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Abstract 

Phycoerythrin (PE) present in the distal ends of light-harvesting phycobilisome rods in Fremyella 
diplosiphon (Tolypothrix sp. PCC 7601) contains five phycoerythrobilin (PEB) chromophores attached to 
six cysteine residues for efficient green light capture for photosynthesis. Chromophore ligation on PE 
subunits occurs through bilin lyase catalyzed reactions, but the characterization of the roles of all bilin 
lyases for phycoerythrin is not yet complete. To gain a more complete understanding about the individual 
functions of CpeZ and CpeY in PE biogenesis in cyanobacteria, we examined PE and phycobilisomes 
purified from wild type F. diplosiphon, cpeZ and cpeY knockout mutants. We find that the cpeZ and cpeY 
mutants accumulate less PE than wild type cells. We show that in the cpeZ mutant, chromophorylation of 
both PE subunits is affected, especially the Cys-80 and Cys-48/Cys-59 sites of CpeB, the beta-subunit of 
PE. The cpeY mutant showed reduced chromophorylation at Cys-82 of CpeA. We also show that, in vitro, 
CpeZ stabilizes PE subunits and assists in refolding of CpeB after denaturation. Taken together, we 
conclude that CpeZ acts as a chaperone-like protein, assisting in the folding/stability of PE subunits, 
allowing bilin lyases such as CpeY and CpeS to attach PEB to their PE subunit. 

 
Keywords: bilin lyase, chaperone, cyanobacteria, phycoerythrobilin, phycobilisome, post-translational 
modification  

 
 

1. Introduction 
Cyanobacteria are photosynthetic organisms that have existed for over 3.5 billion years and are 

believed to be responsible for Earth’s oxidizing atmosphere as it exists today [1]. Their light-harvesting 
complexes, phycobilisomes (PBS)5, are the macro-molecular protein complexes contributing to the success 
of these organisms by absorbing and channeling excitation energy into the chlorophyll reaction centers of 
photosystems I and II. PBS typically consist of two structural domains: a core, which connects to the 
photosynthetic thylakoid membrane, and rods, which extend out from the core [2]. The PBS core and rods 
consist of phycobiliproteins present in heterohexameric form (αβ)6 interconnected by linker proteins to form 
the large antenna structure [2, 3] (see Fig. S1A). 

 
1 Present address: US Department of Agriculture-Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124, USA 
2 Present address: Pfizer India, Taramani Road, Taramani, Chennai, Tamil Nadu 600113, India 
3 Present address: Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA 
4 Present address: University of Rochester, Rochester, NY 14627, USA 
5 The abbreviations used are: ANOVA, analysis of variants; AP, allophycocyanin;  BME, 2-mercaptoethanol; CA3, Type III chromatic 
acclimation; CS, citrate synthase; EICs, extracted ion chromatograms; HT-, hexahistidine-tagged; MW, molecular weight; NT-, non-tagged; Ni-
NTA, nickel-nitrilotriacetic acid; PBS, phycobilisome(s); PC, phycocyanin; PCB, phycocyanobilin; PE, phycoerythrin; PEB, phycoerythrobilin; 
PUB, phycourobilin 
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In cyanobacteria, there are four major classes of phycobiliproteins based on absorbance spectra and 
sequence homologies: phycocyanin (PC), allophycocyanin (AP), phycoerythrin (PE) and 
phycoerythrocyanin. Each phycobiliprotein is composed of α- and β-subunits, and each subunit contains 
between one and four isomeric bilin chromophores that are attached by thioether linkages to conserved 
cysteine (Cys) residues [2-4] (see Fig. S1, panels B and C): phycocyanobilin (PCB), phycoerythrobilin 
(PEB), phycoviolobilin and phycourobilin (PUB) [5]. These bilins absorb visible light that is not effectively 
captured by chlorophyll. Some PE-producing cyanobacteria are capable of altering their PBS complexes to 
readily capture the most abundant wavelengths of light available in the environment through a process 
called chromatic acclimation. Fremyella diplosiphon (Tolypothrix sp. PCC 7601), the focus of this study, 
specifically performs Type III chromatic acclimation (CA3) where the distal rod protein synthesis is altered 
under green light and red light conditions [6]. When cells are grown in red light, the rods of the PBS are 
composed of two different forms of PC (constitutive and red-light inducible), but if the cells are switched 
to green light, PE is synthesized and assembled onto the outer rods of the new PBS [7] where it takes the 
place of the red-light inducible PC. 
 Phycobiliprotein chromophorylation is catalyzed post-translationally by specific bilin lyases [8, 9], 
a known exception being the ApcE linker which is autocatalytically chromophorylated [10]. The lyases for 
PE, responsible for attaching PEB to the five conserved Cys residues: α-82, α-139, β-48/59, β-80 and β-
165 (based on the F. diplosiphon PE sequence [11]), are still not fully characterized. The first 
phycobiliprotein lyases characterized were the heterodimeric CpcE and CpcF proteins, which ligate PCB 
to the α-subunit of PC (CpcA) at Cys-84 [12-16]. All members of this “E/F” family of lyases contain HEAT-
repeat motifs [17-19], and have been shown to be primarily α-helical in structure [20]. Some members have 
the ability to isomerize and attach a bilin [18, 19, 21], and others portray a dual function as a chaperone-
like protein and as a lyase [16, 22].  

Two members of the E/F family, whose complete functions have not yet been fully elucidated, are 
CpeY and CpeZ [23, 24]. In F. diplosiphon cpeY and cpeZ genes are present downstream of cpeBA operon 
(Fig. 1A) which encodes the genes for CpeB and CpeA apo-proteins. Based on sequence similarity, CpeY 
is a fusion of CpcE-like and CpcF-like proteins, while CpeZ is more similar to CpcE [24]. Khan et al. 
isolated transposon mutants in the cpeY and cpeZ genes in F. diplosiphon. These mutants displayed 
decreased levels of PE when grown in green light, suggesting CpeY/CpeZ might be a bilin lyase for either 
CpeA (α-subunit of PE) or CpeB, but their biochemical characterization of the mutants were incomplete 
[23]. Later, we showed that recombinant CpeY is a specific lyase for Cys-82 of CpeA, while recombinant 
CpeZ enhanced the CpeY lyase activity by 40%, but the specific function of CpeZ remained unclear [24]. 
In this paper, we characterize in detail the phenotypes of single deletion mutants of cpeY and cpeZ genes in 
F. diplosiphon and demonstrate that CpeY is a bilin lyase specifically for CpeA whereas CpeZ is involved 
in the biosynthesis of both PE subunits by acting as a chaperone-like protein.  
 
2. Experimental Procedures 
 
2.1 Strain constructions and culture conditions   

The laboratory isolate SF33 [25, 26], a shortened filament mutant of Fremyella diplosiphon UTEX 
481, was used as wild type (WT) and was cultured as previously described [27]. The F. diplosiphon mutants 
in cpeY or cpeZ were generated as clean deletions as previously described [28-30] with a few alterations. 
The deletion constructs of cpeY and cpeZ obtained by overlapping PCR were cloned into pJCF276 [29] 
between EcoRI and NcoI restriction sites. The deletion constructs were designed to include at least a 1.3 kb 
of flanking homology regions on each side of the gene of interest. The genes were internally truncated in-
frame such that only short chimeric open reading frames were left in place. For cpeY, the first 18 codons at 
the 5’ end were fused to the last 12 codons from the 3’end, whereas for cpeZ, the first 8 codons at the 5’ 
end were fused to the last 11 codons (see Fig. 1A). All primers used are provided in Table S1. All 
transformed strains were obtained through triparental mating as previously described [29] with the selection 
of neomycin resistant colonies on 1% agar-medium D, pH 8 [31] and maintained at 25 µmol m-2 s-1 of white 
light (GroLux - Sylvania USA F15T8-GRO). After selection on neomycin (10 µg ml-1) for chromosomal 
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integration of the deletion plasmids, the transformed F. diplosiphon colonies were grown in liquid BG-11 
to an OD750 of ~0.8 to allow for the second intramolecular recombination event to occur. Afterwards, an 
inoculum of this culture was serially diluted on plates with 1% agar-medium D, pH 6.75 and 5% sucrose in 
order to select and screen for sucrose resistant isolates in which allelic replacement has occurred. Successful 
excision of the wild type copies of cpeY and cpeZ was verified by PCR and several independent isolates of 
each were obtained for further analysis. All isolates containing the correct deletions had a greenish 
coloration when compared to wild type.  

