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ABSTRACT: In the pharmaceutical area, some drugs exhibit physicochemical properties that 

adversely affect the formulation processes to bioavailability and its effectiveness. Nevirapine 

(NVP) is an antiretroviral drug that presents low aqueous solubility, which impacts directly in its 

bioavailability. Among all possible modifications, multicomponent crystals, such as cocrystals 

and eutectic compositions, have been successfully used to improve the solubility of drugs. In this 

work, the propensity of the formation of multicomponent systems of NVP with seven possible 

co-formers were predicted and tested: salicylic acid (SA), 3-hydroxybenzoic acid (3HBZC), 4-

hydroxybenzoic acid (4HBZC), saccharin (SAC), theophylline (THEO), caffeine (CAF), and 

urea (URE). Results indicate that NVP-SA, NVP-SAC, NVP-3HBZC, and NVP-4HBZC are 

cocrystals, whereas NVP-THEO and NVP-CAF are eutectic materials, and NVP-URE is a solid 

physical mixture. A temperature-dependent disorder behavior was identified for NVP-SA 

cocrystal. Dissolution studies for the eutectic materials are reported, evidencing that these 

materials exhibit a significant increase in NVP dissolution kinetics. 

 

INTRODUCTION:  
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Nevirapine (NVP) (11-Cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2’,3’-

e][1,4]diazepin-6-one)1,2 is an antiretroviral drug used for treatment of AIDS/HIV-1 infection. 

According to the Biopharmaceutics Classification System (BCS), NVP is classified as a Class II 

drug, i.e., it presents low water-solubility and high permeability in the gastrointestinal tract.3 The 

low water-solubility is a challenge during the formulation of the drug directly affecting its 

bioavailability. High doses are often necessary to guarantee its effectiveness increasing possible 

adverse side effects. 

Crystallization methods can be used to obtain different crystal forms of NVP in order to 

improve its dissolution and, consequently, its bioavailability. Cocrystals and eutectics are among 

possible crystalline modifications that can be used in order to improve the physicochemical and 

pharmaceutical properties of drugs.4–10 Cocrystals have been successfully used in the 

pharmaceutical area in order to produce solid forms of a drug with improved properties.11–16 

Caira and co-workers reported the crystal structure of several NVP cocrystals with improving 

dissolution rates compared to pure NVP crystals.17 So far, eutectic systems with NVP have not 

been described in the literature. However, for other drugs, pharmaceutical eutectic systems have 

shown an accomplishment in the production of solid forms with improved properties, including 

dissolution.8,18–20 

Pharmaceutical cocrystals are formed with neutral molecules of an active pharmaceutical 

ingredient (API) and any other neutral molecule in a well-established stoichiometry.21,22 

Cocrystals are single-phase compounds, exhibiting a new crystalline structure, which is different 

from that of parent components. Further, this new phase exhibits its own physicochemical 

properties, also different from the properties exhibited by parent components (Figure 1). In turn, 

physical mixtures and eutectic systems can be described as multiphase compounds. They exhibit 
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a mixture of two or more phases that do not interact to form a new structure, such as in cocrystals 

(Figure 1). Physical mixtures exhibit the physicochemical properties of both parent compounds. 

However, at certain ratios, the eutectic mixture exhibits a lower melting point than the parent 

compounds and may also show differences in other physicochemical properties.10 Eutectic 

system formation occurs when the components are miscible in a liquid state and immiscible in 

solid-state.23 When two components, A and B, in the liquid phase are cooled, occurs the 

solidification of both components and formation of a mixture of solid phases, α and β. It can be 

concluded that an eutectic material has been obtained when it presents a single melting point 

which is dependent on the composition of the eutectic. 

 

Figure 1. Representation of the structural organization in multicomponent solid forms of an API. 

In order to produce multicomponent materials of NVP presenting better properties, a screening 

study was herein performed. The co-former molecules were selected based on the presence of 

carboxyl and amide groups that could disrupt the amide-amide dimer motif observed in the pure 

NVP structure, and that had delocalized planar structures that could stack with the pyridine 
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fragments in NVP molecules. Thus, seven co-formers, salicylic acid (SA) and its two isomers – 

3-hydroxybenzoic acid (3HBZC), 4-hydroxybenzoic acid (4HBZC) – saccharin (SAC), caffeine 

(CAF), theophylline (THEO), and urea (URE) (Scheme 1), were selected and were used in this 

screening of multi-component forms of NVP. These materials were prepared through the liquid-

assisted grinding (LAG) method, which is well-accepted for pharmaceutical cocrystal 

screening.24 Solid-state characterization was performed through single-crystal and powder X-ray 

diffraction with conventional and synchrotron radiation at different temperatures, differential 

scanning calorimetry, and solid-state nuclear magnetic resonance.  

