Speeding up the study of diluted dipolar systems
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We study the regimes of a diluted dipolar system through Monte Carlo numerical simulations
in the NVT ensemble. In order to accelerate the dynamics, several approximations and speed-up
algorithms are proposed and tested. In particular, it turns out that “Cluster Move Monte Carlo” al-
gorithm speed-up to two decades faster than traditional Monte Carlo, depending on temperature and
density. We find simple-fluid, chain-fluid, ring-fluid, gel and antiparallel columnar regimes, which
are studied and characterized through positional, orientational and thermodynamical observables.

PACS numbers: 64.75.Yz, 75.50.Mm, 64.60.-1

I. INTRODUCTION

Over the last decade, the study of self-assembling di-
luted systems has received renewed attention from the
experimental, theoretical and numerical points of view.
In particular, particles with anisotropic interactions and
interaction energy of the order of kT (where kg is Boltz-
mann’s constant and T is the temperature) are now being
synthesized [1, 2] and promissory applications have been
proposed for them [3-6]. Examples of those kind of sys-
tems include colloidal suspensions of dipolar particles,
particles with multipolar behavior [7], patchy particles
[8], or Janus particles [9].

The simplest particles with anisotropic interaction are
perhaps those endowed with a spherical hard core and
a dipole moment. Diluted dipolar systems (DDSs) have
been extensively studied through numerical simulations
[10-25], which include simple, gas-like order, chain-fluid
[10, 11, 24], ring-fluid [17, 24], gel [12, 22], and colum-
nar structures with crystal-like order [15, 20, 21]. Re-
lated studied systems include discotic liquid crystals [26],
dipolar spheres interacting with nonmagnetic rods [27],
simplified dipole-like interaction models [15], binary mix-
tures of anisotropic particles [28] and 2-D systems [19].
Those systems also display rich regime diagrams.

A major issue with simulations of diluted systems is
the extraordinary high computational cost, even for small
systems (one thousand particles), which has led to the
development of several speed-up strategies [29-31]. Here
we introduce the Cluster Move Monte Carlo (CMMC)
algorithm to speed-up study of diluted self-assembling
systems. For a wide range of temperatures and densities,
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CMMC turns out to be faster than previously proposed
algorithms by a factor about 10 in most cases, and up to
100 at some temperatures and densities, see Supplemen-
tal Material (SM) at [URL will be inserted by publisher]
for details on speed-up factors. The algorithm is tested
in a diluted system of simple dipolar particles, explor-
ing various regimes. CMMC do allows us to study much
lower temperature and density regimes. Using CMMC,
we are able to describe a hard to find antiparallel colum-
nar regime with crystal-like order in the very diluted low
temperature region among other well known regimes.

The article is organized as follows: Sec. II presents
the Cluster Move Monte Carlo algorithm. Sec. III gives
details of the dipolar model under study. Evidence of
the speed improvement brought about by CMMC at low
densities and temperatures is presented in Sec. IV. In
Sec. V we show the different structural regimes that arise
varying temperature and density. Finally we collect all
results to present a diagram with the different regimes in
Sec. VII, together with the conclusions.

II. CLUSTER MOVE MONTE CARLO

The algorithm is designed for the simulation of diluted
self assembling particles. In this work, the algorithm
is tested on an off-lattice system of spherical particles
with diameter o. The algorithm employs classical single-
particle Monte Carlo (MC) moves (displacement and ro-
tation) together with movements of groups of particles
(clusters).

To define a cluster, two particles are considered neigh-
bors if they are separated by a distance ry = V/1.50
or smaller (notice that alternative definitions have been
proposed [17]). A cluster is then defined as the smallest
set of particles such that if particle ¢ belongs to a clus-
ter, all neighbors of particle i belong to the same cluster.
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Each particle belongs to exactly one cluster; there may
be clusters with only one particle.
CMMC trial moves are:

1. With probability 1 — pcm, a single-particle move-
ment is proposed. This movement attempt is ei-
ther one translation, with probability pr, a ro-
tation with probability pr or a full movement
(rotation plus translation), with probability prr
(pr + pr + prT + Pom = 1). The relative val-
ues of pr, pr and prr are modified every 250 MC
steps, using an algorithm that favors successful tri-
als. In practice, pr, pr and prr are always larger
than 0.1, they evolve on the first 10> MC steps, and
have negligible changes for larger times.