Growth curves were generated from two independent replicates of cells grown in ~15 μmol m-2 s-1 

of green light monitored by absorbance at 750 nm every 24 h for 12 days.  
 
2.2 Isolation of phycobilisomes (PBS)  

PBS were isolated from F. diplosiphon cells as described previously [32] with a few minor 
alterations. All steps were performed at room temperature (~22 °C). When cultures reached an OD750 

between 0.6-0.9, cells were harvested by centrifugation at 8,000 x g for 10 min. The cells were washed with 
and then resuspended in 0.65 M NaH2PO4/K2HPO4 buffer, pH 7.5before being passed through a French 
Pressure Cell Press at 18,000 psi three times. As previously described [32], intact PBS were extracted by 
ultracentrifugation on sucrose gradients and analyzed by absorbance and fluorescence emission 
spectroscopy (described below in Experimental Procedures 2.8) before long term storage in the dark at -20 
°C.  
 
2.3 Isolation of phycoerythrin (PE) 

PE was purified from F. diplosiphon cells following the protocol described by Glazer [33] with 
minor changes. The entire procedure was conducted in dim light and at 4 °C when possible. Cells (10 g wet 
weight) were centrifuged and resuspended in 15 mL of 1 M sodium acetate, pH 5.0 and 1 mg mL-1 complete 
mini protease inhibitor cocktail. The cells were lysed using a French Pressure Cell press three times at 
18,000 psi, followed by centrifugation at 77,000 x g for 1 h.  

During the ammonium sulfate precipitations steps, some mutants required 10-20% more 
ammonium sulfate to precipitate PE in the supernatants (compared to the amount required for WT PE as 
referenced in [33]). Pure PE fractions were pooled and brought to 70% saturation for long-term storage at 
4 °C in the dark. Samples were exhaustively dialyzed in 100 mM sodium phosphate-1 mM sodium azide, 
pH 7.0 before analysis.  

 
2.4 Separation and purification of phycoerythrin (PE) α- and β-subunits 

PE α- and β-subunits (GenBank Accession Numbers EKF01783.1 and EKF01782.1, respectively) 
were separated and purified using a combination of previously published protocols with modifications [11, 
34-36]. Approximately 5-10 mg of purified PE was exhaustively dialyzed against 5 mM sodium phosphate, 
pH 7.0 plus 5 mM 2-mercaptoethanol (BME) overnight at 4 °C. PE samples were concentrated by 
ultrafiltration through an Amicon Ultra centrifugal filter unit (10 kDa cutoff; Novagen/EMD Millipore 
Corp., Darmstadt, Germany) to a volume of 1-2 mL. The concentrated PE was denatured in 8.8% formic 
acid, pH 2.2 plus 10 mM BME for 1 h at room temperature in the dark. The sample was centrifuged at 
20,800 x g in a microcentrifuge tube for 5 min to remove any precipitates. The supernatant was gently 
applied to a Bio-Rex 70 sodium form column (200-400 mesh, 2.2 x 11.5 cm; Bio-Rad, Hercules, CA) pre-
equilibrated with 8.8% formic acid, pH 2.2 plus 10 mM BME at room temperature. The sample was allowed 
to drain into the column bed before being washed with 1 column volume each of 2 M urea, pH 2.2 plus 10 
mM BME and then 4 M urea, pH 2.2 plus 10 mM BME. The proteins were eluted off the resin with a 
stepwise gradient using 9 M urea, pH 2.2 plus 10 mM BME and dH2O plus 10 mM BME to produce the 
following urea concentrations: 6 M (50 mL), 7 M (125 mL), 7.5 M (125 mL), 8 M (70 mL), 8.5 M (70 mL), 
and 9 M (100 mL). The fractions containing CpeA or CpeB as judged by SDS-PAGE analyses were pooled 
and renatured during exhaustive dialysis in 50 mM sodium phosphate, pH 7.0 plus 5 mM BME (until sample 
pH reached 7.0). After approximately 3 days of exchanging the dialysis buffer with fresh buffer 2 to 3 times 
daily, the pooled fractions were concentrated by ultrafiltration through an Amicon Ultra centrifugal filter 
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unit (10 kDa cutoff). Pure PE subunits were stored short term in the dark at 4 °C and long term in the dark 
at -20 °C. 
 
2.5 Construction of expression plasmids 
 Plasmids used in this study, including those that were previously described, are listed in Table S2. 
All expression constructs newly produced for this study were sequenced at the W. M. Keck Conservation 
and Molecular Genetics Laboratory (University of New Orleans). Each gene was amplified by PCR from 
F. diplosiphon chromosomal DNA or pre-existing plasmid DNA using the primers listed in Table S1. Each 
resulting amplicon was cloned into a Duet vector (Novagen) using restriction enzymes as designated in 
Table S1. The plasmid pNT-PebS was generated by restriction enzyme digestion of the construct pPebS 
[37] with NcoI and EcoRI, filling in overhangs with DNA Polymerase I, and vector religation which 
removed the coding region for the hexahistidine-tag (HT-) from the vector, thus generating the non-tagged 
(NT-) version of the plasmid.  
 
2.6 In vivo heterologous expression and purification of recombinant proteins 
 Recombinant proteins were expressed and purified from E. coli BL21 (DE3) as previously 
described [24, 38]. For CpeB solubility experiments, the induced cultures were placed at 18 °C for a total 
of 19 h with shaking. Cells were harvested by centrifugation at 11,000 x g for 10 min in 100 mL aliquots 
at time points 0 (time directly after induction with IPTG), 4 h, 10 h, and 19 h. The wet weight of all cell 
pellets (ranging from 0.22 g to 0.71 g) was measured prior to storage at -20 °C. Cell pellets were 
resuspended in Buffer O (20 mM Tris-HCl, pH 8.0, 50 mM NaCl, 50 mM KCl), 0.75 mg mL-1 complete 
mini protease inhibitor cocktail and 0.01 mg·mL-1 lysozyme in volumes based on the relative mass of the 
pellets. The largest pellet was resuspended in a maximum volume of 10 mL of buffer. The masses of other 
cell pellets were compared to the largest and an equal ratio (volume:wet weight) was used to resuspend the 
smaller cell pellets. Cell lysis and centrifugation were conducted as previously described [24]. After 
centrifugation, the pellets containing cellular debris, inclusion bodies, and unbroken cells were diluted in 2 
mL Buffer O prior to analysis. 
 
2.7 Tryptic digestion and mass spectrometry 

Tryptic digestion of proteins was conducted following the protocol described earlier [24] with a 
few minor alterations. Only one aliquot of trypsin (dimethylated trypsin from porcine pancreas; Sigma, St. 
Louis, MO) was added to 2% (w/w) from a 20 μg mL-1 stock to the denatured protein mixtures and incubated 
at 30 °C for 3 h in the dark. Digested peptides were passed through a pre-equilibrated C8 Sep-Pak cartridge 
(Waters Corporation, Milford, MA) before LC-MS/MS analysis using a Waters Synapt HDMS Quadrupole-
TOF mass spectrometer similar to described [19] except that mass tolerances of 0.08 m/z were used for all 
EICs. 
 
2.8 Protein analysis by spectroscopy and gel-electrophoresis  

Fluorescence emission and absorbance spectra were acquired on a Perkin Elmer LS55 fluorescence 
spectrometer (Waltham, MA) and a Lambda 35, dual-beam UV/Vis spectrometer (Perkin Elmer) as 
previously described [39]. The excitation wavelength was set to 490 nm to preferentially excite PEB-bound 
proteins and 590 nm for PCB-bound proteins. In some experiments, a Synergy MX Microplate Reader 
(BioTek Instruments, Inc., Winooski, VT) and a Beckman DU 640B Spectrophotometer (Beckman Coulter, 
Inc., Indianapolis, IN) were also used to acquire fluorescence emission and absorbance spectra, 
respectively.          

Most polypeptide samples were resolved by polyacrylamide gel electrophoresis (PAGE, 15% w/v), 
in the presence of sodium dodecyl sulfate (SDS), and visualized as previously described [39]. PBS samples 
were precipitated from sucrose gradient fractions using 25% (w/v) TCA, and then analyzed by 10-20% 
Tris-HCl gradient Criterion gels (Bio-Rad).  

