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Graphical abstract 

 

 

 

HIGHLIGHTS: 

 

 Complexes of nifedipine with β-cyclodextrin and aspartic acid were prepared  

 Multicomponent complex formation increase the aqueous solubility of nifedipine 

 Complexation showed an improvement of the dissolution profile of the drug 

 Nifedipine inserted its aromatic ring into the β-cyclodextrin cavity  

 Complexes represent a promising approach to nifedipine formulation optimization 

 

 

ABSTRACT  

The purpose of this work was to characterize complexes of nifedipine with β-cyclodextrin (β-

CD), with and without auxiliary agents, to improve aqueous solubility and the dissolution 
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profile of nifedipine. Complexes were characterized using infrared spectroscopy, 

thermoanalytical methods, powder X-Ray diffraction, scanning electron microscopy, phase 

solubility analysis and dissolution studies. Spatial configurations were determined by NMR 

and further examined using computational techniques. This investigation showed that the 

amino acid Asp was the most efficient auxiliary agent for multicomponent complexes. The 

spatial configurations were consistent with those obtained by molecular modelling; 

evidencing that nifedipine inserted its aromatic ring into β-CD, in all complexes, with Asp 

interacting with the wide hydrophilic rim of β-CD. The dissolution rates of nifedipine:β-

CD:Asp complexes were significantly increased compared to those of the pure drug or 

nifedipine:β-CD. These results indicate that the nifedipine:β-CD:Asp system is a promising 

approach for the preparation of optimized formulations of nifedipine. 

 

KEYWORDS: nifedipine; β-cyclodextrin; multicomponent complex; molecular modelling; 

dissolution studies 
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1. NTRODUCTION 

Enhancing the solubility of poorly water-soluble drugs is one of the most important objectives 

of the pharmaceutical industry, since limited water solubility is generally associated with 

suboptimal dissolution profiles and thus poor oral bioavailability (Göke et al., 2018; 

Kawabata, Wada, Nakatani, Yamada & Onoue, 2011). This is the case of nifedipine (NIF, 

Fig. 1A), a calcium-channel blocking agent widely used in the treatment of angina pectoris 

and hypertension. NIF is classified as a class II substance in the biopharmaceutical 

classification system (BCS), exhibiting poor water solubility while presenting a high 

permeability. Its pharmacokinetic parameters following oral administration are dependent on 

the type of dosage form used (Gajendran et al., 2015; Mercuri, Fares, Bresciani & Fotaki, 

2016). A very important challenge for researchers is to develop new drug delivery systems 

in order to increase the solubility and dissolution rate of class II BCS drugs, such as NIF, 

with the aim of improving dissolution rate profiles leading to enhanced intestinal absorption 

and the corresponding increased bioavailability. 

 

Figure 1. Molecular structure and NMR signal notation of: (A) NIF, (B) β-CD and (C) ASP.  

 

Cyclodextrins (CDs) are cyclic oligosaccharides, widely used in pharmaceutical formulations 

to enhance the solubility, dissolution rate and bioavailability of drugs. Their truncated cone 

structure is open at both ends, facilitating the incorporation of organic molecules in its cavity, 
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and thus efficiently forms inclusion complexes. In the absence of a guest molecule, water 

molecules from the bulk solution occupy the interior cavity of CDs, thus desolvation events 

are required prior to ligand inclusion. In addition, as the exterior rims of CDs contain several 

hydroxyl groups, additional electrostatic interactions with these groups are also possible 

upon ligand binding. Three types of natural CDs are frequently used in the pharmaceutical 

industry, namely α-, β- and γ-CD, containing six, seven or eight (α-1-4)-linked D-

glucopyranoside units, respectively (Iacovino et al., 2017; Muankaew & Loftsson, 2018; 

Narayanan, Boy, Gupta & Tonelli, 2017). Among them, β-CD (Fig. 1B) is the most widely 

used CD, mostly because of the size of its cavity, which is appropriate for the inclusion of a 

vast number of therapeutically relevant drugs. In addition, β-CD is the cheapest among 

natural CDs, which is also a significant advantage in the context of bulk material 

preparations. In previous works, different researchers have investigated the complexation 

of NIF with CDs, with the aim of overcoming the limitations related to its poor water solubility 

(Acartürk, Kişlal & Çelebi, 1992; Bayomi, Abanumay & Al-Angary, 2002; Chutimaworapan, 

Ritthidej, Yonemochi, Oguchi & Yamamoto, 2000; de Araújo et al., 2017; Filipović-Grčić, 

Bećirević-Laćan, Skalko & Jalšenjak, 1996; Heydari, Iranmanesh, Doostan & Sheibani, 

2015; Jagdale, Jadhav, Chabukswar & Kuchekar, 2012; Nikolić et al., 2010; Škalko, Brandl, 

Bećirević-Laćan, Filipović-Grčić & Jalšenjak, 1996; Uekama, Ikegami, Wang, Horiuchi & 

Hirayama, 1992). Although some of these results can be considered promising, in terms of 

biopharmaceutical performance, Beig et al. observed a decrease in the apparent intestinal 

permeability of NIF, as a function of increasing CD concentrations (Beig, Miller & Dahan, 

2013), a feature that may limit the biopharmaceutical performance of the binary system. 