2. With probability pcu, a cluster move is proposed.
A cluster is selected and displaced uniformly to a
random location in the simulation box. To ensure
detailed balance, the move is rejected if it results in
a change in the number of clusters. We have used
peym = 0.001. Similar values give similar speed-ups.

Trial moves are then accepted or rejected as usual with
the Metropolis criterion, i.e. they are accepted with prob-
ability p = min[1, exp(—8 AU)], where AU is the change
in the system total energy, as a result of the proposed
move, and 8 = 1/kpT.

Variants of CMMC, adding cluster rotations and clus-
ter inversion (inversion of all dipole moments of the clus-
ter) were explored. However no further acceleration was
found adding those trial moves to the cluster displace-
ment.

We compare the performance of CMMC with stan-
dard MC and with the aggregation volume bias (AVB)
algorithm specialized for dipolar systems as described
by Rovigatti, Russo and Sciortino [17, 18]. This algo-
rithm uses two kinds of trial moves, performed as fol-
lows. Within AVB, a particle ¢ is chosen at random and
the simulation volume is divided in two fractions, Vi, the
positions close to ¢ where another particle j is considered
bounded (roughly speaking, they are neighbors and their
interaction energy is large and negative), and Vg, (the
rest of the simulation box). Then either an in — out
(with probability ) or an out — in (with probability
1 — z) trial move is proposed. For the in — out case, a
particle j # ¢ within V4, is chosen and a random position
within V,; and a random orientation are proposed. The
out — in move is proposed similarly [18, 29].

III. DIPOLAR PARTICLE MODEL

In order to test the CMMC algorithm, a system of NV
particles of size o with a point dipole in the center of the
particle is studied. More precisely, the potential energy
is [16, 24]:

N
U({ri,pi}) = Z Uo(rij, Pir Pj)s (1)
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where r;, p; are the position and dipole moment of par-
ticle 7, r;; = r; — r; and the pair potential is

Uo(r,p1,p2) = Ua(r) + Up(r, p1, P2) (2)
o 36
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where © = |r|, € is the energy scale, and all particles
have identical dipole moments, |p;| = po. Simulations
are carried out in a periodic cubic box of side L and the
average number density is p, = N/V, V = L3. The
solvent is not considered explicitly here (apart from a
possible electric permitivity or magnetic permeability in-
cluded in €). We report results using the dimensionless
quantities U’ = U/e, ' = r/o (and similarly for all de-
fined lengths), p} = p;/po, T’ = kpT/e, p' = a3p,. For
the sake of notational simplicity we omit the primes from
now on.

Notice that several similar models have been proposed,
using the same dipole interaction, Uj, but different spher-
ical short-range potentials, Uy, such as dipolar hard
spheres or the Stockmayer fluid.

Due to the relatively long range of the dipole interac-
tion potential, dipolar systems have been usually stud-
ied using Ewald sums [18, 27]. Computationally less de-
manding alternatives have also been proposed and stud-
ied in detail [32-35]. Following [34, 35|, in this work we
replace Uy in Eq. (1) by a shifted and truncated version
Usp,

Usp(r, p1,p2) = Uo(r,p1, p2)[1 — r° /7] (5)

for r < r., and zero otherwise. We use a cut-off distance
r. = 7o. For some temperatures and densities we have
tested different values of r., ranging from r, =4 to r. =
20, as well as the Ewald sums method. We have not
seen any qualitative differences for r, > 5, but we have
taken r. = 7 as a safe choice [16]. The cell indexation
method was used to speed-up the interacting neighbors
search [36].

IV. ALGORITHM PERFORMANCE

We have simulated the dipolar particle system with
MC, ABV and CMMC, using Ugp (the potential in
Eq. (5)) instead of Uy, at temperatures T = 0.03, 0.035,
0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12,
0.13, 0.14, 0.15, 0.16, 0.18, 0.2, 0.24, 0.3, 0.36 and den-
sities p = 0.35%, 0.25%, 0.23, 0.1253, 0.13, 0.073, 0.053
and 0.03%. Packing fraction ¢, can be related to p using
¢ = mpo?/6. Unless stated otherwise, we report results
for N = 1000, and r, = 7.