All recombinant and native total protein concentrations were measured using the Quick Start 
Bradford Protein Assay kit (Bio-Rad).   
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2.9 Immunoblotting 

Immunoblotting analysis was performed as described [24] using the following primary antisera 
generated in rabbits: Anti-CpeA (1:5,000 dilution [24]), Anti-CpeB (1:20,000 dilution), Anti-CpcA 
(1:5,000 dilution [40]) and Anti-CpcS (1:5,000 [41]). Anti-CpeB antibodies were generated in rabbits 
against holo-CpeB purified from F. diplosiphon (YenZym Antibodies, San Francisco, CA).  These 
antibodies were tested against recombinant and holo-phycobiliproteins to validate they were specific for 
CpeB with some minor cross-reaction with CpcB. Protein band intensities were quantified and analyzed 
using Quantity One 1-D Analysis Software and Image Lab Software V5.2.1 (Bio-Rad). 

 
2.10 Pull-down assays 

Pull-down assays were performed using the protocol described previously [41] with a few 
alterations. Proteins of interest were mixed in an approximately 1:1 ratio (determined by SDS-PAGE) in a 
small sample volume (≤ 1 mL), and allowed to sit on ice with gentle mixing every 25 min for 75 min in the 
dark. When native cyanobacterial proteins were used, 10 μg (total protein) of each protein sample were 
mixed. Pull-down mixtures (referred to as “mix”) were purified using a small nickel-nitrilotriacetic acid 
(Ni-NTA) affinity column (25% (v/v) of total sample volume) pre-equilibrated with Buffer O. Samples 
were passed through the column three times to ensure binding (unbound proteins are referred to as the flow-
through “FT”), and washed with 1 to 3.5 mL of Buffers A1, B, and A2 [38]. All samples were eluted with 
250-500 μL Buffer C (referred to as eluate), and precipitated using 25% TCA. 
 
2.11 Chaperone assays 
2.11.1 Chaperone assays using native and recombinant phycobiliproteins 

Chaperone assays were developed modifying the protocols described previously [16, 22]. Protein 
concentrations, buffer conditions, temperature, and assay duration were modified for protocol optimization. 
Recombinant, partially chromophorylated PE subunit substrates (HT-CpeA-PEB, expressed from pCpeA, 
pCpeY and pNT-PebS to attach PEB to Cys-82 [24]; HT-CpeB-PEB, expressed from pCpeB2, pCpeS and 
pNT-PebS  to attach PEB to Cys-80 [24])  were produced in liter cultures of E. coli and purified using Ni-
NTA affinity chromatography. E. coli cells containing pCpeB2, pCpeS, and pNT-PebS (Table S2) were 
produced in larger volumes ranging from 1 to 7 L due to the low yield of soluble protein. Holo-PE subunits 
isolated from cyanobacteria were also used as substrates. The recombinant protein of interest (HT-CpeZ) 
was expressed in liter cultures of E. coli and purified using Ni-NTA affinity chromatography [24]. All 
proteins were examined by SDS-PAGE prior to the chaperone assays. Fluorescent substrates were diluted 
in the appropriate buffers (Buffer O for recombinant proteins, or 50 mM sodium phosphate, pH 7.0 for 
native PE proteins) to obtain a fluorescence emission peak within the readable range of the fluorometer. 
Total protein concentrations were calculated using the Bradford assay. The recombinant protein of interest 
(HT-CpeZ) or the BSA control was mixed with the phycobiliprotein substrate in a 1:10 ratio 
(phycobiliprotein:chaperone-like protein or control), and allowed to incubate on ice in the dark for 20 h. 
Fluorescence emission spectra were collected at time points 0, 1 h, 2 h and 20 h after gentle mixing of the 
sample to detect any change in fluorescence over time. Chaperone assays were performed in duplicate and 
represented as averages with ranges. For each replicate series, fluorescence was normalized by dividing the 
raw emission values by the emission value present at time 0. Student unpaired t tests (two-tailed, α-
value=0.05) were used for statistical analysis to compare the change in fluorescence generated from the 
presence of the chaperone-like protein of interest versus the control protein at each time point. GraphPad 
Prism (v.7) was used to estimate the statistical significance of the differences observed using a repeated 
measures ANOVA. 

 
2.11.2 Chaperone assays using non-native substrate citrate synthase 

Citrate synthase (CS, Pig Heart), acetyl coenzyme A, oxaloacetic acid and ATP were purchased 
from Sigma. CS was used as a non-native substrate in chaperone assays. 75 µg of CS was unfolded in the 
presence of 6 M guanidine hydrochloride and 2 mM DTT as described [42], and then refolding was 
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allowed for one hour with aliquots removed and assayed for CS activity as described in [42] following the 
utilization of acetyl CoA by monitoring the thioester bond cleavage at 233 nm [42]. Activity levels (initial 
reaction rates) after renaturation in the presence of HT-CpeZ, BSA or Buffer O alone were compared to 
activity levels of non-denatured CS (and expressed as % CS activity) [42, 43]. HT-CpeZ and BSA were 
added in a 1:10 ratio (substrate:chaperone-like protein or control) in these assays. For some samples, the 
renaturation step was also conducted in the presence of 2 mM ATP, 5 mM MgCl2 , and 10 mM KCl [42, 
43]. Statistical significance of obtained differences was estimated via a two-way ANOVA test in 
GraphPad Prism (v.7). 
 
2.11.3 Chaperone assays using chemically denatured recombinant CpeB 

Chaperone assays using chemically denatured recombinant CpeB were conducted using a modified 
version of a previously described protocol [42]. The chaperone-like HT-CpeZ (pHT-CpeZ) and the 
recombinant, partially chromophorylated CpeB substrate (HT-CpeB-2PEB, purified from a strain co-
expressing pCpeB, pCpeSF2, pNT-CpeZ3, and pNT-PebS to attach the 2 PEBs to CpeB at Cys-80 and Cys-
48/Cys-59 by the lyases CpeS [24] and CpeF [44], respectively) were produced in liter cultures of E. coli 
and purified using Ni-NTA affinity chromatography. All proteins were examined by SDS-PAGE, and total 
protein concentrations were determined using the Bradford assay prior to the chaperone assays. 

All chaperone assays were conducted in the dark at room temperature (22°C). The HT-CpeB-2PEB 
substrate was denatured in the presence of 6 M guanidine hydrochloride and 5 mM BME for 90 min. The 
denatured HT-CpeB-2PEB substrate was diluted 25-fold (in Buffer O) and allowed to refold for 120 min 
in the presence of HT-CpeZ (1:10 ratio, substrate:chaperone-like protein), BSA (1:10 ratio, 
substrate:control protein), or Buffer O alone. For some samples, the refolding step was also conducted in 
the presence of 2 mM ATP, 5 mM MgCl2 , and 10 mM KCl [42, 43]. Refolding of HT-CpeB-2PEB was 
measured by monitoring the fluorescence emission (excitation at 490 nm) every 15 min for 120 min. The 
amount of recombinant CpeB used in the assays was based on the concentration of the protein required to 
have a detectable fluorescence after dilution (2 µM). All assays were performed in duplicate and represented 
as averages with ranges. For each replicate series, fluorescence was normalized by dividing the raw 
emission values by the emission value present at time 0. A two-way ANOVA test GraphPad Prism (v.7) 
was used to estimate the statistical significance of the differences observed.  
 
3. Results 
 
3.1 Phenotypes and whole cell analyses of wild type, cpeY and cpeZ deletion strains   

To better understand the functional roles of CpeY and CpeZ in vivo, both cpeY and cpeZ genes 
were each cleanly deleted from F. diplosiphon in a two-step procedure to minimize any potential polar 
effects, especially in the case of the cpeY deletion, which left the cpeZ open reading frame intact (Fig. 1A). 
Both mutants grew at similar rates as wild type (WT) under red light conditions (data not shown). Next, 
cells were grown in green light, providing an opportunity for maximal PE production. WT cells grown in 
green light were characteristically brick red in color due to the production of the red-colored PE (Fig. 1A). 
Under these conditions, both the cpeY and cpeZ deletion mutants (ΔcpeY and ΔcpeZ, respectively) displayed 
phenotypes that differed from WT in color and growth rates. Both ΔcpeY and ΔcpeZ cells grew at slower 
rates than WT when grown in green light, and both mutants were green in color (more so for ΔcpeY than 
for ΔcpeZ), indicating a reduction of PE (Fig. 1, panels A and B). The absorbance spectrum for WT cells 
showed a large amount of PE (λmax=571 nm), whereas the spectra of the mutants indicate little PE is being 
produced (Fig. 1C). From these observations, we conclude that cpeY and cpeZ are two genes whose products 
are involved in the biosynthesis and/or stability of PE.  
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Fig. 1: Phenotypes of WT and mutants grown in ~15 μmol m-2 s-1 of green light 
(A) Diagrams of the PE operon containing the genes that encode the β- and α-subunits of PE (CpeB and 
CpeA, respectively), the α-Cys-82 lyase CpeY [24], and the putative chaperone-like protein CpeZ from the 
WT, ΔcpeY, and ΔcpeZ strains of F. diplosiphon. Possible transcription regulation site is labeled “N 
box”[7]. Liquid cell cultures of each strain grown in approximately ~15 μmol m-2 s-1 of green light are 
represented to the left of the operons. (B) Average growth curves of two independent replicates each for 
WT (black line), ΔcpeY (blue line), and ΔcpeZ (red line) cells with OD readings taken at 750 nm every 24 
hours for 12 days. Error bars represent the ranges. (C) Whole cell absorbance spectra of WT (black line), 
ΔcpeY (blue line), and ΔcpeZ (red line) cells. PE and PC peaks are indicated with arrows.   