Several studies carried out by different research groups have established that solubilization 

and complexation efficiency of CDs can be improved by forming multicomponent complexes, 

using auxiliary substances, such as polymers, amino acids or hydroxypropylacids (Aiassa, 

Zoppi, Albesa & Longhi, 2015; Aiassa, Zoppi, Becerra, Albesa & Longhi, 2016; Barbosa et 
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al., 2014; Vieira et al., 2015). This strategy is of particular interest applied towards enhancing 

NIF bioavailability, since it allows the use of lower doses of CDs to reach the desired 

solubilizing effect compared to binary systems. The design of these kinds of multicomponent 

systems is very promising since they allow formulation costs to diminish while avoiding CD 

concentration dependent effects (Loftsson & Brewster, 2012). 

In this work, we hypothesize that the preparation of multicomponent supramolecular 

systems of NIF with β-CD and essential amino acids (AAs) may be able to enhance the 

water solubility and dissolution rate of the drug in a greater extent, compared to that of the 

binary complex. In this way, different amino acids were screened with respect to their effect 

in NIF solubility, as a measure of their utility as auxiliary agents. The multicomponent system 

with the most efficient AA was prepared and studied in detail, including phase solubility 

analyses, infrared spectroscopy, thermoanalytical methods, powder X-Ray diffraction and 

scanning electron microscopy. To further, characterize the multicomponent systems at an 

atomic level, molecular docking and dynamics studies were carried out, along with combined 

free-energy of binding analyses. Computational findings were consistent with experimental 

results, finding agreement between spectroscopic (1H NMR) data and the predicted three 

dimensional structures of the binary and multicomponent complexes. Furthermore, empirical 

affinity parameters and binding energies were calculated to investigate the stability of all the 

prepared complexes. 

 

2. MATERIALS AND METHODS 

2.1. Materials 

Nifedipine (98.7%) and glycine (98%) were purchased from Parafarm. β-CD (MW: 1135 

g/mol) was kindly donated by Roquette (agent of Roquette in Argentina); arginine (98%), 

histidine (99%) and leucine (98%) were purchased from Sigma-Aldrich; aspartic acid 

(99.3%) from Anedra. Dimethyl sulfoxide-D6 (99.8%, MagniSolv™) deuterated solvent was 
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obtained from Merck, while water intended for all analyses was obtained from a Millipore 

Milli-Q water purification system.  

 

2.2. Selection of Auxiliary Agents 

A series of amino acids were screened with NIF to select the appropriate auxiliary agent to 

prepare multicomponent complexes. Experiments were carried out at 37 °C in stoppered 

glass tubes containing an excess amount of NIF (10 mg), with addition of 3 mL of aqueous 

solutions containing a fixed concentration (5mM) of the following amino acids: arginine (Arg), 

aspartic acid (Asp), glycine (Gly), histidine (His) and leucine (Leu). All suspensions were 

shaken on a vortex for 15 seconds and placed in a thermostatic bath at 37.0 ± 0.1 °C to 

reach solubilization equilibria protected from light. Prior to quantification, the samples were 

filtered using a membrane of 0.45 μm (Millipore, USA) in vials. Quantitative determinations 

of NIF were performed using an Agilent S1100 High Performance Liquid Chromatography 

(HPLC) system, equipped with a Phenomenex C8 (4.6 x 250 mm and 5 µm) column at 25°C. 

The mobile phase was methanol:water (60:40), at a flow rate at 1mL/min. Analyte signals 

were obtained using an UV detector set at 238 nm. 

 

2.3. Phase solubility analysis 

The effect of β-CD on the solubility of NIF was studied in triplicate, in the presence and 

absence of the corresponding amino acids. Excess amounts of NIF (10 mg) were added in 

stoppered glass tubes containing water solutions with a fixed concentration of the auxiliary 

agent (5mM) and different amounts of β-CD (0–12.4 mM). Samples were shaken on a vortex 

for 15 seconds and then placed in a thermostatic bath at 37.0 ± 0.1 °C to reach solubilization 

equilibria, protected from light. Prior to quantitation through HPLC, samples were filtered 

with a membrane of 0.45 μm pore diameter (Millipore, USA) in vials and analysed by HPLC. 

Phase solubility curves for the binary and multicomponent systems were obtained by plotting 

ACCEPTED M
ANUSCRIP

T



8 
 

the concentration of solubilized NIF versus β-CD concentration in the sample. The stability 

constants (KC) of the complexes were calculated, considering the saturation solubility of NIF 

(S0) in water in the absence of β-CD (for the binary complex) or β-CD and AA (for the 

multicomponent complex). The KC was calculated from the slope of the phase solubility 

diagrams (Eq. 1): 

KC= slope / S0 (1- slope) (Eq. 1) 

2.4.  Molecular modelling  

Initial structures: the structure of β-CD was obtained from the Cambridge Structural 

Database (code BCDEXD10), while those of the corresponding ligands were constructed 

from their SMILES nomenclature, using the MarvinSketch software (MarvinSketch, 2017). 

Prior to docking assays, the three-dimensional structures of the ligands were energy 

minimized by applying a semiempirical method as implemented in the software Gaussian09 

(Frisch et al., 2009). 