The performance of standard MC, AVB and CMMC is
compared in Figs. 1, 2, and 3.

In Fig. 1, we show energy evolution as a function of
MC steps for a system of N = 1000 particles, average
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Figure 1. Potential energy per particle as a function of MC
steps for T = 0.08, p = 1/83, N = 1000, r. = 7. U is
computed as in Eq. (1), replacing Uy by Usp, Eq. (5). A line
is drawn at 95% of asymptotic energy value. Inset: Same
results as a function of wall time. Results where found using
one core of a 7Tth generation Intel i7 computer.

density p = 1/8%, temperature T' = 0.08 and cutoff dis-
tance r. = 7. We see that all methods lead to the same
asymptotic value. In order to measure the time it takes
to reach asymptotic value of energy, we define 7z as the
number of MC steps needed for reaching 95% of energy
asymptotic value. Energy as a function of wall time (the
real, physical time) is shown in the inset of that figure. In
terms of real time, both AVB and CMMC take less than
10% more time than MC for performing the same num-
ber of MC steps. The only exception is during the first
~ 2000M C steps, when there are many solitary particles,
and the speed of CMMC is reduced by a factor almost
two.

In Fig. 2 we show 75 for all methods, as a function of
T. In the inset, we do the same as a function of p. Both
AVB and CMMC considerably speed-up the evolution of
the dipolar fluid (compared to standard MC). Adding
cluster rotations, dipole inversion or cluster destruction
to the cluster displacement move of CMMC does not re-
sult in further accelerations. The AVB vs. CMMC com-
parison shows that AVB performs better at moderate
temperatures, while remarkably CMMC is better at low
temperatures (CMMC is more than 30 times faster at
the lowest temperature we tested, see SM at [URL will
be inserted by publisher]).

In Fig. 3, we plot the connected, normal-
ized, energy correlation function FEgu(7) =
(BB +7) ~ (E0)?]/ [(B()2) ~ (D)) Econ
is one for a completely correlated system (for instance,
at 7 = 0) and zero for completely uncorrelated ones.
We measure it at time ¢t when the system has reached
its asymptotic value of energy. In order to measure
the time it takes to decorrelate the energy, we define
T as the time needed to decorrelate it a 95% (i.e.
Ecorr(t¢) = 0.05). In the inset of Fig. 3, we plot 7¢ as
a function of temperature.

Next, we study whether the speed-up algorithm is use-
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Figure 2. MC steps needed in order to reach 95% of the

asymptotic value of energy, as a function of temperature, p =
1/83, N = 1000, r. = 7. Inset: Same results as a function of
density, for T' = 0.08.

ful for larger system sizes. We have simulated systems
of N = 8000, N = 27000 and N = 64000 particles, at
moderate temperature 7' = 0.08 and density p = 1/83.
We plot the energy as a function of wall time, in Fig. 4.
In the inset, we show energy as a function of wall time
per particle. We see that CMMC algorithm behaves well
on system size (i.e. the wall time needed for performing
a MC step is roughly proportional to N).
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Figure 3. Energy correlation for T = 0.08, p = (1/8)%, N =
1000, r. = 7 using the same symbols as in Fig. 1. We define
the energy correlation time 7¢ as the time needed for the
normalized correlation function to decay to 0.05. Inset: 7¢ as
a function of temperature p = (1/8)3, for different algorithms.

Efficiency of CMMC is due to performing a collective
movement in a single step, which would require many
single-particle moves to be achieved otherwise. We thus
do not expect its efficiency to be sensitive to the trunca-
tion distance r.. In SM, we show results with and without
CMMC, for several values of r., and using Ewald sums.
In all cases, CMMC performs at least 10 times faster than
MC.