 
3.2 Characterization of purified phycobilisomes from WT and mutants  

PBS from green light-grown WT and mutant cells were purified using sucrose density gradients 
and analyzed to determine the effects of cpeY or cpeZ deletions on PBS composition (Fig. S1). Three major 
fractions were collected from the samples (top, middle, and bottom) with larger and denser protein 
complexes migrating further within the gradient (bottom). The top fractions contained very little 
phycobiliproteins (data not shown), and thus were not analyzed further. The WT complete PBS (collected 
from the bottom fraction) were purple in color due to the presence of AP, constitutive PC and PE in the 
rods. The bulk of the PBS from the ΔcpeY mutant was collected from the middle fraction and had a blue 
color (Fig. S1D).  PBS from the ΔcpeZ mutant also had a blue color, but they migrated to both the middle 
and bottom fractions suggesting a mixture of PBS complexes of different sizes and densities within this 
mutant (Fig. S1D). Thus, PBS from the mutants had reduced PE levels which appear to have resulted in 
smaller PBS complexes (middle fractions) when compared to the WT complete PBS.  
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All PBS fractions were analyzed by absorbance and fluorescence emission spectroscopy (Fig. S1E). 
The absorbance spectrum for WT PBS showed a large amount of PE (λmax=568 nm) present in comparison 
to PC (λmax=614.5 nm) and to AP (λmax=649 nm). When excited at 490 nm, which excites PE preferentially, 
the fluorescence emission peak at 669 nm indicates most of the energy is being transferred to AP. Both 
ΔcpeY and ΔcpeZ mutants had very little PE incorporated into the PBS when compared to WT, as estimated 
by the size of the 669 nm emission peak upon 490 nm excitation. However, some energy transfer from PE 
to AP was observed (Fig. S1E). We also note that PE within the PBS isolated from the ΔcpeY and ΔcpeZ 
mutants had a maximum absorbance of approximately 575 nm (Table S3), indicating a red shift in the 
absorption maxima when compared to WT.  

All PBS samples were further analyzed by SDS-PAGE to visualize phycobiliprotein levels (Fig. 
S1F). Covalent bilin attachment to proteins was examined by fluorescence emission of the same gel after 
incubation with Zn sulfate with excitation at 532 nm (Fig. S1G) which detects both PEB and PCB or at 635 
nm (Fig. S1H) to detect PCB only [39]. When compared to WT, both ΔcpeY and ΔcpeZ mutants had 
drastically reduced levels of CpeB as well as reduced CpeA (Fig. S1F). Zn-enhanced fluorescence (excited 
at 532 nm) indicated a reduced PEB fluorescence of both subunits in the ΔcpeY and ΔcpeZ mutants when 
compared to WT (Fig. S1G) which is consistent with the lower PE levels observed in the mutants. These 
results were confirmed by immunoblotting with antibodies specific for CpeA or CpeB (Fig. S1, panels I 
and J). CpeA was undetectable in the ΔcpeY PBS sample, but some CpeB was detected at reduced levels. 
In the ΔcpeZ mutant, CpeA was reduced by approximately half when compared to WT, and CpeB was 
detected but also was reduced in amount and partially degraded (Fig. S1J). For both mutants, the relative 
amount of PC also appeared to increase in the PBS when compared to WT (Fig. S1, panels G, H and K); 
however, while this increase was noted, we did not further investigate which version of PC (constitutive 
and inducible forms of PC [7]) was produced. Collectively, these analyses show that both ΔcpeY and ΔcpeZ 
mutants are unable to synthesize and assemble normal levels of PE into PBS. 

 
3.3 Characterization of holo-PE from ΔcpeZ mutant 

Since lower levels of PE were being incorporated into the PBS of the ΔcpeY and ΔcpeZ mutants, 
holo-PE was purified from the WT and mutant cells and analyzed to reveal the effects of deleting these 
genes on total PE content and chromophorylation. Total PE represents the entire pool of PE present in cells, 
including PE assembled and not assembled into PBS. First, holo-PE was purified from both WT and ΔcpeZ 
mutant cells, although only a very small amount of PE was obtained from the ΔcpeZ mutant. Holo-PE from 
WT cells had an absorbance maximum at 563 nm with a shoulder at 545 nm, and fluorescence emission 
maximum at 573 nm (Fig. 2A and Table S4). Fig. 2B shows that PE obtained from ΔcpeZ had an absorbance 
maximum at 572 nm, which is red shifted when compared to WT (Fig. 2A), with a shoulder at 542 nm 
(Table S4). To obtain the fluorescence emission spectrum (Fig. 2B), the sample was excited at 490 nm 
initially to observe the presence of PEB (fluorescence emission maxima at 573 nm) and at 590 nm to excite 
PCB (no major emission from PCB was observed). Coomassie blue staining of pure PE isolated from the 
ΔcpeZ mutant showed that CpeB levels were undetectable when compared to WT PE (Fig. 2C). Zn-
enhanced fluorescence, which is more sensitive than protein staining, of PE isolated from the ΔcpeZ mutant 
showed that CpeA contained PEB and CpeB was still undetectable (Fig. 2D). Thus, deletion of cpeZ 
drastically affects the biosynthesis of the β-subunit of PE, resulting in reduced CpeB protein levels.  
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Fig. 2: Analyses of PE purified from WT and ΔcpeZ mutant 
Absorbance (solid line) and fluorescence emission (dashed line, excited at 490 nm; dotted line, excited at 
590 nm) spectra of PE purified from (A) WT and (B) ΔcpeZ mutant F. diplosiphon cells grown in green 
light.  (C) The Coomassie-stained SDS-polyacrylamide gel for PE purified from WT (5 and 10 µL were 
loaded) and ΔcpeZ mutant (5, 10, and 15 µL were loaded).  (D) The Zn-enhanced fluorescence for the gel 
in panel C excited at 532 nm. (E) Combined extracted ion chromatograms for the peptides 
RLDAVNAIASNASC48MVSDAVAGMIC59ENQGLIQAGGNCYPNR at m/z 1200.04+ (PEB modified, 
blue line and asterisk) and m/z 1404.33+ (unmodified, red line and asterisk) of CpeB isolated from ΔcpeZ 
cells grown in green light. (Inset) UV-Vis absorption spectrum for the peak at retention time 110.8 min 
(blue asterisk) indicates PEB on Cys-48/Cys-59. These results are representative of two independent 
replicates. 

 
To identify the post-translational modifications present in the PE obtained from the ΔcpeZ mutant, 

