conditions the rods are composed mostly of PC 
[5, 6]. Chromophore ligation to Cys residues on PBP is catalyzed by bilin lyases, enzymes which 
ensure that the right bilin is ligated to the correct cysteine (Cys) residue with the appropriate 
stereochemistry [7, 8]. There are three main families of bilin lyases; the CpcE/F family, the 
CpcS/U family and the CpcT family [7-11]. These families of lyases differ in structure, 
functionality and substrate specificity. Structurally, CpcE/F-type lyases are distinctly different 
from CpcS/U- and CpcT-type lyases. The crystal structure of CpcE/F was elucidated and shows 
that these enzymes have an α-solenoid structure formed by a series of roughly parallel layers of 
alpha helices that together are shaped like twisted crescents [12]. The structures of several 
CpcS/U-type lyases have been solved and form an 8-stranded anti-parallel, β-barrel structure 
with an α-helix [13, 14]. CpcT-type lyases are similar in structure to CpcS/U-type lyases and 
consist of a calyx-shaped β-barrel fold [15, 16]. CpcT-type lyases attach bilins to the β-subunit of 
PC at the Cys-159-equivalent position [10, 17]. The CpcT-family of lyases seems to be specific 
for one of the sites on b-subunits where the ligated bilin is in the S configuration at the chiral C31 
rather than the more common R configuration found in bilins attached by CpcE/F- or CpcS/U-
type family members [10]. 

In F. diplosiphon, not all of the lyases responsible for the chromophorylation of PE have 
been characterized. PE has six conserved Cys residues which act as ligation sites for five PEBs 
and include Cys-82 and Cys-139 on the a-subunit of PE (called CpeA); Cys-48/59, Cys-80, and 
Cys-165 on the b-subunit of PE (called CpeB) [18]. The PE lyases that have previously been 
characterized in F. diplosiphon include CpeY, CpeS, and CpeF, and these lyases require the 
chaperone-like protein CpeZ for optimal activity [19, 20]. CpeF, CpeY, and CpeZ are part of the 
CpcE/F lyase family while CpeS is in the CpcS/U family of lyases [20]. CpeS and CpeF were 
characterized as lyases that were responsible for the attachment of PEB to Cys-80 and Cys-
48/59, respectively in F. diplosiphon CpeB [19, 20]. CpeY is the lyase responsible for the 
attachment of PEB to Cys-82 of CpeA in F. diplosiphon; however, the yield of F. diplosiphon 
CpeA-PEB was higher when CpeY and CpeZ were expressed together [19]. The improved 
chromophorylation efficiency when CpeZ was present prompted more thorough studies of 
CpeZ’s function. CpeZ is a chaperone-like protein which helps facilitate CpeF, CpeS, and CpeY 



lyase activity by assisting with the folding and stability of PE subunits, especially F. diplosiphon 
CpeB [21]. 

The gene cpeT is paralogous to cpcT and is found in cyanobacteria that synthesize PE 
[10, 22, 23]. The similarities between cpeT and cpcT motivated us to characterize CpeT to 
complete the biosynthetic pathway characterization of the important fluorescent protein PE. The 
fluorescent nature of PE is a result of the attachment of bilins to the protein by lyases. Recently, 
the ΦcpeT gene in the cyanophage P-HM1 was found to encode a putative PBP lyase related to 
cyanobacterial CpcT-type lyases. The crystal structure of ΦCpeT showed that it had a similar 
fold and structure as CpcT from Nostoc sp. PCC 7120 [16]. Biochemical studies showed that the 
ΦCpeT specifically bound PEB in vitro, however, it was unable to attach the bilin to host PBP β-
subunit [16]. The binding of the bilin to ΦCpeT is significant because it was previously believed 
that the configuration of the lyase-bound bilin determined the final configuration of the newly 
formed stereocenter at C31 of PEB at the Cys-site of attachment as either the R or S isomer [14]. 
However, in this case, the bound ligand of ΦCpeT was determined to be 3(Z)-PEB as opposed to 
the expected preferred 3(E)-isomer that the S-configuration suggests [15].   