Crystal structure of NVP-Salicylic acid and NVP-Saccharin cocrystals have been previously 

described by Caira and co-workers17 and they were selected for reproducibility purpose and to 

compare with the 3HBZC and 4HBZC isomers behavior. Besides, a full characterization for both 

multi-components, NVP-SA and NVP-SAC, has been done. NVP-SA crystals showed to present 

a temperature-dependent disorder. NVP-Urea and NVP-4-Hydroxybenzoic acid have been 

described by Nalte and co-workers.25 However, they have tested the cocrystal formation of these 

multi-component forms only through melting point determination using an open capillary tube 

method. NVP-(3HBZC, 4HBZC, THEO, CAF, URE) multicomponent crystals structures were 

not found at the CSD database. 

 

Scheme 1. Bidimensional representation for the seven co-formers used in the cocrystal screening.  
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 EXPERIMENTAL SECTION: 

Cocrystallization prediction: In order to predict the propensity formation of NVP cocrystals, 

two CCDC (Cambridge Crystallographic Data Centre) tools were used: the screening by 

molecular complementarity (MC)26 and the hydrogen-bond propensity (HBP).27 Both tools are 

available at CSD Mercury software version 4.0.0.  

The MC is a tool developed and validated by L. Fábián which output is a simple pass or fail 

answer to the formation of the cocrystals. This is based on the premise that molecules tend to 

crystallize together only if they have similar molecular properties. Therefore, a few shape and 

polarity descriptors are calculated for the API and the co-former, and to pass the MC test, they 

have to differ by less than a threshold value that Fábián established from a statistical analysis 

performed at the CSD. 

The HBP tool was originally developed as a knowledge-based method to assess the risk of 

polymorphism for a given compound, though it can also be used to evaluate cocrystal formation. 

Based on an automated statistical analysis of hydrogen bonding patterns, the HBP method 

determines interaction likelihoods for all the possible hydrogen-bonding interactions that can be 

formed with the set of functional groups present in the specific chemical environment analyzed. 

We have built three different mol2 files to analyze the seven cocrystal systems, one for each 

component (NVP and co-former) and another file containing both together. In this way, we can 

judge how likely a cocrystal is to form (Multicomponent Score) as the difference of the most 

likely interaction in pure NVP or in pure co-former and, the most likely cocrystal interaction. 

The HBP fitting data was generated using the truncate data generation mode. 

Sample preparation: The liquid-assisted grinding method was used to prepare the 

multicomponent materials containing NVP.  Seven different co-formers were tested: salicylic 
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acid (SA), 3-hydroxybenzoic acid (3HBZC), 4-hydroxybenzoic acid (4HBZC), saccharin (SAC), 

caffeine (CAF), theophylline (THEO), and urea (URE). Experimental details are available at SI. 

Powder samples were characterized by solid-state analytical techniques. 

Powder X-ray diffraction (PXRD): Pure NVP and seven pure co-formers were characterized 

by PXRD, which were carried out by using conventional (PXRD) and synchrotron (SPXRD) 

sources.  

PXRD analyses were carried out in Rigaku automatic X-ray diffractometer for powder 

diffraction (Ultima IV) by using Cu-Kα radiation source (λ = 1.5418 Å). The Kβ radiation was 

filtered. Data were recorded at tube voltage 40 kV and the current 30 mA. Samples were placed 

on Bragg-Brentano (flat plate) geometry.28,29 The D/Tex Ultra detector operated at 2θ/θ mode in 

continuous scanning at scanning rate 20 o/minute. Experiments were performed at room 

temperature, at step-size 0.01o in the angular range 5 to 35o 2θ.  

SPXRD experiments were performed at the XRD1 beamline at the Brazilian Synchrotron Light 

Laboratory (LNLS, Campinas, Brazil).30 This beamline is dedicated to X-ray powder diffraction 

analysis. It is composed of the 3-circle heavy-duty diffractometer (Newport®) and the MYTHEN 

24K detector system (Dectris®). Experiments were conducted in Debye-Scherrer geometry. 

Samples were placed in borosilicate capillaries (0.7 mm diameter). Experiments were conducted 

at 8 keV radiation and data were collected at the range 300 K to 108 K. Samples were cooled 

down using CryojetHT from OXFORD Instruments, at a cooling rate of 2 K.min-1. Equipment 

configuration allowed collecting one diffraction pattern every 1.2 K. Radiation wavelength was 

set based on Silicon standard (NIST SRM640D) data, which were collected at the end of each 

experiment. 
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Single-crystal X-Ray diffraction (SXRD): SXRD experiments for NVP-SA were performed 

in a Bruker D8 Venture diffractometer (Photon 100 CMOS detector and MoKα radiation from 

Incoatec micro source) and for NVP-4HBZC in a Bruker D8 Venture diffractometer equipped 

with a CMOS Photon 100 detector using CuKα radiation. The diffraction images were analyzed 

(indexed, integrated and scaled) in the Apex3 software.31 Crystal structures were solved through 

the direct methods and refined by Full-matrix-block least-squares in the SHELX-15 software.32 

All non-hydrogen atoms were anisotropically refined, and all hydrogen atoms were placed in 

idealized geometries according to the riding model. Connectivity restraints and rigid body were 

used to describe salicylic acid molecule disorder at room temperature. 