we analyzed holo-PE samples purified from WT and the mutant that were digested with trypsin using mass 
spectrometry (LC-MS/MS). Sequences of expected tryptic peptides containing Cys residues with bound 
PEB can be found in Table S5. Peptides were separated by HPLC and ligated chromophores detected using 
visible absorbance in line with the mass spectrometer. Five peptides containing PEB were detected from 
WT; two from CpeA and three from CpeB (Fig. S2 and Table 1). The non-chromophorylated peptides 
containing the five Cys ligation sites were also detected but at very low amounts within the peptide mixtures 
(Fig. S2). Considering that these PE samples represent the entire pool of PE and not just fully assembled 
holo-PE, the detection of the non-chromophorylated peptides was expected.  
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PE purified from the ΔcpeZ mutant had PEB attachment to all 5 Cys residues (Table 1). 
Interestingly, the peptide mixtures for CpeA-Cys-82 and for CpeB-Cys-80 had PEB, PCB, or PUB 
covalently attached. These bilins are identical in m/z but vary in their UV-Vis spectra (PEB, λmax=540-565 
nm; PCB, λmax=620-650 nm; PUB, λmax=490-495 nm) (Fig. S3, Fig. S4 and Table 1). In Fig. S4, panels I, 
J, and L show a bilin attached to CpeA-Cys-82 with an absorbance around 630 nm that is 2 Da less (labeled 
as “bilin-2H”) than the typical bilin chromophore found in F. diplosiphon (PEB and PCB MW=587 Da). 
The bilin’s mass and visible absorbance spectrum suggest 3-Z-phytochromobilin [39, 45] may be attached 
to Cys-82 of CpeA in the ΔcpeZ mutant. Presumably, the three bilins detected (bilin-2H, PUB and PCB) 
are a result of non-enzymatic addition reaction products which have been observed after in vitro reactions 
with apo-PE [34]. Another interesting result was that even though the CpeB-Cys-48/Cys-59 peptide was 
detected with a bilin (m/z 1200.04+), the peptide without PEB (m/z 1404.33+) was approximately 10-fold 
more abundant (Table 1, and Fig. 2E). These results indicate that in the absence of cpeZ, CpeB 
chromophorylation is severely affected especially at the Cys-48/Cys-59 position, but also at Cys-80. Thus, 
the main effect of deleting cpeZ leads to more promiscuous chromophorylation of CpeB. Given that 
recombinant CpeZ does not act as a bilin lyase for CpeA or CpeB, but it does enhance the bilin lyase activity 
of CpeY [24], we propose that CpeZ is functioning as a chaperone.  

 
Table 1: Observed LC-MS peaks of tryptic digested PE peptides  

Strain α-82 (m/z)+1 α-139 (m/z)+1 β-80 (m/z)+1 β-165 (m/z)+1 β-48/59 (m/z)+1 
WT 936 1361 1251 2105 4797 

ΔcpeZ 936* 1361 1251* 2105 4210a; 4794 
ΔcpeY 349b; 936 1361 1251 2105 4797 

a The m/z 4210 peptide (no PEB bound) is 10-fold more abundant than the m/z 4797 peptide (PEB bound) 
based on the areas of the relevant extracted ion chromatograms (EICs). 
b EICs of ions from the m/z 349 peptide (no PEB bound) showed 2-fold more area than those from the m/z 
936 peptide (PEB bound). 
* Peptide mixtures contained peptides with PEB, PCB, PUB or bilin-2H bound at that specific Cys residue. 

 
3.4 Characterization of holo-PE from ΔcpeY mutant 

Small amounts of holo-PE were also purified from the ΔcpeY mutant and compared to WT PE. The 
PE obtained from the ΔcpeY mutant had its major absorbance peak at 566 nm with two shoulders at 599 
nm and 616 nm (which might be due to the presence of some PCB; Fig. S5A and Table S4). The normal 
545 nm shoulder seen in the WT PE absorbance spectrum (see Fig. 2A) was not present in the ΔcpeY mutant 
PE sample, possibly due to a missing bilin. To obtain the fluorescence emission spectra, the sample was 
excited at 490 nm to observe the presence of PEB (fluorescence emission maximum at 573 nm) and then at 
590 nm for PCB (fluorescence emission maxima at 635 nm; Fig. S5A and Table S4). We observed that the 
ΔcpeY mutant sample had a prominent emission peak at 635 nm that is not present in the WT sample (see 
Fig. 2A). This PCB presence in the PE sample from the ΔcpeY mutant is likely due to contamination by PC 
and/or AP subunits. Zn-enhanced bilin fluorescence confirmed the presence of PC and AP subunits as 
evidenced by the migration of these proteins below CpeB and CpeA in the SDS polyacrylamide gel (Fig. 
S5, panels B and C). Since the amount of PE purified from the ΔcpeY mutant was very small, residual PC 
and AP contamination during the purification process is unsurprising.  

LC-MS/MS on holo-PE from the ΔcpeY mutant revealed that only PEB was covalently attached to 
the subunits (Table 1). CpeA had PEB attached at both Cys-82 and Cys-139; however, the amount of the 
Cys-82 peptide without PEB (m/z 3491+) was approximately 2-fold more abundant than the amount of the 
peptide with PEB (m/z 4682+) (Fig. S5D and Table 1). PEB attachment was detected at Cys-80, Cys-165, 
and Cys-48/Cys-59 of CpeB in the ΔcpeY mutant PE sample. Overall, these results are consistent with the 
previously published work that recombinant CpeY is the bilin lyase responsible for attaching PEB to CpeA 
at Cys-82 [24].  In the absence of cpeY, chromophorylation at CpeA-Cys-82 is reduced, affecting the 
accumulation/stability of PE in cells [24, 46].   
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3.5 Investigating the role of recombinant CpeZ in solubilizing CpeB 

Recombinant CpeZ was shown to increase the amount of chromophorylation of CpeB by CpeY, 
although CpeZ alone did not demonstrate lyase activity on either subunit of PE. This suggested a chaperone-
like function for CpeZ [24]. Previous attempts to express recombinant CpeB using a heterologous in vivo 
plasmid expression system in E. coli resulted in extremely low yields of soluble protein [24]. To better 
characterize CpeB biogenesis using a recombinant expression system, we attempted to increase the 
production and accumulation of soluble CpeB in E. coli. Since deleting cpeZ negatively affects CpeB 
accumulation in cyanobacteria, recombinant CpeZ was investigated for its putative involvement in the 
folding and solubility of recombinant CpeB. For this, we examined the expression of hexahistidine-tagged 
CpeB (HT-CpeB) over time in different conditions in both the soluble (sup) and pellet (pel) fractions 
obtained from induced E. coli cultures (Fig. 3A). We find that the amount of soluble HT-CpeB (MW=20.9 
kDa), as estimated by immunoblotting, is very low but increases in abundance early on during induction 
(time 4 and 10 h) and tapers off after 19 h (Fig. 3A). This loss of soluble HT-CpeB may be due to increased 
aggregation in inclusion bodies or proteolytic degradation of misfolded proteins. 

 

 
 
Fig. 3: Recombinant CpeB solubility analyses 
For all panels, whole cell supernatant and cell pellet fractions are labeled “sup” and “pel,” respectively. (A) 
Western blot analysis of HT-CpeB from cells expressing pCpeB2 at time points 0, 4 h, 10 h, and 19 h post 
induction with IPTG using Anti-CpeB antibodies. The gel was loaded with 0.5 µg of total protein for sup 
samples and 0.1 µg of total protein for pel samples. Lane “Std” indicates the molecular weight standard. 
(B) Western blot analysis of HT-CpeB from cells expressing pCpeB2 and pNT-CpeZ2 at time points 0, 4 
h, 10 h, and 19 h post induction with IPTG using Anti-CpeB antibodies. The gel was loaded with 1 μg total 
protein per sample. Lane “Std” indicates the molecular weight standard. (C) Western blot analysis of 
recombinant HT-CpeB-PEB using Anti-CpeB antibodies. “B+S” indicates samples from cells expressing 
pCpeB2, pCpeS, and pNT-PebS. “B+S+Z” indicates samples from cells expressing pCpeB2, pCpeS, pNT-
CpeZ2, and pNT-PebS. The gel was loaded with 0.5 μg total protein per sample. These results are 
representative of two independent replicates. 
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In order to test if CpeZ is able to increase the solubility of recombinant CpeB, CpeZ was 
coproduced with HT-CpeB in E. coli using a similar expression experiment. When CpeZ was coexpressed 
with HT-CpeB, the amount of soluble HT-CpeB increased early on but tapered off at a later time point (Fig. 
3B); however, the ratios of soluble to insoluble HT-CpeB appeared slightly higher than without CpeZ 
(compare Fig. 3, panels A and B). Overall, recombinant CpeZ may be slightly increasing the solubility of 
recombinant CpeB over time by helping CpeB fold properly or preventing its denaturation or aggregation, 
but the effect in E. coli was not large.  