Here we examine the role and function of CpeT in the biosynthesis of PE in F. 
diplosiphon using heterologous multiplasmid coexpression experiments in E. coli and gene 
deletion experiments. Purified PBS of a cpeT knockout mutant (cpeT-)and wild type (WT) 
samples from F. diplosiphon were analyzed and compared. These data, along with the analysis of 
the recombinant protein activity, show that CpeT is the bilin lyase responsible for the ligation of 
PEB to Cys-165 on CpeB and its activity requires the chaperone-like protein, CpeZ, in order to 
efficiently ligate PEB to this position in E. coli. In addition, the cpeT- deletion mutant had higher 
cpeC operon transcript levels and lower cpeBA transcript abundance, suggesting CpeT may also 
play a direct or indirect regulatory role on the expression of these operons, in addition to its role 
as a PEB lyase for Cys-165 on b-PE.  
 
2 Materials and Methods 
 
2.1 Cyanobacterial mutant strains and growth conditions 

F. diplosiphon was cultured as previously described [24, 25]. To create cpeT null mutant 
strains, cpeT fragments were PCR amplified from F. diplosiphon genomic DNA. Fusion PCR 
using cpeT primers listed in Table S1 was performed and the cpeT fragments were cut with 
restriction enzymes that cleaved within the primer sequences and ligated into pJCF276 cut with 
EcoRI and NcoI. The clean deletion constructs of cpeT were confirmed by sequencing. F. 
diplosiphon was transformed by triparental mating and cpeT null mutant strains were selected as 
previously described [26, 27]. All parent E. coli strains used for triparental mating were DH5α 
MCR except 803, which carried the RP4 conjugative plasmid [28]. Growth curves were 
generated from 2 independent replicates of cells monitored at 750 nm every 24 h for 12 days. 
Variances were expressed as standard errors of the means. 

2.2 Genome and sequence analysis 
 F. diplosiphon gene sequences were retrieved from GenBank [29]. Amino acid sequences 
were analyzed using the ClustalW alignment tool from MacVector software V. 12.7.5 
(MacVector Inc., Apex, NC), BLASTp 2.3.1 from NCBI [30, 31], and the Phyre2 prediction 
system [32]. 
 



2.3 RNA purification and Northern blot analyses 
 RNA blot analysis was performed as previously described [24]. At least three 
independent experiments were carried out for each cell type. Probes used for examining mRNA 
levels were prepared by PCR amplification using the primers listed in Table S1. Blots were 
imaged and quantified as previously described [33]. Mann-Whitney U statistical test for 
significance was performed using SyStat13. 

2.4 Construction of expression plasmids 
 Plasmids used in this study are listed in Table S2. Some expression constructs were 
previously described, but the newly produced constructs were sequenced for confirmation. Each 
gene was amplified by PCR from F. diplosiphon chromosomal DNA using the primers listed in 
Table S1. Each resulting amplicon was cloned into Duet vectors (Novagen, Madison, WI) as 
listed in Table S2 after digestion with restriction enzymes (engineered into the primers; see Table 
S1). pCpeT2 (see Table S2) was used only to generate pCpeT3.  HT-CpeT was soluble, but its 
solubility increased when fused to NusA. 
 
2.5 Heterologous expression and purification of recombinant proteins 
 Recombinant proteins were expressed and purified from E. coli BL21 (DE3) cells as 
previously described [19]. Cells containing the Duet-1 vectors (Novagen/EMD Millipore Corp., 
Darmstadt, Germany) were grown to an OD600nm of 0.6 at 37°C and induced with 1 mM 
isopropyl 1-thio-β-D-galactopyranoside, after which the cells were allowed to grow at 18°C for 
an additional 24 h before being harvested by centrifugation. Cells were stored at -20 °C until 
ready for purification and analysis. 
 The cells were resuspended in Buffer O (20 mM Tris-HCl, pH 8.0, 50 mM NaCl, 50 mM 
KCl), 0.1x complete mini protease inhibitor cocktail (Roche, Indianapolis, IN) and 0.01 mg ml-1  
lysozyme in volumes based on the relative mass of the pellets. After a 30-min incubation period 
on ice, the sample was homogenized and passed three times through a French Pressure Cell Press 
at 18,000 psi, while keeping the sample chilled on ice.  The sample was then centrifuged at 
17,000 RCF for 20 min at 4℃ and separated into a pellet and supernatant sample. The 
supernatant sample was passed through Ni-NTA column to purify the hexahistidine-tagged (HT-
) protein as described [10]. This protein was dialyzed overnight in Buffer O and concentrated by 
ultrafiltration through an Amicon YM10 (Novagen/EMD Millipore Corp., Darmstadt, Germany) 
and analyzed by absorbance and fluorescence spectroscopy (described below). 
 