Differential Scanning Calorimetry (DSC): DSC curves were obtained in DSC 204 F1 

Phoenix® NETZSCH calorimeter. In order to characterize the multicomponent materials, 5 mg of 

each sample was placed in a hermetically sealed aluminum crucible and scanned at a temperature 

range of 50 ºC to 300 ºC, using a heating rate of 10 ºC.min-1. For the construction of phase-

diagrams, different compositions of eutectic systems were scanned at a temperature range of 50 

ºC to 300 ºC, using a heating rate of 3 ºC.min-1. All samples were scanned in a nitrogen air 

atmosphere (70 mL.min-1) and an empty and sealed aluminum crucible was used as a reference. 

The equipment was calibrated by using indium (m.p. 156.6 ºC and Hm 28,54 J.g-1) and zinc 

(m.p. 419.6 ºC). Data were processed in the NETZSCH Proteus® software. 

Solid-state NMR: 13C CP/MAS ssNMR studies were performed using ramp CP/MAS pulse 

sequence33,34 with proton decoupling during acquisition at room temperature. All experiments 

were carried out in a Bruker Avance II spectrometer operating at a resonance frequency of 

300.13 MHz for protons and 75.46 MHz for carbons. The spectrometer was equipped with a 4 

mm MAS probe. The spinning rate was set at 10 kHz, the recycling delay was 350 s, and the 
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contact time during CP was 2 ms. To obtain an adequate signal-to-noise ratio, 64 to 192 

transients were collected. The SPINAL-6435 pulse sequence was used for heteronuclear 

decoupling during acquisition (40.96 ms) satisfying proton field H1H ω1H/2π = γH H1H/2π = 

65.8 kHz. Glycine was used as an external reference (δCOOH=176.46 ppm) and to set the 

Hartman-Hahn condition in CP/MAS experiments. Quaternary carbon edition spectra of all 

samples were recorded through nonquaternary suppression (NQS) sequence; the 1H and 13C 

radiofrequency (rf) fields are removed during 40 μs after CP and before the acquisition. Such 

delay allows carbon magnetization to decay because of 1H–13C dipolar coupling, which results in 

spectra wherein CH and CH2 are substantially removed.36  

Dissolution profile: Dissolution profiles were determined for NVP-THEO, NVP-CAF, and 

NVP raw material. The dissolution profiles were obtained in a Distek dissolution system 

Evolution 6100. It was used a USP apparatus II under stirring at 50 rpm. Experiments were 

carried in two different dissolution media: water and HCl 0.1 N. A volume of 900 ml of the 

medium was placed in a vessel and maintained at 37 ± 0.5 °C during all experiments. For each 

sample, 200 mg of sample was dispersed in the medium. Experiments were performed in 

triplicate. An Opt-Diss 405 system (Distek), a multi-channel, fiber optic-based UV spectrometer 

system, was attached to the dissolution system. It enabled us to collect the absorbance values and 

automatically calculated the percentage of dissolved material in each vessel. The system was set 

up to collect data every 30 seconds in the first 15 minutes, every 60 seconds in the following 45 

minutes and every 10 minutes in the second hour.  

Intrinsic dissolution rate: Intrinsic dissolution rate was calculated for NVP-THEO, NVP-

CAF, and NVP raw material. A mass of 100 mg of each sample was placed into the 0.8 cm 

diameter cavity in the apparatus. The powder was compressed under a pressure of 1600 psi for 
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60 seconds. The apparatus containing the compressed pellet was placed in 900 ml of medium. 

Two different media were used: water and HCl 0.1 N. Previous experiments were performed to 

confirm that no phase transition occurred under pressure nor in the different media.  

RESULTS AND DISCUSSION:  

A liquid-assisted grinding method with NVP and seven different co-formers (salicylic acid 

(SA), 3-hydroxybenzoic acid (3HBZC), 4-hydroxybenzoic acid (4HBZC), saccharin (SAC), 

caffeine (CAF), theophylline (THEO), and urea (URE)) were tested to obtain multicomponent 

materials. Four cocrystals confirmed by powder X-ray diffraction were obtained, NVP-SA, 

NVP-3HBZC, NVP-4HBZC, and NVP-SAC. Two eutectic materials, NVP-CAF and NVP-

THEO, were confirmed and characterized through solid-state analytical techniques. The 

remaining one, NVP-URE, resulted to be a solid physical mixture.  The dissolution properties of 

the eutectic materials were investigated.  