Molecular docking studies: in order to perform these studies, the Autodock4 software was 

used (Morris et al., 2009). In all docking procedures, a docking grid was precomputed using 

the Autogrid4 software, setting a docking grid positioned in the centre of mass of β-CD, and 

extending 22 Å in the x,y,z direction. The charges corresponding to β-CD were assigned 

from the Glycam06 force field (Kirschner et al., 2008), while those for the ligand were 

assigned from the GAFF forcefield (Wang, Wolf, Caldwell, Kollman & Case, 2004). Docking 

runs were performed considering a rigid receptor (i.e. β-CD) and a flexible ligand, with the 

corresponding conformations generated using a Lamarckian Genetic Algorithm applying the 

default search parameters implemented in the software. To exhaustively analyse the 

resulting docked poses, a representative member of each cluster of conformations obtained 

from the docking runs was subjected to further analysis by molecular dynamics (MD), both 

for the binary and multicomponent systems. To obtain the multicomponent complex; the 
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starting structure of the corresponding binary complex was generated from a cluster analysis 

applied over the molecular dynamics trajectories obtained for each NIF binding mode. As 

was performed for the binary system, to identify the most stable binding mode of the auxiliary 

agent, all alternate binding modes were subjected to MD analysis and free energy of binding 

analysis. 

Molecular Dynamics simulations: The Amber18 software was used (Case et al., 2018), using 

explicit solvent conditions to obtain each trajectory. Starting structures corresponding to 

either the binary or multicomponent complex were parameterized using the tleap module of 

Amber18 (Case et al., 2018), applying the corresponding parameters form the Glycam06 

and GAFF forcefields for the host and guest molecules, respectively (Kirschner et al., 2008; 

Wang, Wolf, Caldwell, Kollman & Case, 2004). Complexes were solvated using a pre-

equilibrated TIP3P explicit water model, applying a solvent box with boundaries at a 

minimum distance from the solute of 10 Å in each direction. After standard minimization 

procedures (5000 steps, first stage: solute restrained; 5000 steps, second stage: 

unrestrained system), the minimized complexes were heated under constant volume 

conditions from 0 to 300 K in a 0.5 ns timeframe, applying restraints on the solute. Next, the 

complexes were equilibrated during 1 ns, after which the production phase under constant 

pressure and temperature conditions was performed for an additional 10 ns. In all cases, a 

2 fs timestep was used, with the SHAKE algorithm applied to constrain all covalent bonds 

involving hydrogen atoms. A 10 Å cutoff value was used to calculate non-bonded 

interactions. In addition, MD simulations were also studied using DMSO as explicit solvent. 

To develop the solvent system, DMSO charges were calculated using ab-initio methods as 

implemented in the Gaussian 09 software (Frisch et al., 2009), after which a 60 Å DMSO 

cubic box was constructed using the Packmol software (Martínez, Andrade, Birgin & 

Martínez, 2009). The corresponding box of solvent was pre-equilibrated at 300K applying 

standard MD protocols, considering a successful equilibration once the experimental density 
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value for DMSO was reached (1.1 g/cm3). Periodic boundary properties were assigned to 

the developed DMSO box in order to simulate the corresponding systems. 

MD trajectories were generated using CUDA designed code (pmemd.cuda), and computed 

using computational resources provided by the CCAD – Universidad Nacional de Córdoba 

(http://ccad.unc.edu.ar/). In particular, the Mendieta cluster was used, which is part of 

SNCAD – MinCyT, República Argentina. 

Energetic interaction studies: The Molecular Mechanics Generalized Born Surface Area 

technique (Miller, McGee, Swails, Homeyer, Gohlke & Roitberg, 2012) was used to calculate 

the interaction energies corresponding to molecular docking poses and MD trajectories 

obtained for each binding mode and cluster of conformations.  

Analysis and visualization: MD trajectories were displayed using the VMD software 

(Humphrey, Dalke & Schulten, 1996) and were analysed with CPPTRAJ module of 

Amber18. Some specific processes were performed using in-house developed scripts. 

2.5. Nuclear Magnetic Resonance spectroscopy (1H NMR) 

The 1HNMR studies were carried out to characterize the interaction mechanism of NIF with 

both β-CD and Asp. All NMR spectra were collected using a BrukerAvance II High 

Resolution spectrometer at 400.16 MHz. Samples were dissolved in DMSO-d6. Induced 

changes in the 1H chemical shifts of NIF, β-CD and AA, originated due to their complexation, 

were calculated using equation 2: 

∆δ = δcomplex - δfree (Eq. 2) 

 

2.6. Preparation of systems in the solid state 

Binary (NIF:β-CD) and multicomponent systems (NIF:β-CD:AA) were prepared by two 

mechanochemical methods.  
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Physical Mixing (PM): binary and multicomponent systems were prepared employing 1:1 

molar ratio of NIF:β-CD and 1:1:1 molar ratio of NIF:β-CD:AA. Both preparations were mixed 

in an agate mortar for 5 min and were stored in glass vials protected from light. 