2.6 Isolation of cyanobacterial proteins 

PBS were isolated from F. diplosiphon as described [34, 35]. When cells reached an OD 
between 0.6-0.9 at 750 nm, cells were harvested by centrifugation at 8,000xg for 10 min. The 
cells were washed with and then resuspended in 0.65 M NaH2PO4/ K2HPO4 buffer, pH 7.5, 0.1x 
complete mini protease inhibitor cocktail, and 0.01 mg ml-1 lysozyme before being passed 
through a French Pressure Cell Press at 18,000 psi three times. Intact PBS extracted from the 
sucrose gradients were initially analyzed with absorbance and fluorescence emission 
spectroscopy (described below) before long term storage in the dark at -20°C.  
  
 
2.7 Protein analysis by spectroscopy and gel-electrophoresis  

Fluorescence emission and absorbance spectra were acquired on a Perkin Elmer LS55 
fluorescence spectrometer (Waltham, MA) and a Lambda 35, dual-beam UV/Vis spectrometer 



(Perkin Elmer) as previously described [13]. For fluorescence emission measurements, excitation 
wavelength was set to excite PEB at 490 nm.  

Polyacrylamide gel electrophoresis (PAGE, 15% w/v) with sodium dodecyl sulfate (SDS) 
was used to analyze polypeptide samples acquired after purification of proteins as described [10]. 
Samples were diluted 1:1 in 2x Laemmli Sample Buffer (65.8 mM Tris-HCl, pH 6.8, 2.1% SDS, 
26.3% (w/v) glycerol, 0.01 % bromophenol blue, 5% BME; Bio-Rad) and analyzed. Proteins 
were loaded with equal amounts determined by Quick Start Bradford Protein Assay kit (Bio-
Rad). The samples were then visualized as previously described using zn-enhanced fluorescence 
to detect covalently bound bilin [36]. Zn-enhanced fluorescence of covalently attached bilins was 
visualized using ChemiDoc XRS (Bio-Rad) with excitation at 532 nm (detects PEB, and PCB) or 
at 635 nm (detects PCB). Proteins in the gels were then stained by incubation in Coomassie 
brilliant blue G-250 overnight and destained in 10% methanol and 10% acetic acid.  

 
2.8 Tryptic digestion and mass spectrometry 

Tryptic digestion of proteins was conducted as previously described [19, 20, 37]. Tryptic-
digested samples were analyzed using LC-MS/MS on an Orbitrap Lumos Fusion mass 
spectrometer (Thermo Fisher) with an Agilent 1100 Capillary HPLC as its inlet. LC-MS/MS 
analysis was performed as previously described [19, 34]. The tandem mass spectra were 
processed using Thermo Proteome Discover 2.1 software. A simplified protein database 
consisting of about 40 proteins expected to be part of the PBS was used to speed up the analysis. 
Bilin-containing peptides were confirmed by manual inspection of their associated MS1, MS2, 
and UV-VIS spectra. Extracted ion chromatograms (EICs) for quantitative estimates were made 
using ±4 ppm window from the predicted m/z and integrations were made assuming equal 
ionizability for the modified and unmodified forms of the peptides after a 5-point boxcar 
smoothing of the EIC. All integrations were performed with XCalibur 4.0 software’s default 
algorithms. 
 