Cocrystallization prediction was performed using CCDC tools.  

The molecular complementarity screening (MC) for the NVP API and the seven co-formers 

has been calculated (Table 1 and Table S1). Detailed information for all calculated descriptor 

values is in Table S2. The results indicate that most of the selected co-formers are likely to form 

NVP cocrystals. Urea is not being expected to crystallize with NVP molecules. This is due to the 

fact that the urea molecule has a fraction of N and O atoms overall non-hydrogen-atoms present 

in the molecule, three times higher than NVP. While if SA is selected as co-former the 

propensity to crystallize with NVP depends on the SA conformer used from the CSD. 

Furthermore, the small (S) axis of the imaginary calculated rectangular box that enclosed the 

URE molecule (MC method uses this box to define the shape and size descriptors) is much 

shorter than that calculated for NVP. None of these two descriptors pass the permitted MC 
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threshold (Table S2). For SA molecule the difference in S axis with NVP is close to the threshold 

and a slight rotation of the hydrogens in the molecule, modify the length in the S axis leading to 

pass or fail the MC test. 

Table 1. Molecular complementarity, MC, results for Nevirapine cocrystal screening  

Co-former 
Overall 

PASS/FAIL 

Salicylic acid, SA PASS/FAIL 

3-Hydroxybenzoic acid, 3HBZC PASS 

4-Hydroxybenzoic acid, 4HBZC PASS 

Saccharin, SAC PASS 

Caffeine, CAF PASS 

Theophylline, THE PASS 

Urea, URE FAIL 

 

 

The HBP analysis is available for polymorph assessment for one single molecule. Here, we 

have calculated HBP to assess the propensity of H-bonding in a multicomponent formation, AB, 

where A is the NVP and B is the co-former. All hydrogen-bond donor and acceptor atoms of 

both molecules are considered. The propensity is calculated for all donoracceptor interactions 

between A-A, B-B, A-B, and B-A. It was considered the maximum propensity in each case 

(Table 2). A multi-component score was calculated through the difference of the maximum 

propensity for hetero-interactions, A-B or B-A, which are probabilities (from 0 to 1) of each 

possible H-bonds, and the maximum propensity for H-bond homo-interactions, A-A or B-B. 

Thus, a positive and higher multi-component score means a greater propensity to form hetero-

interactions, and consequently, a higher probability to obtain multi-component structures. 

Considering the nature of cocrystal and eutectic structures, hetero-interactions are observed in 

cocrystals and in the inter-domain surface in eutectics; therefore, high positive multi-component 

scores must be related to cocrystal prediction. We should note that organic eutectics are 
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conglomerates of lattice structures of the components where only in the inter-phase between 

domains appears hetero-interactions. 

 

Table 2. HBP results for multicomponent analysis. Component A refers to the NVP molecule. 

Component B 
Max 

interaction 

Max A:B or 

B:A propensity 

Max A:A 

propensity 

Max B:B 

propensity 

Multicomponent 

score 

Salicylic acid, SA B:A 0.69 0.52 0.33 0.17 
3-Hydroxybenzoic acid, 3HBZC B:A 0.69 0.52 0.34 0.17 
4-Hydroxybenzoic acid, 4HBZC B:A 0.70 0.53 0.34 0.17 
Theophylline, THE  B:A 0.63 0.44 0.56 0.07 
Urea, URE  B:B 0.94 0.45 0.95 -0.01 
Saccharin, SAC  B:B 0.50 0.42 0.57 -0.07 
Caffeine, CAF  A:A 0.25 0.41 -- -0.16 

 

 

The multi-component scores obtained for the NVP cocrystals with the seven co-formers are 

shown in Table 2 using a traffic light analogy. SA, 3HBZC, and 4HBZC, in green, are the most 

likely molecules to form NVP multicomponent solids. It agrees with our experimental results. 

On the other side, CAF exhibits the highest negative score. This molecule does not have any H-

bond donors, which affects the propensity results. Finally, SAC, THEO, and URE, in yellow, 

exhibit intermediate multi-component score values. Only one-phase multi-component materials 

should be predicted by the HBP tool for SAC, THEO, and URE because only in these solids H-

bond interactions between the components are expected.  