The final states reached with CMMC (the different
regimes that will be discussed in more detail in Sec. V)
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Figure 4. Energy per particle, as a function of wall time,
for T = 0.08, p = (1/8)% r. = 7 and several system sizes.
From left to right: N = 1000, N = 8000, N = 27000 and
N = 64000. Inset: Same results as a function of wall time
per particle. Simulations were performed on a 7th generation
Intel i7 computer.

are very stable within simulation times: all studied ob-
servables remain stationary over the last 90% of the sim-
ulation time, and they pass two equilibration tests. First,
the derivative of the asymptotic energy with respect to
T

)

Coa <Ti + Ti+1) _ U(Tiy1) — U(T3) (6)

2 T —T,
and the energy fluctuations,

7

give compatible results. This is a sign that the simu-
lation has explored a fair portion of the phase space (in
equilibrium, C, ¢ = Cy y = Cy, where C,, is the constant-
volume specific heat). In addition, we obtain the same
results starting the simulation from either high or low
temperature configurations. In typical runs, which we
call “cooling” runs, we start from completely random
positions and orientations (i.e. a very high temperature
configuration) and quench it to temperature T at ¢t = 0.
For “heating” runs, we take a configuration that reaches
asymptotic values of all observables at T" = 0.04 and
we increase temperature by AT = 0.0025 every 105 MC
steps, while measuring several observables. As shown
below in Sec. V B, the values obtained from heating or
cooling coincide, with no sign of hysteresis. That is, the
algorithm does not face obvious metastability problems.
In particular, the values reported below for the crossover
temperatures are independent of the procedure (heating
or cooling) used to find the different regimes.

V. REGIMES AND CROSSOVERS
A. Regimes

Numerical results allow us to distinguish several differ-
ent regimes, in terms of the structures the system forms.
We describe them first qualitatively. In the next subsec-
tion we introduce several observables that are used for
defining crossovers between regimes. From high to low
temperature, we find:

e Simple-fluid. Corresponds to a homogeneous sys-
tem of solitary particles (i.e. particles that do
not form clusters), with negligible orientation cor-
relations. A snapshot of this regime is shown in
Fig. 5(a).

e Complex-fluid. There may be a chain-fluid or a
ring-fluid. Those regimes are characterized by the
presence of many small clusters and almost uniform
density. The system does not percolate. Most par-
ticles have exactly two neighbors, they are aligned
head-to-tail, and a low but nonzero polarization can
be measured (at least in small systems). A ring is a
cluster where every particle has exactly two neigh-
bors. A chain (also known as string [15, 16]) is a
cluster where every particle has two neighbors, ex-
cept for two of them (the chain t¢ips), which have
exactly one neighbor. We find that chains are more
likely at high density, while rings dominate at very
low density. Snapshots of the ring-fluid and chain-
fluid regimes are shown in Figs. 5(b) and 5(c).

e Gel. It is a percolating system. Most particles
belong to the same cluster, which may, or may
not span the whole simulation box. Most particles
have two neighbors, while some of them have more
than two. A snapshot of the gel regime is shown in
Fig. 6(a).

e Columnar. The antiparallel columnar regime is
defined by the presence of a single cluster contain-
ing all particles. Each particle has several neigh-
bors, and dipoles are oriented head-to-tail form-
ing a chain which is surrounded by similar chains
with opposite orientation (see Fig. 6(b)). Colum-
nar structures show long range crystal-like order
(see radial distribution function, Fig. 7). The clus-
ter tends to be elongated in the direction of those
chains. It is compact in the sense that all particles
are found within a small, high density region, while
the rest of the simulation box is empty. We have
found this columnar regime at low and high den-
sities. Crystals have been found in previous work
[15, 19], but in situations where the density was
uniform over the simulation box. In our case, the
average density is roughly 250 times smaller than
the density of the crystal. The columnar shape we
find is probably related to the existence of a large



void region in the simulation box. Our result is
similar to the columnar regime of the Stockmayer
model [21], which has the same dipolar term, U,
but a Lenard-Jones potential for the isotropic term
Uy, i.e. in the Stockmayer model there is an attrac-
tive isotropic term in addition to the anisotropic
dipolar contribution. Columnar regimes have been
found under external applied field, either experi-
mentally, [37, 38], or in 2-D simulations [14].