Kneading (KN): NIF, β-CD and AA with 1:1 and 1:1:1 molar ratio were accurately weighed 

and transferred to a mortar, adding 0.25 µL of a methanol:water (1:1vol./vol.) mixture  per 

mg of solid and the mixture was kneaded in a mortar for 30 min until an homogenous paste 

was formed. In addition, pure NIF was processed following the same protocol for 

comparative purposes. All samples were stored in glass vials protected from light. 

 

2.7. Infrared Spectroscopy (IR) 

The IR spectra of pure compounds, binary and multicomponent systems (both obtained by 

physical mixtures and kneading) were recorded on a Nicolet Avatar 360 FTIR spectrometer 

in the range of 4000-400 cm-1.  

 

2.8. Differential Scanning Calorimetry  and Thermogravimetry 

Differential scanning calorimeter (DSC) tests were recorded on a DSC Discovery series 

instrument (TA, USA) and thermogravimetric (TG) tests of samples were recorded on a TG 

Discovery series instrument (TA, USA). The thermal behaviour was studied by heating 1-2 

mg of the samples in perforated aluminium capsules under nitrogen atmosphere, scanning 

a temperature range between 25-200°C (DSC) and 25-350°C (TG), applying a heating rate 

of 10°C min-1. The relative degree of drug crystallinity (RDC) in the complexes was 

calculated using equation 3: 

RDC =  
∆𝐻𝑐𝑜𝑚𝑝𝑙𝑒𝑥

∆𝐻𝑑𝑟𝑢𝑔
 𝑥 100 (Eq. 3) 

Where ΔHcomplex correspond to the fusion enthalpy of NIF in the complex and ΔHdrug 

corresponds to the fusion enthalpy of pure NIF. 
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2.9. Powder X-Ray Diffraction (PXRD) 

The PXRD patterns were recorded at room temperature on a PANanalitycal X’Pert PRO 

diffractometer with Cu-Kα radiation. The PXRD data were collected by scanning 2θ from 4° 

to 35° with a step size of 0.026° at a scanning rate of 23.0 s/step.  

 

2.10.  Scanning Electron Microscopy (SEM) 

The SEM microphotographs were collected using a Carl Zeiss Σigma microscope at the 

Laboratorio de Microscopía y Análisis por Rayos X (LAMARX) of the Universidad Nacional 

de Córdoba, Argentina. The samples were fixed on a brass stub using double-sided 

aluminium tape, which were then made electrically conductive by coating in gold under 

vacuum using a Quorum 150 sputter coater. 

 

2.11. Dissolution study 

To investigate the effect of complexation of NIF on its dissolution behaviour, studies were 

performed using a dissolution apparatus (Hanson SRII6 Flask Dissolution Test Station, 

Hanson Research Corporation, Chatsworth, USA). Assays were carried out using an 

equivalent of 10 mg of NIF (in powder state) and 900 mL of simulated gastric fluid, free of 

enzymes (pH 1.2). The dissolution medium was maintained at 37.0 ± 0.5 °C and stirred at 

50 rpm. Aliquots (2 mL) were collected at predetermined time intervals and filtered using 

0.45 μm pore diameter membranes (Millipore, USA). Equal volumes of pre-warmed fresh 

dissolution medium were used to replace the volume corresponding to withdrawn samples. 

The filtered sample solutions were analysed using a UV spectrophotometer (Shimadzu, UV-

Mini 1240) set at 238 nm, with the percent release of drug calculated. Comparison of the 

corresponding dissolution profiles (i.e. of pure NIF and the corresponding supramolecular 

systems) was performed using a model-independent method and by calculation of the f2 
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factor (Eq. 4). The profiles were considered similar when a resulting f2 value was equal or 

higher to 50. 

𝑓2 = 50 𝑙𝑜𝑔 {[1 +  
1

𝑛
∑ (𝑅𝑡

𝑅
𝑡−1 − 𝑇𝑡)2]−0,5} 𝑥 100       (Eq. 4) 

where n is the number of sampling points, Rt is the percentage dissolved of the reference 

sample (pure NIF) at each time point t, and Tt is the percentage dissolved of the studied 

system (supramolecular systems) at each time point t. 

 

3. RESULTS AND DISCUSSION  

3.1. Selection of auxiliary agents 

The first stage of this study involved the screening and selection of the auxiliary agent (i.e. 

amino acid) able to produce the greatest enhancement of solubility. With this aim, the NIF 

solubility enhancement effect of five different AAs (Arg, Asp, Gly, His and Leu) was 

analysed, with the corresponding final pH of the solution being measured. The results of 

these studies are presented in Fig. 2A and Table 1, where the maximum NIF solubility values 

obtained in the presence of different AAs are shown. As depicted in Fig. 2A, the solubility of 

pure NIF increased in the presence of all AAs screened. As expected, the pH value of the 

resulting solution was different for each AA tested, with some of them eliciting almost no 

modification of pH value with respect to the pure NIF solution (Asp), some produced a 

moderate increase in the pH value (Gly and Leu ) and others produced a marked increase 

in the resulting pH (Arg and His). It should be mentioned that both Arg and His induced an 

increase in the degradation rate of NIF, a fact that may be related to the relatively instability 

of ester compounds at higher pH values. As can be seen in Figure 2A, Asp produced the 

highest increase in NIF solubility among the entire set of auxiliary agents screened, 

exhibiting almost no modification in the pH of the solution compared to pure NIF. 
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Consequently, Asp was selected as the most promising auxiliary agent for the preparation 

of multicomponent systems containing NIF, β-CD and AA. 