Powder X-ray Diffraction (PXRD) analysis was carried out in order to identify the 

crystalline phases obtained after sample preparation. Diffraction patterns of all prepared samples 

were compared to diffraction patterns of its parental compounds. PXRD results indicate that 

NVP-SA, NVP-3HBZC, NVP-4HBZC, and NVP-SAC samples correspond to new phases, 

whereas NVP-THEO, NVP-CAF, and NVP-URE are a mixture of NVP and co-former phases 

(Figure S1). Furthermore, NVP-SA and NVP-SAC PXRD data were also compared to structures 
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reported at the CSD. Comparing NVP-SAC with the reported structure (CSD refcode: 

LATQOO)17, one can conclude that we have obtained the same crystallographic phase recorded 

by Caira et al. (Figure S2). However, a comparison of NVP-SA and the reported cocrystal (CSD 

refcode: LATQUU)17 evidence some differences. It is important to mention that PXRD data were 

collected at room temperature (RT) and Caira´s reported structure was determined at low 

temperature (100 K).17 Significant differences were observed at approximately 12.5o and in the 

region between 15o and 20o which could be evidence of structural changes with the temperature 

(Figure S3). Further characterization was performed in order to understand these differences in 

the diffraction patterns and the results will be presented later. 

Solid-state NMR analysis was carried out in NVP-SA, NVP-SAC, NVP-THEO, NVP-CAF, 

and NVP-URE samples. The 13C CP/MAS spectra of NVP and SA are shown in Figure 2. The 

carbon assignments and chemical shift values in all spectra are given in Table S3. The 

assignments were done considering the NQS spectra. The 13C CP/MAS spectrum did not show 

multiplicity in the resonance lines in both cases, thus indicating only one molecule per 

asymmetric unit. The 13C CP/MAS spectrum of NVP-SA is also shown in Figure 2. Clear 

changes in the chemical shifts of signals can be found by comparing NVP-SA with the co-

formers. Thus, it is possible to assure the existence of an interaction between NVP and SA.  
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Figure 2. 13C CP/MAS Spectra of NVP-SA, SA, and NVP. Carbon numbering adopted 

throughout the study is highlighted. 

The 13C CP/MAS spectra of the NVP-SAC sample exhibit changes in the chemical shift of the 

signals regarding the spectra of the precursors. This is an indication of modifications in the 

environments of both molecules and the presence of interactions between them (Figure S4). On 

the other hand, the ssNMR 13C spectra for NVP-THEO, NVP-CAF, and NVP-URE are the 

addition of the spectra of NVP and the respective co-former (Figure S4). This result evidence 

that there is no interaction between the pure compounds, i.e. the result of the cocrystallization 

process is the physical mixture of the precursors. These results agree with that obtained by 

PXRD.  

Differential Scanning Calorimetry (DSC) analysis was carried out in all multi-component 

samples. As expected, NVP-SA, NVP-3HBZC, NVP-4HBZC, and NVP-SAC cocrystals were 

also confirmed through DSC. Although Nalte and co-workers25 have described NVP-URE as a 

cocrystal, with a different melting point, the DSC results indicate that this sample consists of a 
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physical mixture. In the cases of NVP-THEO and NVP-CAF, interesting thermal behavior was 

noticed and are commented on in the sequence. All curves are available at SI (Figure S5).  

According to PXRD and ssNMR analysis, one can conclude that the NVP-THEO and NVP-

CAF are simply physical mixtures of NVP and co-former. However, DSC results showed that 

NVP-THEO and NVP-CAF behavior is not that expected for physical mixtures. In the case of 

the NVP-THEO, the multi-component system presented two thermal events at 223.6 ºC and 

234.1 ºC; however, NVP melts at 247.8 ºC, whereas THEO melts at 274.7 ºC. Since the mixture 

melts in a temperature below the melting point of the pure compounds, the data exhibited for 

NVP-THEO would allow thinking that this could be a eutectic system. NVP-CAF presented a 

similar behavior. The DSC analysis for the NVP-CAF sample showed thermal events at 163.1 

°C, 204.4 ºC, and 212.8 ºC. The pure CAF presented two main events at 155.8 ºC and 238.6 °C. 

The first point was consistent with data in the literature, which indicates a phase transition for 

caffeine at 153 ºC,37 whereas the second event corresponds to the melting point of CAF. Thus, 

the event occurring at 163.1 ºC is corresponding to the phase transition of CAF; however, the 

following two events are not related to pure CAF or to pure NVP. Adding this evidence to PXRD 

and ssNMR results, one can conclude that NVP-CAF could also be a eutectic system. 