3 Results 
 
3.1 Whole cell analyses of wild type and cpeT- deletion mutant 
 CpeT from F. diplosiphon is a putative bilin lyase which is 50-60% similar in amino acid 
sequence to the known lyase CpcT from Synechococcus PCC 7002 and Anabaena PCC 7120 but 
only 27.1% similar to the cyanophage HM1 CpeT (see Fig. S1A). Based on CpcT’s role of 
adding PCB to Cys-153 on b-PC, the high sequence similarity of CpcT to CpeT (Fig. S1B), 
similarity in predicted structure (Fig. S1C),  and its genomic context in the cpeCDSTR operon 
[22], we hypothesized that CpeT is the PEB lyase for the Cys-165 position on b-PE [10]. In 
order to characterize the function of CpeT, a cpeT- clean deletion mutant was generated (Fig. 
S2). When grown under GL conditions to maximize PE production, the phenotype of cpeT-cells 
looked green in color while WT cells were reddish brown in color (Fig. 1A). The phenotype of 
the cpeT-    mutant was very dramatic and indicated that very low levels of PE were accumulating 
under GL conditions. Absorbance spectra of the whole cell samples of the WT and cpeT- mutant 
were taken and compared (Fig. 1C). The resulting comparison showed that the mutant sample 
contained much less PE than the WT sample (λmax ~560 nm). This low PE phenotype may be 
attributed to CpeT playing a role as a bilin lyase in PE synthesis. Under RL conditions, both WT 
and mutant cells had similar phenotypes and were green in color and had similar profiles when 
compared using absorbance spectroscopy (Fig. 1D, F). Analysis of the growth curves for mutant 



and WT cells also showed a severe reduction of growth rate in the cpeT- mutant grown under GL 
conditions when compared with WT cells (Fig. 1B). No growth rate differences were observed 
when comparing the cells grown under RL conditions (Fig. 1E). 
 
3.2 Analysis of effects of cpeT deletion on adjacent genes 
 The effects of cpeT deletion on its adjacent genes were examined by monitoring RNA 
accumulation in cells grown under GL conditions. cpeT is located in the cpeCDSTR operon 
(Fig.2A) [22]. The deletion of cpeT was confirmed by the absence of cpeT mRNA in the null 
strain (Fig. S2). RNA blot autoradiographs of WT and cpeT- deletion mutants confirmed that 
cpeT deletion was successful in the mutant sample (Fig. 2B). An increase in transcript abundance 
from the cpeCDSTR operon, which was measured by a ~10-fold increase of cpeR mRNA 
abundance (1029% of WT), in the mutant sample was observed (Fig. 2B and D). Since there was 
an increase in the cpeCDSTR operon, the expression of cpeBA, genes encoding the PE subunits, 
was examined (Fig. 2C). Unexpectedly, the cpeBcpeA mRNA levels were downregulated 
between ~6 and ~3-fold in the mutant strain when compared with WT (Fig. 2D; 16% and 34% of 
WT levels, respectively). The reason for the difference seen between cpeB and cpeA levels is not 
known, but may be due to some variability in hybridization of the probes.  However cpeB and 
cpeA levels in the cpeT- mutant were significantly lower than those seen in WT cells. 
  
3.3 Biochemical characterization of purified PBS isolated from WT and cpeT- mutant  

Whole PBS were isolated and purified from wild-type (WT) and cpeT- deletion mutant 
strains of F. diplosiphon to characterize the function of CpeT. Whole PBS were isolated and 
purified using a sucrose gradients and analyzed by absorbance and fluorescence spectroscopy 
(Fig. S3). The PBS of both samples were collected from the main, colored band at the bottom of 
the gradients (Fig. S3 inset). The WT PBS were purple in color, which indicated high PE levels, 
while the cpeT- mutant PBS were blue in color, which indicated a reduction in PE levels. 
Absorbance spectroscopy confirmed that WT PBS contained more PE (λmax=568 nm) than PC 
(λmax=615 nm) and allophycocyanin (λmax=649 nm; Fig. S3). When excited at 490 nm (which 
preferentially excites PE), WT PBS fluoresce at 669 nm with a small shoulder at 582 nm, 
indicating a transfer of energy from PE to PC to allophycocyanin (emission at 669 nm) with 
some energy fluorescing from PE (582 nm; Fig. S3). Analysis of the cpeT- mutant PBS also 
confirmed reduced levels of PE while PC levels were increased (Fig. S3). When excited at 490 
nm, the cpeT- mutant PBS showed some energy transfer from PE to PC with a broad PC peak 
indicating that the energy transfer from PE to PC was inefficient, likely a result of the decreased 
PE (Fig. S3). 
 