We find that, at low temperatures and densities (i.e. in
the gel or crystal regime), there are high density regions

and voids. In order to identify different structures, we
define
r4+Ar
u(r) :Z/ AV’ (" — [ris])/[2(N — 1)dmr2Ar]. (8)
ij YT

When the density is homogeneous, u(r) is equal to pg(r)
(g9(r) is the radial distribution function). Examples of
u(r)/p, for several regimes, are shown in Fig. 7. For the
simple-fluid, which has homogeneous density, we get a
rather simple diagram, which goes to 1 at » ~ 3. For
all other samples, we have u(r) > p. This is a direct
consequence of having high density regions and voids.
For the columnar regime, there are several peaks, that
extend to typical column widths. In the figure, arrows
are drawn at the two-particle minimum energy distance
(i.e. the value of r that minimizes Eq. (5)), and integer
multiples of that distance.
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Figure 5. Snapshots of (a) portion of a simple-fluid (p = 1/83,
T = 0.16), and (b)-(c), complex fluid. In (b), there is a chain-
fluid sample (p = 1/4%, T = 0.14), while in (c) there is a
ring-fluid (p = 0.07%, T = 0.08) sample.

B. Crossovers

Here we report observables that can pinpoint the

Figure 6. Snapshots of (a) gel including all particles in the
simulation (p = 1/8%, T = 0.06), and (b) columnar regime at
low density (p = 1/8°, T = 0.04). Snapshots were performed
with Jmol [39].
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Figure 7. Example of u(r)/p at density p = (1/8)3, for differ-
ent regimes. From top to bottom: columnar (I' = 0.04),
gel (T' = 0.07), chain-fluid (7" = 0.10) and simple-fluid
(T = 0.20).

crossovers between regimes. All results shown are ob-
tained from at least eight independent systems at each
density and temperature, and data is collected after en-
ergy and energy fluctuations reach a stationary state.
The specific heat per particle, C, /N, is estimated from
energy fluctuations, Eq. (7) and from numerical deriva-
tives of the energy values, Eq. (6). Both methods yield
similar results in the studied temperature range, suggest-
ing that the systems have reached equilibrium. Given the
well-known equilibration problems in these kind of sys-
tems, we do not claim that the regimes and crossovers
we describe below correspond to true equilibrium ther-
modynamic phases. However we do emphasize that they
are extremely stable within the simulation times reached,
and that we can reach them both from stabilized systems
at high or low temperatures as mentioned in sec. IV.
We would like to emphasize that we are describing the
regimes that in practice show up, in the sense that in
simulations of finite but extremely long times they re-
main stable. Based on our stability tests, we expect those
structures to be stable enough to be accessible in poten-



Figure 8. Crossover between simple-fluid and complex-fluid,
described using several variables as a function of temperature,
for p = 1/43. (a) Number of clusters, (b) local parallel order
parameter, Eq. (9)), (c) energy, and (d) normalized deriva-
tives of those variables. In (b), triangles are obtained from
heating, while circles are results from cooling.

tial experiments.

We now explain how the crossovers between the dif-
ferent regimes are calculated. In what follows N¢; is the
number of clusters, I; is the amount of particles in cluster
j (cluster size), and 4, the size of the largest cluster.

a. Simple-fluid to Complez-fluid. At a very high
temperature, only solitary particles at uniform density
are found. This is a simple-fluid. Cooling the system, at
some point one starts to detect cluster formation, accom-
panied by the onset of local parallel order. The number
of clusters, N¢; displays a sharp decrease on cooling at a
temperature roughly coincident with a peak in the spe-
cific heat. One measure of the local parallel order is

Fe= g Spepift), @)= 5 HA-1), )

where H is the Heaviside step function. This is similar to
the local order parameter described in [20], except that
a Heaviside function if used here, in order to reduce the
analysis volume. The funcion f(x) is used so that nearest
neighbors have more relevance on F'. Alternative choices
of f(z) yield similar results.