In order to investigate the eutectic systems, different compositions of NVP-THEO and NVP-

CAF were analyzed through DSC. Eleven curves were obtained for each system (Figure S6), 

corresponding to pure NVP, pure co-former (THEO or CAF), and samples at ratios of 1:9, 2:8, 

3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1 (m/m). Samples were prepared by a simple mixture of 

components in the absence of solvent. Both systems, NVP-THEO and NVP-CAF, present similar 

behaviors. For each set of a mixture, there is a curve where only one event appears and it 

corresponds to the eutectic composition of the system. In all the other curves, there is an event 
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corresponding to the melt of the eutectic, followed by a second event. This second event 

corresponds to the excess of NVP or co-former, which has a variable melting point according to 

the composition. In the case of NVP-THEO, the eutectic composition occurs in a ratio of 7:3 

(m/m), presenting an eutectic temperature of 224.1 ºC approximately. In the ratios of 8:2 and 9:1, 

the second event corresponds to the melting of NVP, whereas in the ratios of 1:9, 2:8, 3:7, 4:6, 

5:5, and 6:4, it corresponds to the melting point of THEO (Figure S6a). For the NVP-CAF 

system, the eutectic composition occurs in a ratio of 3:7 (m/m), with a eutectic temperature of 

203.4 ºC approximately. In ratios of 1:9 and 2:8, the second event corresponds to the melting 

point of CAF, whereas in the ratios of 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1 it corresponds to NVP 

(Figure S6b).   

Based on the thermal curves obtained at different compositions, phase diagrams for both 

systems were obtained (Figure 3). In the case of NVP-THEO, one can clearly distinguish the 

liquidus and solidus lines. The solidus line corresponding to the constant curve at approximately 

222 ºC. This line marks the temperature where the eutectic mixture starts to melt, that is, the 

eutectic temperature. In the case of NVP-CAF, an eutectic temperature around ~202 ºC is present 

in all compositions, marking the solidus line for this diagram, and consequently, the eutectic 

temperature. In addition, a line around 153 ºC can be seen and is corresponding to the phase 

transition of CAF. The intersection of the liquidus lines and the solidus line in each diagram 

allows obtaining the eutectic composition in each system. Using the linear fitting, it was possible 

to determine the eutectic composition of 70:30 (% m/m) for NVP-THEO, and 36:64 (% m/m) for 

NVP-CAF. 
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Figure 3. Phase diagrams for NVP-THEO and NVP-CAF systems. The arrows indicate the 

eutectic points in each system. In the NVP-CAF phase diagram, besides the liquidus and solidus 

lines, it is also possible to see the caffeine phase transition (black dots). 

 

Single Crystal X-ray Diffraction: In order to determine the crystalline structure of the four 

cocrystals obtained, slow evaporation experiments were carried out for all of them attempting to 

obtain good single-crystals for SCXRD experiments. Although single crystals were obtained for 

NVP-SA and NVP-4HBZC, so far it has not been possible to grow crystals of suitable quality to 

carry out SCXRD experiments for NVP-SAC and NVP-3HBZC. Crystallographic parameters are 

summarized in Table S4. Structures of the NVP-SA multicomponent at room temperature (RT) 

and 100 K (LT) present the same Space Group, P-1; however, the second has twice volume than 

the first; and while the NVP-SA at RT has z’ equal to 1, the LT structure has z’ equal to 2. Both 

present a stoichiometry NVP co-former 2:1. Salicylic acid molecules at RT are positioned in a 

center of symmetry that confer disorder to them (Figure 4). The precession images (Figure S7) 

verify the confidence of the assigned unit cell in both cases, since the unit cell at room 

temperature could not explain all the observed reflections in the experiment at low temperature, 
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and corroborate the loss of the inversion center of symmetry at the NVP dimer and over the 

Salicylic acid molecules (Figure 5 and Figure 6) which doubles the asymmetric unit and, 

therefore the unit cell volume (Table S5). NVP-4HBZC crystallizes in the C2/c monoclinic space 

group and it presents one nevirapine molecule and one 4-hydroxybenzoic acid molecule in the 

asymmetric unit (Figure 7). Nevirapine molecules in the title structures do not present significant 

differences in bond distances and angles. They display a “butterfly” conformation with angles 

between the pyridine rings at the range (119.9º – 126.4º) in agreement with pure NVP structure 

(CSD refcode: PABHIJ01)38 121.9º.  

 

 
Figure 4. Representation of NVP-SA cocrystal asymmetric unit at room temperature (inversion 

center indicated by a yellow dot and hydrogen bond interactions as dashed blue lines). Thermal 

ellipsoids drew at 50% probability level. 
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Figure 5. Comparison of the SA molecule position in the NVP-SA structures at room 

temperature (white) and at 100 K (grey).  

 
Figure 6. Representation of the NVP-SA cocrystal asymmetric unit at 100 K (hydrogen bond 

interactions depicted as dashed blue lines). Thermal ellipsoids drew at 50% probability level. 
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Figure 7. Representation of the NVP-4HBZC cocrystal asymmetric unit (hydrogen bond 

interactions depicted as dashed blue lines). Thermal ellipsoids drew at 50% probability level. 