3.4 Characterization of the bilin lyase CpeT using recombinant protein coexpression system 

The bilin lyase activity of CpeT was studied using a heterologous multi-plasmid 
coexpression system in E. coli. All coexpressions were done in the presence of PEB synthesis 
enzymes (PebS/HO1)[38]. Recombinant NT non-hexahistidine-tagged (NT)-Nus-CpeT 
(pCpeT3; see Table S2) was coexpressed with recombinant hexahistidine-tagged (HT)-CpeB and 
NT-CpeA (hereafter, labeled as CpeBA) and PebS/HO1 to determine if CpeT demonstrated any 
lyase activity. CpeB and CpeA were coexpressed together and used in these expressions because 
previous research has shown that co-expressing these subunits increases the solubility of CpeB 
[10, 39]. After expression, HT-proteins were purified using Ni-NTA affinity chromatography 
and analyzed by fluorescence emission spectroscopy and SDS-PAGE (Fig. 3). Purified HT-CpeB 



from coexpressions containing CpeBA, NT-CpeT, and PEB (together, hereafter labeled as 
CpeBAT) were analyzed by SDS-PAGE and fluorescence spectroscopy. The fluorescence 
emission spectra of this coexpression resulted in very little fluorescence emission at 565 nm 
expected for correct PEB ligation (Fig. 3A). SDS-PAGE analysis of the sample revealed that 
there was a small amount of chromophorylation of CpeB when the gel was excited at 532 nm 
(Fig. 3C). This amount of chromophorylation was comparable to the autocatalytic attachment of 
a bilin to HT-CpeB which can be seen in the negative control coexpression containing CpeBA 
and PEB (Fig. 3) and the coexpression containing CpeBA, NT-CpeZ, and PEB (Fig. 3). CpeZ is 
unable to attach bilin to a PE substrate by itself [19].  

Since CpeZ is a chaperone-like protein which increases the solubility of CpeB allowing 
lyases to interact/attach bilins [19, 21], NT-CpeZ was coexpressed with NT-Nus-CpeT (pCpeT3) 
and CpeBA (referred to as CpeBATZ) to increase CpeB solubility and to study the possible 
effects that CpeZ may have on CpeT lyase activity. The HT-CpeB purified from the 
coexpression was analyzed using fluorescence emission spectroscopy and SDS-PAGE (Fig. 3). 
When CpeBA was coexpressed with both CpeT and CpeZ, there was a fluorescence emission 
peak at 565 nm after excitation at 490 nm (Fig. 3A). This fluorescence emission corresponds to 
that expected for PEB bound to protein.  When this sample was analyzed using zn-enhanced 
fluorescence, there was an observed fluorescent product when the gel was excited at 532 nm 
corresponding to PEB (Fig. 3B). The fluorescent product on the gel was expected to be HT-
CpeB based on its size of ~21 kDa (Fig. 3B). A small amount of non-enzymic addition of PEB to 
CpeB was observed in the CpeBA alone, CpeBA plus CpeZ and the CpeBA and CpeT (Fig. 3B).  
These results suggest that the CpeZ chaperone-like protein is required to facilitate 
folding/stabilization of CpeB, allowing CpeT to function as a lyase.  Purified HT-CpeT was 
capable of binding PEB tightly with an emission peak at ~610 nm and shows bilin fluorescence 
after SDS-PAGE, indicating tight binding (Fig. 4), but it was unable to attach it to HT-CpeB as 
evidenced by the low zn-enhanced fluorescence observed for HT-CpeB (Fig 4C).  

The samples from the CpeBAT and CpeBATZ coexpressions were digested with trypsin 
and analyzed by LC-MS/MS to determine which Cys- sites, if any, had a covalently-bound PEB 
as shown in Table 1. Although the sample containing CpeBAT showed little fluorescence (Fig. 
3A), LC-MS/MS analysis revealed that there were peptides with masses which corresponded to 
Cys-165 of CpeB, an unmodified peptide and a peptide which was modified with PEB (Fig. S4 
and Table 1). The ratio of unmodified:modified at this position was 2:1, suggesting an inefficient 
PEB modification of this position by CpeT in the absence of CpeZ and a binding of PEB that is 
not in its native fluorescent (stretched) conformation (Fig. S4). The control experiment with 
CpeBA, CpeZ and PebS/HoI resulted in low soluble protein yields and little to no fluorescence 
and were not analyzed further (Fig. 3) [20]. LC-MS/MS analysis of the CpeBAZT sample 
showed that Cys-165 of CpeB (m/z 702.323+) contained a bound PEB (Fig. 5A and Table 1), 
which was the expected site of lyase activity for CpeT. The other Cys sites on CpeA (Cys-82 m/z 
441.192+, Cys-139 m/z 517.252+) and CpeB (Cys-48/59 m/z 1092.524+, Cys-80 m/z 664.32+) were 
detected but in their unmodified form (Table 1). These results indicate that recombinant CpeT 
functions as a bilin lyase responsible for attaching PEB to Cys-165 on CpeB, and that the 
presence of CpeZ increases the efficiency of this ligation.  