 

 

Figure 2. (A) NIF solubility in the presence of different auxiliary substances. (B) Phase 

solubility analysis of the binary (NIF:β-CD ●) and multicomponent (NIF:β-CD:Asp ■) 

systems. 

 

3.2. Phase solubility analysis 

To further study the possibility of enhancing NIF solubility by preparation of binary or 

multicomponent systems, complexes containing β-CD, NIF and ASP were prepared, with 

the corresponding  phase-solubility diagrams (PSD) being determined for the NIF:β-CD 

complex in the presence and absence of Asp (5 mM). The corresponding results are 

presented in Figure 2B.The results demonstrate that the solubility of NIF increased in a 

linear mode, both in the binary (NIF:β-CD) and the multicomponent (NIF:β-CD:Asp) 

systems, and thus corresponded to the type AL profile established by Higuchi and Connors 

(Higuchi & Connors, 1965), which is related to the formation of a soluble inclusion complex. 

The slope value in each of these diagrams was lower than 1, suggesting the formation of a 
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complex with 1:1 stoichiometry in the presence and absence of auxiliary agent. The 

corresponding affinity constant (KC), maximum solubility (Smax) and efficiency of solubility 

(ES, Smax/S0) values were calculated from each PSD and are presented in Table 1.The 

multicomponent system with ASP showed a KC and ES value higher than that of the binary 

system. This result demonstrates cooperativity in the interaction between NIF and β-CD in 

the presence of Asp, a phenomenon that favours both the solubilizing and complexing ability 

of β-CD. These observations suggest the formation of a multicomponent complex between 

these substances.  

 

3.3. Molecular modelling of binary and multicomponent complexes  

It has been previously reported that auxiliary agents can increase the aqueous solubility of 

drugs by interacting with the external surface of the drug:CD complexes, and the observed 

solubility enhancement was attributable to the contribution of different interactions (van der 

Waal forces, formation of hydrogen bonds, hydrophobic interactions, dipole−dipole 

electrostatic bonds)(Loftsson & Brewster, 2012). To elucidate the structure of the complexes 

and to gain insight into the intermolecular interactions taking place in solution between NIF, 

β-CD and Asp, we performed detailed molecular modelling studies, including molecular 

docking and molecular dynamics simulations. Taking into account that spectroscopic data 

was obtained using DMSO as solvent and that solubility phase analyses were performed in 

aqueous solutions, in a first stage the agreement between the MD trajectories obtained in 

both solvents was studied. No significant differences in the conformational properties and 

associated interaction energies were found when simulations performed in DMSO or water 

were compared (Table S1, Figures S1 and S2). 

First, molecular docking studies were performed in order to elucidate the lowest energy 

binding mode of NIF to β-CD. Ten different binding modes were obtained, which where 

afterwards subjected to explicit solvent MD studies and the corresponding interactions 
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energies were calculated. Figure 3A presents the lowest energy binding mode, with Table 2 

reporting the corresponding energetic components of interaction. As can be seen, the 

aromatic ring containing the nitro moiety was deeply buried in theβ-CD cavity, with the Van 

der Waals interaction energy as the main driving force for stabilizing the complex. The 

overall interaction energy for the binary complex was -18.7 Kcal/mol. 

Next, the multicomponent system was modelled by docking aspartic acid to the above 

described NIF:β-CD complex. Again, multiple binding modes were obtained, which were 

subjected to explicit solvent MD studies. In order to identify the most stable multicomponent 

system, the affinity interaction energy of NIF with the rest of the system was calculated. 

Figure 3B shows the predicted three dimensional structure of the multicomponent system, 

in which it can be seen that Asp was positioned towards the wide rim of β-CD, between the 

macromolecule and NIF. The resulting complex was subjected to MD analysis, revealing 

that described binding mode of Asp was conserved. The corresponding interaction energies 

for NIF were calculated in the multicomponent system (Table 2). As can be seen, the 

interaction of NIF with the multicomponent system is considerably more stable than that 

observed for the binary complex, originated in both a higher Van der Waals and electrostatic 

interaction. The higher Van der Waals component was mostly derived in a more stable 

buried conformation of the aromatic ring of NIF within the βCD hydrophobic cavity (Figure 

S3). In addition, Asp was able to act as a molecular bridge between NIF and βCD 

establishing hydrogen bond interactions as is shown in Figure S4. 
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Figure 3. Three-dimensional conformation of the complexes obtained by molecular 

docking. (A) NIF:β-CD and (B) NIF:β-CD:ASP. 

 

 

Regarding the interaction mode of NIF in both systems, it is noteworthy that the nitro group 

is not able to establish hydrogen bond interactions with β-CD, mostly due to an unfavourable 

geometry resulting from the inclusion of the aromatic ring. In addition, and based on 

structural parameters, CH-pi interactions between the aromatic ring of NIF and β-CD are 

feasible (Fig. S5 a-d), although the applied force field does not account for this type of 

interactions. 