 

Nevirapine molecules in NVP-SA structure form homodimers through amide-amide 

interactions that display a motif with graph set R2,2(8). In NVP-4HBZC a hydrogen motif with 

the same graph set R2,2(8) is also observed; but it corresponds to a hydrogen bond motif formed 

between the carboxylic acid in 4HBZC and the amide group in NVP, displaying heterodimers.  

If we compare the crystal packing that displays pure nevirapine in PAHBIJ0138 with the 

nevirapine molecules packing in the NVP-SA and NVP-4HBZC cocrystal structures, the 

observed infinite pyridine stacking ( interactions) of nevirapine molecules observed in 

PABHIJ01 is also conserved in NVP-SA and NVP-4HBZC cocrystals (Figure 8). Furthermore, if 

we consider in the strong amide-amide hydrogen bonds, these chains growth into mimic layers 

for PABHIJ01 and NVP-SA (Figure 8d). NVP-4HBZC does not present homodimers and 

therefore do not form these layers. However, the cocrystal reported by Caira et al. of NVP and 
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SAC (LATQOO)17 does also present mimic 1D infinite chains and 2D layers in its crystal 

structure. The way in which these layers are packed in the crystal is different; while in 

PABHIJ01 structure there are no holes, in NVP-SA and NVP-SAC (LATQOO) cocrystals the 

layers pack forming parallel pipes that allow the SA and SAC molecules to be located forming 

tapes (Figure 9 and Figure S8). 

 

 
Figure 8. Crystal structure of (a) pure nevirapine, PABHIJ01, (b) NVP-SA at 100K and (c) NVP-

4HBZC. Red dotted ellipses round infinite NVP chains and zigzag dashed green lines frame the 

nevirapine layers that are common into PABHIJ01 and NVP-SA packing. (d) Perpendicular 

projection of a nevirapine layer for the PABHIJ01 compound. Superposition of nevirapine chains 

for the structures: (e) PABHIJ01 (yellow) and NVP-SA (grey) (f) PABHIJ01 (yellow) and 

4HBZC (grey). 
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Justified by the fact that SA molecules are situated in pipe-shaped channels along with the 

NVP cocrystal structure, we propose a dynamic disorder at the RT structure. Salicylic acid 

molecules rotate 180º synchronously along with the crystal probably due to the low energy 

barrier between both conformations; while, SA molecules are not able to present dynamic effects 

in the crystal at 100 K. This disorder can also explain the Caira et al. structure recorded at the 

CSD with LATQUU refcode,17 which presents the same unit cell and space group as our 

structure at low temperature. Both data were collected at 100 K; however, the experiments were 

carried out in a different manner. We kept the crystal mounted at the goniometer head during the 

cooling ramp, while in LATQUU, the crystal was frozen instantly. This can obviously make a 

difference; a ramped temperature allows a conformational selection while fast freezing does not. 

In addition, rapid freezing produces a disorder in the salicylic acid molecule, showing two 

orientations: the major, presenting a final refined site occupancy factor of 0.74, coinciding with 

the observed in our LT structure; and the minor, with occupancy of 0.26, which is suggested as a 

possible “intermediate state” (Figure 9). 
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Figure 9. Structure of NVP-SA showing the pipe-shaped voids in yellow and on the right, the 

extended projection of the observed SA tapes that fit in those channels for the three discussed 

NVP-SA cocrystals. 

Powder dissolution profile and intrinsic dissolution rate (IDR) 

As the cocrystals, eutectic systems can present advantages over the pure drug. In order to 

evaluate the impact of eutectic systems in the dissolution properties, the powder dissolution 

profiles and the intrinsic dissolution rates of pure NVP, NVP-THEO and NVP-CAF in water and 

HCl 0.1N mediums were determined (Figure 10).  

In the HCl 0.1 N medium, whilst pure NVP takes more than 80 minutes to dissolve 80 % of its 

initial amount, NVP-THEO takes less than 20 minutes and NVP-CAF takes less than 5 minutes 

to dissolve the same amount. These results clearly show that the eutectics exhibit an advantage 

respect to the pure NVP relative to the dissolution kinetics. In water, this advantage is even 

greater. While less than 5% of pure NVP dissolves over 2 hours, eutectic materials reach 40% of 

dissolved material in less than 20 minutes for NVP-THEO and in less than 5 minutes for NVP-

CAF.  

Although IDR was considered a parameter relevant for the biopharmaceutical classification 

system in the past,39,40 the literature indicates that nowadays it is been more relevant as a solid-

state characterization technique.41,42 As previously described, all the samples show different 

crystal structures and, so, the intrinsic dissolution behavior was expected to be different too. All 

the samples presented R2 values higher than 0.9, showing that no transition occurred during the 

test. Moreover, just dissolution values of less than 10% were considered to plot the results. Both 

modifications, with THEO and CAF, showed IDR higher than that of the pure raw material. 
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So, both dissolution tests here proposed can be used to discriminate between the raw material 

and the prepared samples and also between these two modifications made. It can be concluded 

that the modifications were successful in the generation of higher dissolution rate structures.  