 
4 Discussion and conclusions 
 



 The study of F. diplosiphon CpeT and its function as a bilin lyase was investigated 
through the studies reported here to understand the importance and role of CpeT in the overall 
complex pattern of PBS biogenesis in cyanobacteria.  CpeT’s role in PE biosynthesis was not 
well characterized previously.  One recent study showed red algal CpeT was capable of ligating 
PEB to CpeB, but the activity levels were very low and the biochemical characterization of the 
enzyme and product was incomplete [40].   CpeT is a bilin lyase that shares 50-60 % similarity 
in amino acid sequence to CpcT proteins, which attach PCB to Cys-153 of the PC  β-subunit (Fig 
S1) [10, 15, 32].  The crystal structures of CpcT and ΦCpeT have recently been elucidated and 
suggest a possible mechanism for the T-type lyases [15, 16]. Structurally, CpcT forms a dimer 
and adopts a calyx-shaped β-barrel fold; ΦCpeT appears to be a smaller, more compact version 
of the same structure [15, 16]. One difference between the two proteins is that CpcT binds and 
attaches PCB to PC while ΦCpeT binds PEB.  Gasper et al. showed that although the phage 
protein could bind PEB, it was unable to transfer PEB to the host PBP β-subunit. They showed 
that ΦCpeT loaded with PEB could transfer bilin to the native CpeS lyase, allowing it to ligate 
PEB to CpeB [15, 16]. The ΦCpeT with bound PEB had a fluorescence emission at 607 nm, 
similar to what we observed with F. diplosiphon CpeT (Fig. 4).  
 In vivo studies were used to demonstrate loss of function effects from deleting the cpeT 
gene. Initial analyses of cpeT mutants made earlier by Cobley and coworkers also showed lower 
PE protein levels overall [41, 42].  Previous studies of different bilin lyases from F. diplosiphon 
have shown that the deletion of genes encoding them have affected both PE and PC biosynthesis 
in cyanobacteria  [20] [21]. In these studies, PE lyase mutants (specifically cpeF- and cpeY-) 
were generated and grown in different light conditions causing changes in the phenotypes and 
PE/PC content of the cells.  The same result was seen here in the cpeT- mutant.  The cpeT- 
mutant PBSs were blue in color while the PBSs from WT cells were pink. These observations 
agree with previous studies in which a blue phenotype in PBSs corresponds with high PC content 
while a pink phenotype indicates a high PE content [6]. PBSs from cpeT- deletion mutants grown 
in GL showed reduced PE content with an increase in PC content, suggesting that CpeT is 
involved in PE biosynthesis. The phenotype of increased PC levels has been observed previously 
in cpeF  [20], cpeY, and cpeZ  [21] mutants where there were also reduced PE phenotypes and 
can be attributed to an increase in the relative amount of PC produced to compensate for the loss 
of PE. In addition to these phenotypic changes, there was an observed reduction in doubling 
time. This was likely a result of the inefficient light harvesting or PBS instability caused by the 
reduced PE levels in the mutant, similar to the phenotype previously observed in cpeF [20], cpeY 
and cpeZ [21]mutants.  
 The reduced PE levels observed in the cpeT- deletion mutants may also indicate a role of 
CpeT in the regulation of the biosynthesis of PE. The effects of deleting cpeT on the genes 
adjacent to it in the cpeCDESTR operon (hereafter called cpeC operon) were measured by 
monitoring RNA accumulation in cells grown under GL conditions (Fig. 2B).  These cells 
showed a 10-fold increase in the operon transcript, which includes cpeR, a gene encoding an 
activator required for the expression of the PE operon (cpeBA) and also of the pebAB operon 
(encoding enzymes required for PEB synthesis in F. diplosiphon) [22, 24, 43]. The expression of 
cpeR plays a major role in the regulation of CA3 in F. diplosiphon. CA3 regulation involves 
either the rca (regulator of chromatic acclimation) or cgi (control of GL induction) systems [6, 
44]. Both systems control the expression of the cpeC operon in GL and RL [45]. The activation 
of the cpeC operon leads to an increase in CpeR, which activates the cpeBA and pebAB operons, 
ultimately increasing PE content. The reason for the increase in the cpeC operon RNA levels 