As previously shown, the solubility of recombinant CpeB increased when CpeB was partially 
chromophorylated at the central Cys-80 position by the lyase CpeS [24, 34]. It is possible that CpeZ acts 
after this initial chromophorylation and increases CpeB stability or stimulates the ligation of additional 
chromophores during the biosynthesis of holo-CpeB in cyanobacteria. In order to test if CpeZ is able to 
further increase the solubility of recombinant CpeB, we produced a partially chromophorylated substrate 
(HT-CpeB-PEB) by expressing HT-CpeB and CpeZ in the presence of the CpeS lyase (which 
chromophorylates CpeB-Cys-80 [24]) and the PEB-producing enzymes (PebS/HoI [37]). As controls, HT-
CpeB was also expressed with CpeS and PebS/HoI but without CpeZ. Cells were processed as described, 
and the supernatant fractions of HT-CpeB-PEB expressed with and without CpeZ at time points 10 h and 
19 h were subjected to Western blot analysis using Anti-CpeB antibodies (Fig. 3C). At 10 h of induction, 
the solubility of HT-CpeB-PEB in the presence of CpeZ was increased by approximately 2-fold (Fig. 3C, 
lane labeled “B+S+Z” at 10 h) when compared to the sample not expressed with CpeZ (Fig. 3C, lane labeled 
“B+S” at 10 h). After 19 h of protein production, the solubility of HT-CpeB-PEB was increased 5-fold in 
the presence of CpeZ (Fig. 3C, compare lane labeled “B+S+Z” at 19 h to lane “B+S” at 19 h). These results 
indicate that recombinant CpeZ is able to increase the solubility of partially chromophorylated recombinant 
CpeB, either by preventing CpeB from degradation/aggregation (thus allowing CpeS to chromophorylate 
CpeB) or by serving as an adaptor protein facilitating interaction of CpeB with CpeS. 

 
3.6 Analysis of CpeZ interactions with putative lyases and PE substrates 

As shown in Fig. 3C, CpeZ increased the solubility/chromophorylation of CpeB in the presence of 
CpeS. We wondered if CpeZ directly interacts with the lyase CpeS and/or other lyases or with CpeB itself. 
To answer this question, recombinant HT-CpeZ was used in pull-down assays in the presence of CpeS as 
well as the lyase CpeY and the CpeB lyase CpeF[44]. HT-CpeZ was purified from the protein mixtures 
(Fig. S6A) using Ni-NTA affinity chromatography and the concentrated eluates were analyzed by SDS-
PAGE (Fig. S6B) to determine if a stable interaction was occurring. HT-CpcU and CpcS (heterodimeric 
lyase for b-PC at Cys-82) from Synechococcus sp. PCC 7002 were previously shown to interact in pull-
down assays [41] and were used as a positive control. As previously shown, CpeY and CpeZ from F. 
diplosiphon do not form a stable interaction [24] and were, therefore, used as a negative control for HT-
CpeZ interactions. The putative lyase CpeF did not appear to interact with HT-CpeZ as there was no visible 
protein of the expected size of 32.4 kDa co-purifying with HT-CpeZ (Fig. S6B). The lyase CpeS did appear 
to co-purify with HT-CpeZ, albeit weakly (Fig. S6B, indicated with arrow). To further test whether the 
protein interacting with HT-CpeZ was CpeS, a Western blot was conducted using Anti-CpcS antibodies 
(generated against CpcS-I from Synechococcus sp. PCC 7002) as shown in Fig. S6C. Due to the similarity 
of these two proteins, the anti-CpcS antibodies cross-react with CpeS. The 8-fold concentrated eluate 
sample labeled “elu (8x)” showed very little CpeS co-purifying with HT-CpeZ. Most of the CpeS protein 
was found in the “FT” flow-through fraction that consisted of proteins that did not bind the Ni-NTA slurry 
during the purification process prior to the washing and elution steps. Experiments reversing the His-tagged 
bait protein (CpeY, CpeS, or CpeF) and the non-tagged prey protein (CpeZ) was conducted to further 
confirm CpeZ interactions or lack-there-of; however, non-tagged CpeZ alone was retained on the Ni-NTA 
slurry (data not shown) and, thus, could not be used for confirmation. However, based on these assays, 
CpeZ did not interact stably with other E. coli-produced lyases such as CpeY and CpeF, and only formed a 
weak interaction with CpeS (Fig. S6). 
 As CpeZ was shown to increase the solubility of recombinant CpeB with and without PEB attached 
by CpeS (Fig. 3) and to weakly interact with CpeS (Fig. S6), it is possible that the function of CpeZ could 
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be to interact with the CpeB substrate itself at some point during PE biogenesis. Unfortunately, apo-CpeB 
and apo-CpeA are not very soluble in E. coli. Therefore, individual holo-PE subunits were used in pull-
down assays with recombinant HT-CpeZ (Fig. S7, panels A-C). Additionally, a control assay replacing HT-
CpeZ with buffer (to test interactions with the Ni-NTA slurry) was conducted (Fig. S7, panels D and E). 
The pre-pull-down mixtures “mix” and the 4-fold concentrated eluates “elu (4x)” were analyzed by SDS-
PAGE as well as immunoblotting. HT-CpeZ did not form a stable interaction with CpeA (Fig. S7B); 
however, some CpeB co-purified with HT-CpeZ (Fig. S7C; lane “elu (4x), CpeB+Z”). A small amount of 
CpeB contamination (from the CpeA subunit separation/purification process) was detected in the pre-pull-
down mixture with HT-CpeZ and CpeA (Fig. S7C, lane “mix, CpeA+Z”). The controls confirm that the 
interaction between holo-CpeB and HT-CpeZ was genuine since neither of the native PE subunits interacted 
with the Ni-NTA slurry itself (Fig. S7, panels D and E). Together these data show that CpeZ interacts with 
holo-CpeB. 
 
3.7 Characterizing the chaperone-like function of recombinant CpeZ 
Given the CpeZ-induced enhancement in solubility and chromophorylation of CpeB, it is possible that CpeZ 
is functioning as a chaperone protein which facilitates the folding and stability of PE subunits in 
cyanobacteria. To test this premise, we modified the fluorescence stability protocols previously developed 
for CpcE and PecE [16, 22]. This modified protocol used CpeZ, recombinant and native PE subunits for 
the chaperone assays. Recombinant and partially chromophorylated CpeA (HT-CpeA-PEB) and CpeB (HT-
CpeB-PEB) were individually incubated with CpeZ and the changes in fluorescence signal (a proxy of their 
folding and appropriate bilin interaction) over time were monitored as shown in Fig. 4. When the isolated 
PE subunits were kept in buffer alone on ice, fluorescence decreased dramatically over time (data not 
shown) indicating a lack of stability/folding in solution, especially when the total protein content was low. 
Therefore, BSA was used as a control rather than just using buffer alone (at a 10:1 ratio of BSA:substrate 
to mirror CpeZ’s concentration in the test assays). The fluorescence of HT-CpeA-PEB was significantly 
altered in the presence of CpeZ when compared to the control at each time point (Fig. 4A; p=0.0267 at 20 
hours). However, when HT-CpeB-PEB was mixed with CpeZ, the initial fluorescence remained relatively 
unchanged over time after 2 h (Fig. 4B). The fluorescence after 20 h with CpeZ was significantly different 
than the result observed with the BSA control (Fig. 4B; p<0.0001). These results indicate that the presence 
of CpeZ prevented the aggregation and/or unfolding of HT-CpeB-PEB in solution, stabilizing its 
fluorescence during the assay. Repeated measures ANOVA was used to analyze the collected data with 
time and added protein (CpeZ vs BSA) as the variables (Table S6). For HT-CpeB-PEB, the interaction of 
time and added protein (CpeZ or BSA) was significant (Table S6; p<0.0001). The effect of the added protein 
was such that the fluorescence decreased over time when BSA was added but significantly increased over 
time when CpeZ was added (see Fig. 4B; p<0.0001).   For HT-CpeA-PEB, the effect of added protein was 
not significant (Table S6).   

The chaperone-like function of CpeZ was further investigated using purified holo-PE subunits in 
similar chaperone assays (Fig. 4, panels C and D). When holo-CpeA was incubated with CpeZ, the 
fluorescence of holo-CpeA was stabilized by CpeZ compared to the BSA control (Fig. 4C; p=0.0005 at 2 h 
and p=0.0014 at 20 h). When native, holo-CpeB was incubated with CpeZ, the fluorescence was stabilized 
after 20 h which was significantly different than the fluorescence observed after 20 h with the BSA control 
(Fig. 4D; p=0.0014). The repeated measures ANOVA analysis showed that the effect of the added protein 
for holo-CpeA (p=0.0244; Table S6) and holo-CpeB (p=0.0381; Table S6) were both significant. CpeZ 
appears to stabilize and prevent the aggregation of native PE subunits, consistent with its proposed role as 
a chaperone-like protein in the biosynthesis of PE.   
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Fig. 4: HT-CpeZ chaperone assays with recombinant and native PE subunits  
All chaperone assays were conducted in the dark on ice for 20 h. (A) Graph representing the change in 
normalized fluorescence (excitation at 490 nm) over time of partially chromophorylated CpeA (0.75 µM; 
HT-CpeA-PEB; expressed in E. coli using pCpeA, pCpeY, and pNT-PebS) incubated with either HT-CpeZ 
(red) or BSA (control; black). (B) Graph representing the change in normalized fluorescence over time of 
partially chromophorylated CpeB (25.1 µM; HT-CpeB-PEB; expressed in E. coli using pCpeB2, pCpeS, 
and pNT-PebS) incubated with either HT-CpeZ (red) or BSA (control; black). (C) Graph representing the 
change in normalized fluorescence over time of holo-CpeA (0.16 µM) incubated with either HT-CpeZ (red) 
or BSA (control; black). (D) Graph representing the change in normalized fluorescence over time of holo-
CpeB (0.095 µM) incubated with either HT-CpeZ (red) or BSA (control; black). For each replicate series, 
fluorescence was normalized by dividing the raw emission values by the emission value present at time 0. 
For all panels, error bars represent the ranges. Asterisks indicate statistical significance levels of HT-CpeZ 
t-test comparisons to control protein: *p < 0.05, **p < 0.01, *** p<0.001, ****p<0.0001. These results are 
representative of two independent replicates.  
 