 

 

 
Figure 10. The dissolution profile of NVP in eutectic systems in comparison to pure NVP at HCl 

0.1 N and water. Intrinsic dissolution rates of NVP in the same samples were also determined for 

the same dissolution mediums. 

 

Page 24 of 35

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CONCLUSIONS 

In the attempt to improve the physicochemical properties of the antiretroviral nevirapine we 

have chosen seven compounds to search for NVP multi-components. They have been chosen 

because of their possible ability to alter the interactions observed in the packing arrangement of 

pure NVP due to the fact that these molecules contain carboxylic acid, amide and planar 

electron-delocalized fragments in their formula. The multicomponent samples were characterized 

through solid-state techniques and the results indicate that our initial criterium was quite right 

and 4 cocrystals (NVP-SA, NVP-SAC, NVP-3HBZC, NVP-4HBZC), 2 eutectics (NVP-THEO, 

NVP-CAF) and 1 (NVP-URE) physical mixture were identified. Moreover, we have used the 

multicomponent prediction tools available in the CSD to confirm if they can be helpful in this 

type of study. Results have shown they are adequate. Molecular complementarity (MC) tool 

establishes all co-formers as suitable to form cocrystals or multi-components with NVP except 

for urea. With the hydrogen bond propensity (HBP) tool, a high probability of obtaining 

cocrystals for SA, 3HBZC, and 4HBZC is predicted, for SAC, THEO and URE the probabilities 

are almost nil and, in the case of CAF, the results do show incompatibility to form cocrystals 

with NVP. 

Despite the methodology used to achieve the multicomponent structures is different from those 

used by Caira (reference), the same crystalline phase was obtained for NVP-SA and NVP-SAC 

as the one reported in the literature. The NVP-SA structures obtained in this work and their 

comparison with LATQUU allowed moreover to identify a temperature-dependent dynamic 

disorder behavior of the salicylic acid molecules along the channels displayed in the NVP host 

crystal. Further studies are required and they will be presented in a future manuscript. 
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NVP-THEO and NVP-CAF results comply with the formation of eutectics since two different 

phases and a single melting point were determined. In order to start understanding the behavior 

of these two systems, phase-diagrams were obtained. Also, the composition and melting point of 

these eutectics were determined. Moreover, dissolution studies have demonstrated an 

improvement in the dissolution kinetics behavior of these materials compared to pure NVP, 

especially in the aqueous medium. 

Finally, once again multicomponent materials are presented as a good strategy to improve the 

properties of pharmaceutical drugs and knowledge-based methods are useful tools for selecting 

molecules with the highest probability of crystallizing with an API. 

 

DEDICATION TO JOEL BERNSTEIN  

This paper is dedicated to Joel Bernstein, and the reason is the following. Joel was a great 

inspiration everywhere and, mainly, in Latin America. This paper is a collaboration between 

students and researchers of both Latin American countries, Brazil and Argentina. Joel was 

visiting and exchanging ideas and knowledge with us in Brazil and Argentina for three months 

during 2013. We invited him for different events and lab visits in Brazil (Workshop of 

Polymorphism and Nanotechnology of Pharmaceutical Drugs and International School of 

Crystallography and Crystallization – II ECRISLA). After that, he went to Argentina and 

participated in the First Latin American Meeting of Crystallography in Córdoba. The Latin 

American Crystallography Association (LACA) was created in that opportunity.  

For all of that, we will be eternally grateful to Joel. Finally, with great pleasure, I share with 

you Joel’s dedication to a wonderful book in which he expressed his feelings about his first visit 

to Latin America (Figure 11). 
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Figure 11. Note written by Joel Bernstein due to his first visit to Latin America, Brazil and 

Argentina.  
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http://www.ccdc.cam.ac.uk/data_request/cif , or by emailing data_request@ccdc.cam.ac.uk, or 
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Synopsis: Formation propensity and experimental studies of NVP with seven co-formers 

revealed the formation of four cocrystals, two eutectics, and one physical mixture. Eutectic 

increases significantly the solubility of pure NVP. The amide homodimer is kept in three of the 

cocrystals and is disrupted in the case of NVP-4HBZC cocrystal. Moreover, it is observed a 

temperature-dependent disorder in the NVP-SA cocrystal.  
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Formation propensity and experimental studies of NVP with seven co-formers revealed the formation of four 
cocrystals, two eutectics, and one physical mixture. Eutectic increases significantly the solubility of pure 
NVP. The amide homodimer is kept in three of the cocrystals and is disrupted in the case of NVP-4HBZC 

cocrystal. Moreover, it is observed a temperature-dependent disorder in the NVP-SA cocrystal. 
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