Fig. 8 shows the behavior of the number of clusters, the
local parallel order parameter, energy, and their deriva-
tives to temperature. The derivatives of all those observ-
ables display peaks at similar temperatures. Results for
F as a function of temperature are shown for both cooling
and heating in Fig. 8(b). They coincide within statistical
error, and the same holds for all other observables in the
simple-fluid to complex-fluid crossover.

b. Chain-fluid to Ring-fluid. In order to distinguish
between chain-fluid and ring-fluid, we measure the num-
ber of particles belonging to chains and rings. We con-
sider the system to be in the chain-fluid regime when
there are more particles forming chains than particles
forming rings, and in the ring-fluid regime if the oppo-

0.05

0.04 +

0.03 +

0.02

0.01 +

Figure 9. Behavior of the percolation parameter P, Eq. (10),
versus temperature for p = 1/43. Triangles: heating, circles:
cooling.

site is true.

c.  Complex-fluid to Gel. Cooling the complex-fluid
further, the system forms a single cluster. The most
useful observable to detect the fluid—gel crossover is the
percolation parameter, also known as (normalized) mean
cluster size,

1

J=1,N.—1

where the sum is over all clusters but the largest. It
has a peak at the percolation transition [40, 41]. For a
system divided into n equal clusters, P = (n — 1)/n?
(for a gel, P = 0, for a simple-fluid P ~ 1/N, P(n =
2) = 1/4, P(n = 3) = 2/9, and so on). Fig. 9 shows
percolation parameter P, for both cooling and heating.
Both curves show similar behavior, and have a peak at
the same temperature. Another related observable that
separates complex-fluid from gel is the derivative of [yax
with T, which presents a peak at the same temperature
as P.

d. Gel to Columnar. At the lowest studied temper-
atures we find a previously uncharacterized (to the best
of our knowledge) regime where a compact, crystal-like
structure, with columnar shape appears. This structure
can be distinguished from the gel by computing the num-
ber of particles with more than two neighbors N,,, local
antiparallel order A, or the local density N,, (the den-
sity in a sphere of radius 4, about the particle). Local
antiparallel order is measured through

A:%Zmi'l’jf(wﬂ—pi-pjf(mj). (11)

(2]

For uncorrelated orientation and position, A = A, =
(N —1)p/N, if all dipoles point in the same direction
A =0, and A > A, in the antiparallel regime. In
Fig. 10 we show values of those observables for p = 1/43.
All of them present an abrupt drop around T' = 0.05. The
derivatives of those quantities show a (negative) peak at
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Figure 10. Behavior of some observables as a function of
temperature, about the columnar to gel crossover. (a) Local
anti-parallel order A, (b) number of particles with multiple
neighbors (more than two), Ny, (c) local density Ny, and (d)
the normalized (negative of) the temperature derivative of
those observables. In (b), triangles: heating, circles: cooling.

the same temperature (see Fig. 10). We have repeated
this method in the whole density range (from p = 27 x
107% to p = 0.064). In all cases the peaks take place at
the same temperature. Results from heating and cooling
coincide. Values of N,, obtained from heating and from
cooling are both shown in Fig. 10(b).

VI. DISCUSSION AND CONCLUSIONS
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Figure 11.  Regime diagram: density versus temperature.
From left (low temperature) to right, there are columnar, gel,
complex-fluid, and simple-fluid regimes. Boundaries among
regions are calculated from the peaks of Figs. 8(d) (simple-
fluid to complex-fluid) 9 (complex-fluid to gel) and 10(d) (gel
to columnar). The complex-fluid is divided into two regions:
at high density, chain-fluid is found, while at low density, there
is a ring-fluid. A line dividing chain-fluid from ring-fluid is
shown. In the right y-label, we have included the packing
fraction, ¢ = wpo> /6.

We outline a regime diagram, where we report the tem-

perature of the crossovers among the different regimes,
detected as discussed in Sec. VB for several densities
(from p ~ 3 x 1075 to ~ 4 x 1072) and temperatures (see
Fig. 11). We emphasize that boundaries in Fig. 11 have
been calculated using the peak values of the observables
under consideration. As may be expected from Figs. 8,
9 and 10, there may be a broad coexistence region about
the peaks. The study of coexistence regions is beyond
the scope of this article.

From Fig. 11, we see that the antiparallel columnar
structure is found at low temperatures. The crossover
temperature from columnar to gel does not have a strong
dependence on p. At higher temperatures, a gel shows
up. The density region where a gel is available decreases
on diluting. It would be interesting to study whether gel
regime disappears at low enough density. The gel-fluid
crossover temperature grows with p. At higher temper-
atures, a complex-fluid is found. It may be a chain or a
ring fluid. Chains are more likely to take place at high
density, whereas rings dominate at very low density. Fi-
nally, there is a simple-fluid at high temperature. The
complex-fluid to simple-fluid crossover temperature also
grows with p.