could be a result of increased transcription, decreased transcription termination, or increased 
transcript stability.  We did not find any rho-independent transcription termination sites within 
the deleted portion of cpeT, however, Bezy et al., found that there is a transcript of the length 
(~4100 nt) that suggests there is a termination site within cpeT [25].  Therefore, it is possible that 
the increased transcripts containing cpeR are due to greater readthrough to the end of cpeR 
because the cpeT- deletion mutant removed this potential termination site.  Although the RNA 
levels for cpeR are increased in the cpeT- mutant, it was surprising that the amount of cpeB and 
cpeA mRNA accumulation decreased significantly but not in equal amounts, given they are co-
transcribed.  Recent studies have shown that genes within same operon may show different 
transcript stoichiometry due to differential mRNA decay [46]. These results suggest that cpeT or 
its protein product could play some type of regulatory role in the transcription or transcript 
stability of PE genes, and more research is needed for further understanding of this result.  This 
lower cpeBA transcript phenotype in a cpeT deletion mutant was also noted previously [42]. It is 
important to mention that other lyase mutants (e.g. cpeY- and cpeF-) have higher residual, 
partially chromophorylated PE subunits present than was observed in the cpeT- mutant, 
suggesting that the low cpeBA transcripts found in the cpeT- mutant may be a particular 
phenomenon related to CpeT’s function [20] [21]. 

Recombinant protein coexpression studies in E. coli confirmed that CpeT was able to 
bind PEB (Fig. 4) but was unable to efficiently attach the bilin to recombinant CpeB with the 
appropriate conformation that established a highly fluorescent product (Fig. 3).  The ΦCpeT was 
completely unable to ligate PEB to its substrate, but was able to efficiently bind PEB [16]. 
Recombinant CpeZ increased the chromophorylation by CpeB-specific lyases CpeS and CpeF 
and helped renature CpeB after chemical denaturation [21]. Therefore, we hypothesized that its 
chaperone-like activity on CpeB may increase solubility of the apo-subunit to facilitate CpeT 
lyase activity. Indeed, CpeT, in the presence of CpeZ, had a much higher chromophorylation of 
PEB to CpeB at Cys-165 than CpeT alone. Interestingly we did not see a defect of PEB 
attachment at Cys-165 in the analyses of a cpeZ mutant, suggesting CpeZ is not absolutely 
required for CpeT activity inside cyanobacteria [21].  These results confirm CpeT's role as the 
bilin lyase responsible for the attachment of PEB to Cys-165 of CpeB and reaffirm the role of 
CpeZ as a chaperone-like protein for CpeB, aiding in the activity of lyases for CpeB.  Now, with 
the characterization of CpeT from F. diplosiphon, the bilin lyase enzymes required for the post-
translational modification of CpeB have fully been characterized [19-21]. 
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Figures: 

 

Figure 1. Whole cell phenotype and absorbance spectra of WT and cpeT- deletion mutant 
Whole-cell color phenotype of WT and cpeT-  deletion mutant grown under GL conditions (A) 
and red-light conditions (D). Panels B-F show the differences between WT (black line) and cpeT- 
(green line) whole cell absorbance spectra. GL severely affects cpeT- growth (B) while there is 
no growth defect under RL (E). Whole-cell absorption spectra of cpeT- deletion mutant cells 
grown in GL show that cell PE accumulation is nearly undetectable (C) while PC accumulation 
under RL conditions are comparable to WT cells. Cells were grown under 15 μmol photons m-2 
s-1 GL or RL. Chlorophyll peaks are present at 430 nm and 680 nm; PE peak is at 565 nm; and 
PC  peak is at 620 nm. Error bars represent standard errors of the means.  These results are 
representative of two independent replicates.    