CpeZ aggregates when the temperature is increased to 38°C (data not shown), so typical chaperone 
assays using heat-denatured citrate synthase (CS from pig heart [42, 43]) monitoring increased, heat-
induced scattering were not possible. However, refolding assays of chemically denatured CS in the presence 
of CpeZ (with and without ATP) were performed and compared to assays in which BSA or buffer alone 
was used (with/without ATP; Fig. S8). BSA on its own has been previously shown to enhance the refolding 
of CS  [47].  However, CpeZ (no ATP) showed significantly lower chaperone-like activity on CS during 
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refolding assays than BSA (no ATP) in a two-way ANOVA (p=0.0154). There was no significant effect of 
ATP addition for CpeZ. Given that CpeZ-dependent enhancement of CS activity is very modest and does 
not need ATP, we interpret that CpeZ must be a PE-specific chaperone-like protein. 

Next, we decided to test if CpeZ can assist partially-chromophorylated CpeB in refolding by 
measuring fluorescence over time.  We chemically denatured recombinant HT-CpeB-2PEB in the presence 
of CpeZ versus BSA or buffer alone (see Experimental Procedures 2.11.3) and monitored CpeB’s signal 
over time (Fig. 5). Both buffer and BSA controls showed a loss of CpeB fluorescence over time, presumably 
due to aggregation of CpeB.  However, CpeZ significantly enhanced the fluorescence of HT-CpeB-2PEB 
over time (p=0.0001). There was no significant effect of ATP on CpeZ’s activity, which is consistent with 
its lack of an obvious ATP binding site. Thus, CpeZ is able to prevent the loss of CpeB fluorescence over 
time, presumably by assisting CpeB’s refolding process.   
 
 

 
  
 
Fig. 5:  Refolding of chemically denatured recombinant CpeB: 
Recombinant, partially chromophorylated CpeB (HT-CpeB-2PEB; 50 µM; expressed in E. coli using 
pCpeB, pCpeSF2, pNT-CpeZ3, and pNT-PebS to attach 2 PEBs to CpeB at Cys-80 and Cys-48/Cys-59 by 
the lyases CpeS [24] and CpeF [44], respectively) was chemically denatured for 90 min prior to a 25-fold 
dilution with either Buffer O (control; green), BSA (control; black), HT-CpeZ (red), or  HT-CpeZ + ATP 
(orange). HT-CpeZ and BSA were added in a 1:10 ratio (substrate:chaperone-like protein or control). 
Refolding of HT-CpeB-2PEB was measured by monitoring the fluorescence emission (excited at 490 nm) 
every 15 min for 120 min. All assays were performed in duplicate and represented as averages with ranges. 
For each replicate series, fluorescence was normalized by dividing the raw emission values by the emission 
value present at time 0. There was no statistical difference between CpeZ with/without ATP.  Letters a and 
b indicate a statistically significant difference at each time point indicated (p<0.0001), and letters b and c 
indicate statistically significant difference at each time point indicated (p=0.0007) using two-way ANOVA 
analyses (Tukey’s). These results are representative of two independent replicates.  
 
4. Discussion and Conclusions 

 
Our mutant analyses showed that CpeY and CpeZ are involved in PE biosynthesis in Fremyella 

diplosiphon. CpeZ functions as a chaperone-like protein, likely important during early PE biosynthesis, 
especially for CpeB, and CpeY functions as a CpcE/CpcF-type lyase for CpeA by attaching PEB to Cys-
82 [24]. The role of CpeZ on CpeB biogenesis was not evident from previous work with recombinant 
proteins. 
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We observed a reduced PE phenotype in our ΔcpeY and ΔcpeZ mutant cells when grown in green 
light. Further, the PE in the purified PBS samples from both ΔcpeY and ΔcpeZ mutants showed a slight red-
shifted absorbance peak. One potential explanation for this red-shift is the presence of PCB on CpeA or 
CpeB. Although our MS data for ΔcpeY PE shows CpeA and CpeB only had PEB on the Cys attachment 
sites, the PE from the ΔcpeZ PE sample showed that some peptides contained PCB attached to CpeA-Cys-
82 and CpeB-Cye-80. It is possible that endogenous lyases in cyanobacteria, such as CpcE/CpcF, are 
capable of ligating PCB to these Cys positions in the absence of other PEB lyases. Jung et al. observed 
similar results from insertion mutants in the genes encoding the PecE/PecF lyase/isomerase in Nostoc 
(Anabaena) sp. PCC 7120 [48]. When both pecE and pecF were mutated, phycoerythrocyanin levels were 
severely reduced and PCB was attached to the Cys-84 site in PecA, presumably by the endogenous 
CpcE/CpcF lyase, instead of  phycoviolobilin which is naturally found at that site [48]. Indeed, we 
demonstrated that CpcE/CpcF lyase can attach PCB to CpeA using our heterologous expression system 
(data not shown; [49]). CpcS was also shown to be capable of attaching PEB to recombinant CpeA as well 
[50]. 

Another possibility for the red-shifted absorbance spectrum of the PE in the purified PBS from the 
mutants is the presence of a non-covalently attached PEB chromophore in the bilin-binding pocket of one 
of the PE subunits, as observed in other lyase mutants [13, 14, 40, 51]. Non-covalently bound bilins would 
have an extra double bond within the bilin which would cause the red shift. Consistent with this, our MS 
analysis of purified PE from the mutants revealed that in the absence of cpeZ, chromophorylation at CpeB-
Cys-48/Cys-59 was drastically reduced. In the absence of cpeY, chromophorylation at CpeA-Cys-82 was 
also reduced but to a lesser extent than was observed in the ΔcpeZ mutant at this same position. Since bilins 
naturally have a high affinity for the bilin binding pockets in phycobiliproteins [34], the  low amounts of 
PEB chromophores found at the CpeA-Cys-82 site in the ΔcpeY mutant or to the CpeB-Cys-48/Cys-59 site 
in the ΔcpeZ may be attaching non-enzymatically after a slow ligation process. MS analyses of PE from 
the ΔcpeZ mutant also revealed that CpeB-Cys-80 and CpeA-Cys-82 peptides had small amounts of PEB, 
PCB, PUB, or bilin-2H covalently attached. Given that CpeZ alone does not have lyase activity [24], these 
results suggests that CpeZ plays a critical role in preparing PE for chromophore ligation at CpeB-Cys-80 
and CpeA-Cys-82 sites. The small amount of PE that is produced in the ΔcpeZ mutant implies that the 
subunits may not be in the right conformation for recognition by bilin lyases or they are not stable and 
aggregate without CpeZ. This may allow some bilins in the mutant to attach non-enzymatically, thus, 
resulting in the slow ligation of small amounts of bilin to CpeB-Cys-80 and CpeA-Cys-82 peptides that 
were detected by MS. Such non-enzymatic addition of bilins to the apo-protein is consistent with the results 
of Fairchild and Glazer who demonstrated that PEB addition to recombinant CpeA in vitro from F. 
diplosiphon occurs with very slow reaction rates and in some cases, the resultant products contained 
oxidized or isomerized bilin adducts [34].   