 

3.4. Proton Nuclear Magnetic Resonance spectroscopy (1H NMR)  

1H NMR experiments were performed to further investigate the interactions between the 

components in solution and confirm the geometry of the inclusion complexes predicted by 

molecular modelling. The formation of the complexes was evidenced by comparing the 

changes of the chemical shift values (δ) in the 1H NMR spectra of binary (NIF:β-CD) and 

multicomponent (NIF:β-CD:Asp) complexes, in reference with pure NIF, β-CD and Asp 

B) 
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spectra under the same experimental conditions. As can be seen in Table 3 and Fig. S6 (for 

NMR signal notation see Fig. 1), all signals of the compounds suffered – to a greater or 

lesser extent – a variation (Δδ), which allowed us to predict the existence of numerous 

interactions between the molecules that form each complex. 

As can be observed in Table 3, almost all NIF proton resonances were modified, in the 

binary and multicomponent complexes, and exhibited a shielding effect with respect to those 

of the pure drug. The proton Hb and He of NIF showed a major displacement that can be 

attributed to this moiety that was located in a rich electronic density environment (proximate 

to the glycosidic linkage oxygen of β-CD that are rich in π electrons, for example) that 

produced a shielding effect. This mode of inclusion is in good agreement with the molecular 

modelling prediction. In addition, the upfield shift experiments for the other protons of the 

drug may reflect some conformational changes produced by the inclusion.  

When spectra of β-CD were analysed, it was possible to observe a deshielding effect in all 

macromolecules protons. The downfield displacements found for both H3 and H5 protons 

(located in the interior of CD cavity), suggested the insertion of an electronegative moiety of 

the guest into the β-CD hydrophobic cavity, which produced the deshielding effects we 

observed. These findings are in agreement with the results of the theoretical studies that 

suggested the insertion of the aromatic ring containing the nitro group. It is important to note 

the great variation of hydroxyl proton signals (OH2, OH3 and OH6) of β-CD. This allowed us 

to suggest the existence of hydrogen bond interactions with the drug. On the other hand, in 

the multicomponent complex, Asp could also interact with the external surface of β-CD, 

because the protons HII exhibited deshielding effects, which might be explained by the 

presence of hydrogen bond interactions between the amino acid and β-CD. The 

displacement of the protons was more apparent in the NIF:β-CD:Asp multicomponent 

complex, and confirmed the formation of a more stable complex in the presence of Asp. The 
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results obtained in the NMR studies are in agreement with the observation of phase solubility 

analysis and with the geometries suggested for the molecular modelling assays.  

 

3.5. Infrared Spectroscopy (FTIR) 

To evaluate any possible interaction of the drug with β-CD and Asp molecules in the solid 

state, the FTIR technique was employed. In Figure S7 the infrared spectra of pure 

compounds as well as NIF:β-CD and NIF:β-CD:Asp systems (both PM and KN) are shown. 

NIF spectra showed peaks at 3330 cm-1 (N-H aromatic), 3101 cm-1 (C-H aromatic), 2952 cm-

1 (C-H aliphatic), 1685 cm-1 (C=O), 1529 cm-1 (NO2), 1495 cm-1 (C=C aromatic) and 1227 cm-

1 (C-C-O ester). Since no new peaks were observed when the FTIR spectra for the binary 

(PM and KN) and multicomponent (PM and KN) systems were compared with those of the 

pure compounds, the formation of covalent interactions was discarded. In addition, no 

important changes were observed in the spectra of either PM (Table 4), since the main 

peaks related to functional groups of the involved substances were maintained. In the case 

of systems prepared by KN, a shift of various absorption bands of NIF was observed, 

compared with the pure drug (Table 4). This would indicate that these functional groups 

could be involved in interactions necessary for the formation of the complexes in solid state. 

 

 

3.6. Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG) 

The thermal properties of the supramolecular systems were evaluated by means of TG and 

DSC, and were compared with the pure compounds. The relative degree of NIF crystallinity 

in systems was calculated based on melting enthalpy. The TG and DSC curves of all 

samples studied are depicted in Figure 4. The DSC and TG curves of pure NIF showed a 

sharp endothermic peak at 173°C, attributable to the melting process of the crystalline form 

of the drug, followed by its thermal decomposition (228 °C, 99% mass loss). For β-CD, two 
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important events were observed: the first was an endothermic peak between 50 and 105°C 

(7.6% mass loss) and the second (308°C, 79.9% mass loss) was attributable to dehydration 

and decomposition, respectively. Asp curves showed a single stage of mass loss attributable 

to it degradation at 234 °C. In the analysis of DSC and TG curves of binary and 

multicomponent physical mixtures, no significant changes were observed and the 

crystallinity degree of NIF was not modified. On the other hand, the NIF:β-CD complex, 

prepared by the kneaded method, exhibited a small decrease of drug crystallinity (RDC: 

91%) while the NIF:β-CD:Asp complex showed a substantial reduction of drug crystallinity 

(RDC: 56%), indicating a significant concentration of the drug in its amorphous form, 

reinforcing the multicomponent complex formation. 