 
 

  
 
Figure 2. RNA gel blot analyses of cpeCDSTR and cpeBA operons in GL-grown WT and 
cpeT deletion mutant  
(A) Genomic locations of cpeT and cpeR (located within the 3’ end of the cpeCDESTR operon) 
and cpeBA. Lines underneath cpeT, cpeR, cpeA, and cpeB represent binding sites for 200 bp 
probes generated by PCR using primers in Table S1. RNA blot autoradiographs for (B) cpeT and 
cpeR and (C) cpeB and cpeA in WT and cpeT- mutants with loading controls for 16S ribosomal 
bands (ribo). Molecular mass markers in nucleotides are shown to the left.  The WT cpeCDESTR 
transcript is ~4900 nucleotides and the cpeBA transcript is 1450 nucleotides.  (D) Mean values 
from the three technical replicates (shown in B and C) for cpeR, cpeB and cpeA RNA levels in 
the cpeT- mutant expressed as a percentage of the WT GL value, which was set to 100%. All 
measurements were normalized using relative ribosomal RNA intensity values before calculation 
of the means. Standard errors are shown, with p-values (Mann-Whitney U) indicated as ⁎ p < 
0.05.  
  



 
 
Figure 3. Recombinant CpeT coexpressions with CpeBA 
(A) Fluorescence emission (excitation set at 490 nm) spectra of purified CpeBA coexpressed 
with PEB (black; pCpeB/CpeA; see Table S2), CpeZ (blue; pCpeZ; see Table S2), CpeT (red; 
(pCpeT3; see Table S2), and both CpeZ and CpeT (green); (B) SDS-PAGE analysis of the 
coexpressions, zn-enhanced bilin fluorescence analysis with excitation at 532 nm. Std denotes 
molecular weight standard with sizes indicated on the left. All coexpressions were completed 
with the presence of enzymes required for PEB synthesis (pPebS; see Table S2). These results 
are representative of three independent replicates. 
 
 
 
 
 



 

Figure 4:  Recombinant HT-CpeT binds PEB.   
HT-CpeT (pCpeT1; see Table S2) was expressed with PEB synthesis enzymes with and without 
CpeBA.  (A) Fluorescence emission spectra (excitation set at 490 nm) of purified HT-CpeT 
coexpressed with PEB (black) or CpeBA, HT-CpeT and PEB (green). (B) SDS-PAGE analysis 
of the coexpressions stained with Coomassie Blue. (C) Zn-enhanced bilin fluorescence of the 
same gel shown in panel B with excitation at 532 nm. The location of the HT-CpeT (MW=25 
kDa) and HT-CpeB (MW=23 kDa) are indicated with arrows at the right. These results are 
representative of three independent replicates. 
 



 
 
Figure 5. MS/MS data of recombinant CpeBA expressed with CpeT, CpeZ and PEB 
synthesis enzymes   
(A) MS1 data from 28.3 min peak in CpeBAZT sample.  Asterisks indicate (M+2H)2+ and 
M+3H)3+ of peptide C165ASLVAEASSYFDR from CpeB (vertical scale expanded 10-fold).  
(Inset) shows UV-VIS spectrum observed @ 28.3 minutes indicating presence of PEB on the 
peptide.  (B) MS2 data from m/z 702.3284 @ 28.3 min; y ions are labeled, all masses are <3 ppm 
from predicted vales.  These results are representative of two independent replicates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 1: Observed LC-MS/MS peaks of trypsin digested recombinant HT-CpeBA peptides 

Sample^ α-82 α-139 β-80 β-165 β-48/59 

CpeBA+ CpeT 
(BAT) ND* ND unmod 2:1 

Unmod:PEB ND 

CpeBA+ CpeT + 
CpeZ (BATZ) unmod unmod unmod PEB unmod 

^Both coexpressions were completed with the presence of enzymes required for PEB synthesis 
(pPebS; see Table S2). 
* ND: not detected; These peptides were not observed (modified or unmodified) 
 
 
 


	CpeT is the Phycoerythrobilin Lyase for Cys-165 on Beta-Phycoerythrin from Fremyella Diplosiphon and the Chaperone-like Protein CpeZ Greatly Improves its Activity.
	Recommended Citation
	Authors

	Microsoft Word - Ngyuen.et.al.CpeT.manuscript.7-31-20.umarked.docx