Results in Fig. 11 are for r. = 7. We expect to
find the same regimes for other values of r.. We have
run simulations for several values of r. and with Ewald
sums. We have found compatible structural results. In
all cases, CMMC speeds-up 1 to 2 orders of magnitude.
Our choice of short-range potential, Uy oc r~36 represents
hard spheres in such way that U and all its derivatives
are continuous, and may be reproduced under other dy-
namics such as molecular dynamics. We have also tested
dipolar soft spheres (DSS, Uy o r~'2), and dipolar hard
spheres (DHS). CMMC considerably speeds-up dynamics
for DHS and DSS. See SM at [URL will be inserted by
publisher] for a description of results using other values
of r¢, Ewald sums, DSS and DHS.

In defining the above-mentioned regimes we have com-
bined positional, orientational, and thermodynamic ob-
servables. In most cases, there is more than one observ-
able capable of detecting the given crossover, at the same
temperature. For instance, the temperature and den-
sity range where large fluctuations in local density take
place is similar to the temperature-density range where
antiparallel orientational order takes place.

Numerical studies of dipolar particles use similar po-
tentials to the ones used here. Temperature and den-
sity can be compared in terms of the ratio 7" between
kT and typical energy value of two nearest neighbor
particles, €. For instance, other studies finding colum-
nar structures in simplified dipolar-like particles [15, 19],
would have effective temperatures and densities in the
range 0.1 < 77 < 2 and 0.1 < p' < 14. Studies
of ring formation [18, 24] were performed on densities
about p > 0.005, and temperatures 77 > 0.125. The
analysis performed here considers temperatures as low
as T' = 0.04 and densities as low as 2.7 x 107>, consid-
erably extending the regime diagram.



Magnetic nanoparticles consisting on iron oxides can
be easily synthesized. They have typical sizes of o ~
10nm, and consist of a single domain crystal. Iron ox-
ides have typical magnetization per volume, of My ~
3 — 410°A/m. Thus, the largest dipole-dipole energy
between two particles is U = pu/4m ME(7/6)%03, which
gives 3.3510721J in water. This gives kpT/e ~ 1.3 at
room temperature. If particles are coated with a non-
magnetic material of width d, former formula reduces to
U = p/dn ME(r/6)?05 (0 + 2d)3. Recently, o ~ 20nm
particles covered by a 2nm surfactant layer have been
synthesized [1], with a reported value of T/ = kpT/e ~
1/9. This results are compatible with single domain
nanoparticles. Single domain, cubic magnetite particles
with ¢ ~ 76nm [2] have also been synthesized. More-
over, the theoretical limit for single domain iron oxide
nanoparticle size is about ¢ = 128 nm for spherical mag-
netite particles [42], which would give, without coating,
values of T = kgT/e ~ 0.0008. Conversely, those par-
ticles could be coated, forming, for instance, a 500 nm
size particle, with 77 = 0.05. This means that regimes
such as the ones described here, should be found in nowa-
days experiments. A more quantitative relation among
theoretical and experimental temperatures and densities,
should consider other factors, such as surface tension, or
non-equilibrated surface charges, which exceeds the scope
of this article.

In conclusion, we have presented an algorithm

(CMMC) that speeds-up simulations of Dipolar Diluted
Systems by a factor of 10 to 100, compared to other
algorithms, at low temperatures and densities. The algo-
rithm is easy to implement and it does reduce both the
equilibration and relaxation time. The physical time it
consumes scales almost linearly with system size. Using
it, we were able explore lower densities and temperatures,
where we find and characterize columnar structures in
the extremely diluted dipolar system. The CMMC algo-
rithm can be combined with several speed-up algorithms,
such as AVB, Umbrella Sampling and Parallel Temper-
ing. Thus, it appears as a useful and potentially pow-
erful tool for the study of DDs, but also other diluted
self-assembling [7-9] or aggregating systems [43].

Finally, several numerical [44, 45] and experimental
studies include permanent or time-dependent fields. It
would be very interesting to analize the efficiency of this
algorithm under such circumstances.
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