 

Figure 4.DSC and TG curves of: NIF (red), β-CD (pink), Asp (purple), NIF:β-CD PM 

system (blue), NIF:β-CD KN system (light blue), NIF:β-CD:Asp PM system (green) and 

NIF:β-CD:Asp KN system (light green). 

 

3.7. Powder X-ray diffraction (PXRD) 

PXRD was employed to study the effect of binary and multicomponent complexation of NIF 

by cyclodextrin on their crystalline structures.  The diffractograms of NIF, βCD, Asp physical 

mixtures and the corresponding inclusion complexes are presented in Fig. 5A.The PXRD 
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Position [°2Theta]

C
o
u
n
ts

patterns of NIF (8.2, 10.5, 11.7, 16.3, 24.4, 26), βCD (10.7, 12.6, 15.5, 17.2, 20.8 and 27.2) 

and Asp (11.8, 21.7, 22.8, 23.4 and 28.2) show intense sharp peaks that indicates a high 

crystallinity. In addition, it was possible to observe the presence of all the characteristic 

peaks of pure compounds in the diffractograms corresponding to the binary and 

multicomponent systems prepared by PM, evidencing that complexation between them did 

not occurred. In contrast, in the NIF:βCD and NIF:βCD:Asp systems obtained by KN, a 

decrease in the crystallinity degree of the compounds was observed, although some 

characteristic peaks of pure NIF were still detectable. The results obtained by PXRD and 

DSC and the observed low crystallinity state of the systems obtained by KN confirms the 

host-gest interactions in the solid state, strongly supporting the formation of inclusion 

complexes. 
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Figure 5. (A) Powder X-ray diffractograms of: (a) NIF, (b) β-CD, (c) Asp, (d) NIF:β-CD PM 

system (e) NIF:β-CD KN system, (f) NIF:β-CD:Asp PM system and (g) NIF:β-CD:Asp KN 

system. (B) Scanning electron microphotographs of: (a) NIF, (b) β-CD, (c) Asp,  (d) NIF:β-

CD PM system (e) NIF:β-CD KN system, (f) NIF:β-CD:Asp PM system and (g) NIF:β-CD:Asp 

KN system.  

 

 

3.8. Scanning Electron Microscopy (SEM) 

SEM was used to evaluate the morphological characteristics of the individual compounds, 

their physical mixtures and corresponding complexes. The representative SEM images of 

all materials are shown in Figure 5B. In both systems prepared by PM, the size and shape 

of the particles were more varied and irregular than those obtained by the KN method. In 

the NIF:β-CD KN complex, it was possible to observe bulky and dense blocks, while more 

homogenous particle size distribution was observed in the NIF:β-CD:Asp KN complex. 

3.9. Dissolution study 

The dissolution studies were performed for pure NIF, and for both binary and 

multicomponent systems obtained by PM and KN methods with the aim to evaluate the 

effect of complexation on the drug dissolution rate. The results of the dissolution study are 

shown in Figure 6. The study showed 28 ± 2% dissolution of pure NIF in the initial 5 minutes, 

and a maximum of 30 ± 2% drug dissolution at 180 minutes. This poor dissolution of NIF 

can be attributed to the lower solubility of NIF in the dissolution medium. No differences were 

observed when unprocessed drug was compared with the pure drug submitted to the 

kneading process (NIF KN 27.7 ± 0.4% and 39 ± 2%, at 5 and 180 min, respectively, with 

anf2value of 68). Both binary (NIF:β-CD) and multicomponent (NIF:β-CD:Asp) complexes 

significantly improved the dissolution profile of NIF, and the profiles were not similar to that 

of the pure drug. The improvement in drug release was, in order, pure NIF = NIF KN (f2: 68) 
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< binary PM (f2: 39) < binary KN (f2: 32) < multicomponent PM (f2: 29) < multicomponent KN 

(f2: 22). The percentage of release shown by the systems at 180 minutes was 68 ± 2% 

(binary PM), 66 ± 6% (binary KN), 79 ± 1% (multicomponent PM) and 95.0 ± 0.5% 

(multicomponent KN); which implied an increase of 2.2, 2.2, 2.6 and 3.1 times, respectively. 

The fact that the multicomponent complexes improved the dissolution profile of NIF, not only 

with respect to the pure drug, but also to the binary complexes, confirms the ability of Asp 

to act as an auxiliary agent to permit optimization of drug dissolution behaviour. The 

difference found between the profiles of NIF:β-CD:Asp PM and NIF:β-CD:Asp KN (f2:43) are 

attributable to the fact that the drug is partially amorphized in the NIF:β-CD:Asp KN, as was 

demonstrated by the DSC and PXRD results.  

 

 

 

 

 

 

Figure 6. Dissolution profiles of pure NIF (■) and NIF kneading (●), NIF:β-CD physical 

mixture (▲), NIF:β-CD kneading system (▼), NIF:β-CD:Asp physical mixture (◄) and 

NIF:β-CD:Asp kneading system (►). 