Here we show that CpeZ functions as a chaperone-like protein which aids in the folding and 
stability of CpeB, allowing more time for interaction with bilin lyases. It may also assist in the enhancement 
of lyase/substrate interactions during chromophorylation events. For example, when CpeB was 
chromophorylated by CpeS, CpeZ increased the solubility of CpeB; however, CpeZ only weakly interacted 
with CpeS in pull-down assays. Furthermore, CpeZ was also unable to form a stable interaction with PE 
lyases CpeY and CpeF [44] which again suggests that CpeZ functions in vivo by directly interacting with 
CpeB. Indeed, this was shown to be the case when native, holo-CpeB co-purified with HT-CpeZ in pull-
down assays. The presence of five HEAT-repeat motifs (involved in protein-protein interactions [52]) and 
one ARM repeat motif (polypeptide binding site [52]) in the predicted structure of CpeZ also supports the 
chaperone-like role of CpeZ. 

In 1994, Fairchild and Glazer first demonstrated a chaperone-like function of the E/F-type lyase 
CpcE/CpcF from Synechococcus sp. PCC 7002 [16]. Böhm et al. also provided evidence for a chaperone-
like function of the PecE lyase subunit which was shown to improve the spectral properties of PecA-PCB 
in the absence of ATP or GTP by inducing a conformational change in the phycobiliprotein for a more 
stable and fluorescent product [22]. In this study, CpeZ, which is 32% similar to PecE from Anabaena sp. 
PCC 7120, was shown to stabilize the protein/bilin complex and the fluorescence of HT-CpeB-PEB as well 
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as native, holo-CpeB and native holo-CpeA during chaperone assays. It is likely that CpeZ is functioning 
in a similar manner as the other chaperone lyases by interacting with and stabilizing the structure of the its 
target, or assisting in protein refolding to produce a more fluorescent product [11, 34]. 

Partially or inefficiently chromophorylated phycobiliproteins do not possess the same 3D structure 
as holo-phycobiliproteins [22, 34, 53, 54] which may result in protein degradation or aggregation. Toole et 
al. generated site-directed mutants in Synechocystis sp. PCC 6701 by changing the bilin-binding residues 
from Cys to Ala in both subunits of PC [46] which resulted in a dramatic loss of PC production as observed 
in other lyase mutants [12, 38, 40, 48, 55, 56].  Attachment of the central bilin (Cys-82 equivalent) facilitates 
stability of the subunits, thus allowing for heterodimer formation as well as hexamer formation and 
assembly into the PBS [46].  Biswas et al. also demonstrated this concept using an in vivo heterologous 
expression system showing that chromophorylation at this central position (Cys-82 of CpeA in F. 
diplosiphon) increased recombinant CpeA solubility and stability in E. coli [24]. We propose that the role 
of CpeZ is to assist in folding and to stabilize CpeB (e.g. prevent aggregation) as each of the three PEB 
molecules is attached by its lyase.  It also increases the efficiency of PEB ligation on CpeA at Cys-82 by 
CpeY, but the effect on CpeA was not as dramatic as the effect on CpeB in the ΔcpeZ mutant. This may be 
because apo-CpeA is more soluble and aggregates less than apo-CpeB in cyanobacteria, analogous to what 
we observed in E. coli [24]. 

When recombinant HT-CpeB-PEB was incubated with buffer (data not shown) or with control 
protein (BSA) and left on ice overnight, a reduction of the fluorescence was observed which is a measure 
of the protein-bilin interaction and conformation. This process was significantly slowed down in the 
presence of CpeZ. Thus, CpeZ is stabilizing the partially chromophorylated HT-CpeB-PEB utilized during 
chaperone assays. This function of preventing CpeB from aggregating may be useful in providing bilin 
lyases enough time to attach PEB to the three Cys residues during the biosynthetic process of CpeB. A 
protection from degradation function was demonstrated for other molecular chaperonins, such as GroEL. 
GroEL is a chaperone that binds unfolded proteins unless the interaction is disrupted by ATP [57]. This 
unfolded state is maintained in the absence of ATP to promote protein refolding and preventing protein 
aggregation or degradation [58]. CpeZ was capable of performing this function without ATP and has no 
predicted ATP binding site. Because of this lack of a requirement for ATP for function, we term CpeZ a 
chaperone-like protein for the binding and stabilization of CpeB and CpeA during biosynthesis. Indeed, 
there are many examples of proteins which are not conventional chaperones but play important roles in the 
assembly of protein complexes especially those involved in photosynthesis [59-62]. CpeZ’s role as a 
chaperone seems to be specific for CpeB (and CpeA) as it played no significant role in the renaturation 
assays for the non-native substrate protein CS [42, 43]. 

 The analyses presented in this and a companion study [44] were used to generate a model for the 
proposed biosynthetic pathway of PE in cyanobacteria which is represented in Fig. 6 (modified from [7, 
63, 64]). The process begins with gene transcription and protein translation of apo-CpeA and apo-CpeB 
with the assistance of chaperones, such as the chaperone-like protein CpeZ, which functions in protein 
folding and stability/aggregation prevention (step 1). As seen in step 2a, when apo-subunits are denatured 
or not properly folded, they are degraded by cellular processes. However, if the apo-subunits are folded and 
stabilized by CpeZ, CpeA lyases (CpeY and possibly CpeU [24, 40, 65]) and CpeB lyases (CpeS, CpeF, 
and possibly CpeT [24, 38, 65-67]) are able to chromophorylate the specific Cys residues (step 2b). Other 
post-translational modifications occur as well, including the methylation of CpeB-Asn-70 by the 
methyltransferase CpcM [68, 69]. When the apo-subunits are fully chromophorylated and become holo-
CpeA and holo-CpeB (step 3), they bind each other and form a monomer (αβ; step 4). Three monomers 
combine to form a trimer ((αβ)3; step 5), and two trimers are bound together by linker proteins (abbreviated 
“L”) to form hexamers ((αβ)6; step 6). PE hexamers are further stacked upon each other by linker proteins 
and are assembled into the PBS complexes (step 7). As represented in this model and demonstrated in the 
research presented in this study, CpeZ is especially crucial in the early PE biosynthetic process (steps 1 and 
2b). Our evidence suggests that CpeZ plays a role in stabilizing the conformation of both subunits, but its 
role is most important for the CpeB subunit.  Once stabilized, we suggest this allows higher levels of activity 
of the other lyases.  It is also possible that CpeZ acts as an adaptor protein facilitating the binding of lyases 
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to these subunits as well. This model ignores the spatial constraints of PBS assembly imposed by the 
thylakoid arrangement and stacking in the cell. It would be worthwhile to understand how PE synthesis and 
PBS biogenesis as a whole is integrated with the biogenesis of the photosystem complexes which are 
ordered in time and space and occur at the membrane [70]. 
 In conclusion, both CpeY and CpeZ play critical roles in the biosynthesis and stability of PE in 
cyanobacteria. In the absence of the cpeY lyase gene, chromophorylation on CpeA-Cys-82 is reduced, 
consequently affecting the accumulation and stability of PE in cells. Both subunits of PE were affected in 
the ΔcpeZ mutant, causing drastic effects to multiple chromophorylation sites, thus leading to protein 
instability and degradation. CpeZ behaves as a chaperone-like protein and is critical to the stabilization of 
PE subunits during the biosynthetic process.   
 

 
 
Fig. 6: A model of PE biosynthesis in cyanobacteria 
Steps in the proposed biosynthetic process of PE are labeled with numbered-circles. Arrows indicate the 
direction of the pathway. Double-sided arrows do not represent equilibria but represent the possible 
pathway in vivo. (1) PE biosynthesis begins with gene transcription and protein translation of apo-CpeA 
and apo-CpeB with the help of chaperones, such as the chaperone-like protein CpeZ which may assist with 
folding and stability. (2a) Improperly folded proteins are degraded. (2b) Folded apo-CpeA and apo-CpeB 
are stabilized by CpeZ long enough for CpeA lyases (CpeY and possibly CpeU [24, 40, 65]) and CpeB 
lyases (CpeS, CpeF, and possibly CpeT [24, 38, 65-67]) to chromophorylate their designated Cys residues. 
The putative lyases CpeT and CpeU are marked with asterisks. The CpcM methyltransferase (methylates 
CpeB-Asn-70) is marked with a double asterisk [68, 69]. (3) Apo-CpeA and apo-CpeB (uncolored) become 
holo-CpeA and holo-CpeB (pink), respectively, when steps 1 and 2b are completed. (4) Holo-CpeA and 
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holo-CpeB form monomers (pink; αβ). (5) Three monomers form a trimer (pink; (αβ)3). (6) Two trimers 
are connected by linker proteins “L” to form hexamers (pink; (αβ)6). (7) Hexamers are stacked together 
with the help of linker proteins to form the PE rods that are assembled into the PBS complex. This model 
was modified from [7, 63, 64]. 
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