 

CONCLUSIONS 

This study shows that the formation of a multicomponent complex between NIF, β-CD and 

Asp was an adequate approach to improve the solubility and dissolution performance of the 

drug. Computational studies revealed that the aromatic ring of the drug was deeply buried 
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in the β-CD cavity, and the Van der Waals interaction energy was the main driving force for 

the stabilization of the complex. In addition, computational modelling studies revealed that 

Asp increased the stability of the multicomponent complex, which was consistent with the 

experimental finding observed in the phase solubility analysis and 1H NMR studies. The 

observed enhancement in the affinity of NIF in the multicomponent system is originated in a 

more stable inclusion of the aromatic ring of NIF within the βCD cavity, and that results in a 

significantly higher VDW interaction. The auxiliary agent is anchored facing the wide rim of 

βCD in the interface between the host and guest molecules, acting as a bridge for 

electrostatic interaction between them. Changes in shape and size distribution of NIF in the 

multicomponent complex were evident by SEM. In addition, the DSC and PXRD data 

confirmed a greater decrease in the NIF crystallinity in the multicomponent complex, 

compared to the binary one. Although all of the systems studied have improved the 

dissolution rate of NIF, largely, the multicomponent complex was superior to all other 

systems. Therefore, we conclude that the NIF:β-CD:Asp multicomponent complex will be 

valuable to optimize the properties of NIF pharmaceutical formulations. 
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Table 

 

Table 1. Effect of the amino acids and β-CD on NIF solubility. 

System Smax(µg/ml)a ESb KC (M-1) pH 

Arg 6.3 ± 0.2 1.1 - 6.5 

Asp 9.0 ± 0.3 1.5 - 3.9 

Gly 6.5 ± 0.6 1.1 - 5.6 

His 7.1 ± 0.8 1.2 - 6.4 

Leu 7.0 ± 0.2 1.2 - 5.7 

β-CD 13.5 ± 0.2 2.2 99± 2 4.0 

β-CD:Asp 15.0 ± 0.2 2.5 117± 4 4.0 

aSmax, maximum value of solubility measured; bES, efficiency of solubility (Smax/S0),  

S0= 6.06 ± 0.02 µg/ml.  

 

Table 2.  Total Interaction energy (ΔE global) and corresponding components (VDW, Van 

der Waals energy; EEL, electrostatic energy; EGB, polar desolvation energy, ESURF, non-

polar solvation energy) for the interaction of NIF with βCD and βCD:Asp systems, 

respectively. 

 

System VDW EEL EGB ESURF ΔE global 

NIF:β-CD -29.0 (±3.2) -5.5(±1.3) 19.5 (±4.5) -3.7 (±0.2) -18.7 (±3.3) 

NIF:β-CD:Asp -42.5 (±2.7) -24.2 (±5.6) 39.3 (±5.0) -4.6 (±0.1) -31.9 (±2.8) 

 

Table 3. Chemical shifts of protons of pure NIF, β-CD and Asp in free and complex form. 

NIF protons δ (ppm) δ (ppm) NIF:β-CD Δδ (ppm)a δ (ppm) NIF:β-CD:Asp Δδ (ppm)a 

Ha 9.0170 9.0170 0.0000 9.0140 -0.0030 

Hb 5.4900 5.4870 -0.0030 5.4840 -0.0060 

Hc 7.6925 7.6905 -0.0020 7.6905 -0.0020 
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Hd 7.5910 7.5890 -0.0020 7.5900 -0.0010 

He 7.4550 7.4525 -0.0025 7.4530 -0.0020 

Hf 7.3500 7.3495 -0.0005 7.3490 -0.0010 

Hg 2.2490 2.470 -0.0020 2.2460 -0.0030 

Hh 3.4490 3.4470 -0.0020 3.4470 -0.0020 

β-CDprotons δ (ppm) δ (ppm) NIF:β-CD Δδ (ppm)a δ (ppm) NIF:β-CD:Asp Δδ (ppm)a 

H1 4.8240 4.8260 0.0020 4.8265 0.0025 

H2 3.2980 3.2980 0.0000 3.3010 0.0030 

OH2 5.7215 5.7370 0.0155 5.7345 0.0130 

H3 3.6280 3.6300 0.0020 3.6320 0.0040 

OH3 5.6700 5.6825 0.0125 5.6830 0.0130 

H4 3.2750 3.2775 0.0025 3.2760 0.0010 

H5 3.5575 3.5585 0.0010 3.5595 0.0020 

H6 3.6280 3.6300 0.0020 3.6320 0.0040 

OH6 4.4500 4.4630 0.0130 4.4600 0.1000 

ASP protons δ (ppm) δ (ppm) NIF:β-CD Δδ (ppm)a δ (ppm) NIF:β-CD:Asp Δδ (ppm)a 

HI 3.7795 - - 3.7790 -0.0005 

HII’ 2.7150 - - 2.7170 0.0020 

HII’’ 2.3830 - - 2.3905 0.0075 

 

 

Table 4. Wavenumbers (cm-1) of NIF pure, binary and multicomponent systems. 

Assignment NIF NIF:β-CDPM NIF:β-CDKN NIF:β-CD:AspPM NIF:β-CD:AspKN 

NH arom 3330 3331 3332 3331 3333 

NO2 1529 1529 1531 1529 1530 

C=C arom 1495 1495 1498 1495 1498 

C-C-O ester 1227 1227 1229 1227 1229 
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